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Abstract— This paper presents a visual-servoing method for
compensating motion of soft tissue structures using 4D ultra-
sound. The motion of soft tissue structures caused by physiologi-
cal and external motion makes it difficult to investigate them for
diagnostic and therapeutic purposes. The main goal is to track
non-rigidly moving soft tissue structures and compensate the
motion in order to keep a lesion on its target position during a
treatment. We define a 3D non-rigid motion model by extending
the Thin-Plate Spline (TPS) algorithm. The motion parameters
are estimated with intensity-value changes of a points set in a
tracking soft tissue structure. Finally, the global rigid motion
is compensated with a 6-DOF robot according to the motion
parameters of the tracking structure. Simulation experiments
are performed with recorded 3D US images of in-vivo soft tissue
structures and validate the effectiveness of the non-rigid motion
tracking method. Robotic experiments demonstrated the success
of our method with a deformable phantom.

I. INTRODUCTION

Medical imaging modalities make it possible to observe
soft tissue structures non-invasively. Among them, ultrasound
(US) imaging has many bene�ts. It is cheap, real-time,
safe for human body, and non-interactive with ferromagnetic
materials. For these reasons, US is the most widespread
medical imaging modality.

Physiological motions such as respiration and heartbeat
move soft tissue structures globally and deform them locally.
Therefore this motion of soft tissue structures makes it
dif�cult to investigate them for diagnostic and therapeutic
purposes. Especially the target position of non-invasive ther-
apy should follow the physiological motion of a moving
lesion.

There are some literatures to deal with motion compensa-
tion using US imaging. In [1] and [2], speckle decorrelation
is used to estimate elevational motion of 2D US probe,
and Krupa et al.[2] successfully compensate the soft tissue
rigid motion with a 2D probe attached to a robot. In [3],
an US image-based visual servoing method is presented to
position a 2D probe on a desired organ section and track it
thanks to the use of image moments obtained from contour
segmentation. Nadeau tracks 3D rigid motion using a virtual
3D US probe in [4]. In [5], 3D translational motions are
estimated using 4D US. However, non-rigid motion is not
considered in the above methods.

The contributions of this paper are to track 3D non-
rigid motion using 4D US in real time and to compensate
the motion. At our best knowledge, unlike other non-rigid
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registration procedures, our method is processed in real
time. In the rest of this paper, a non-rigid motion model
is de�ned using 3D Thin-Plate Spline (TPS). Then, an
intensity-based tracking method is described to estimate
the parameters of the motion model. Global rigid motion
such as 3 translations and 3 rotations are extracted from
non-rigid motion parameters. Finally, a 6 degree-of-freedom
(DOF) robot equipped with a 4D US probe is controlled to
compensate the rigid motion. Tracking accuracy is discussed
from simulation experiments usingin-vivo US images and
the effectiveness of the proposed method is also veri�ed from
robotic experiments with a deformable tissue-mimicking
(TM) phantom.

II. N ON-RIGID MOTION TRACKING

Before compensating the 3D motion of soft tissue struc-
tures, a new method to estimate 3D motion of deformable
soft tissue is proposed in this section.

A. 3D Scan Conversion

We use aSonixTOUCH Research 4D US scanner (Ul-
trasonix Medical Corporation, Canada) and a motorized
US 3D transducer (Model: 4DC7-3/40, Ultrasonix Medical
Corporation, Canada). Since the 4D US scanner is designed
for the purpose of research works, we can access digital data
before the conversion into an image. Afterwards, a set of
volume data is converted into a volumetric image, called as
3D scan conversion.

For scan conversion, geometries of the probe (the 2D US
transducer's radiusRprobe and the motor's radiusRmotor) and
imaging parameters (the number of sample data in a A-line
Nsamples, the number of A-lines in a frameNlines, and the
number of frames in a scan volumeN f rames, angle between
neighboring A-linesα line, and angle between neighboring
frames α f rame) are considered in (1). In Fig. 1, a sample
s(i, j,k), which is the i-th datum along thej-th A-line
in the k-th frame, is relocated into a pointp(r, ϕ , θ ) in
a volumetric image, which is represented asp(x,y,z) in
Cartesian coordinates according to (1) and (2).

Note that our 3D US probe continuously scans volumes
while its motor is sweeping the volume in forward and back-
ward directions. Additionally, sweeping directiond (which
is 1 in the forward direction and 0 in the backward direction
in (1c)) and motor's rotating motion should be considered.
In (1c), we assumed that the motor stops during the time to
scan A-line so that scan lines are straight.







Fig. 9. Feature error that corresponds to the pose of a target region with
respect to the current probe frame - case of the abdominal phantom
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Fig. 10. Trajectories of the probe performed during the compensation visual
servoing with an abdominal phantom (left) and a deformable phantom (right)

probe motion and Fig. 12 shows the observed feature error
during the automatic compensation task performed with the
deformable phantom. The visual tracking of the target region
during the compression stage was successfully performed as
shown in Fig. 11.

At the above experiments, sequential 3D US images were
acquired at the rate of 4.6 volumes/second. The control
loop time was 100 milliseconds. In order to perform all the
processes explained in the section II and III such as 3D scan
conversion, the non-rigid motion estimation and the rigid
motion extraction in the control loop time (100 ms), we
implemented them using nvidia CUDA.

VI. CONCLUSIONS

This paper has presented a method to compensate 3D
non-rigid motion of soft tissue structures in the presence
of respiration using 4D ultrasound. Motion parameters are
estimated with respect to the changes of intensity values
under the multiple tracking points within a target region.
The rigid motion of the target region extracted from the
motion parameters is compensated with a 6-DOF robot
equipped with a 4D US probe. The non-rigid motion tracking

Fig. 11. Successive images obtained during the target region tracking
process

Fig. 12. Feature error that corresponds to the pose of a target region with
respect to the current probe frame - case of a deformable phantom

method was validated in simulation by tracking the warping
motion of an US volumetric image captured fromin-vivo soft
tissue. 4D US-based visual servoing tasks were performed
successfully in the simulated deformations of a 3D US
image. Furthermore, robotic experiments demonstrated non-
rigid motion compensation with a deformable TM phantom
in real time.
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