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Abstract � In this paper we address the issue of hybrid 2D/3D
visual servoing. Contrary to popular approaches, we consider
the position-based visual servo as the core of our scheme. 2D
information is only added when necessary, that is when the
observed object is about to leave from the �eld of view, even
partially. The injection of 2D information is tuned by only
one parameter, that simply de�nes the area where a point is
considered to be near to the image border. Simulations allow
the comparison of the proposed scheme with both position-
based and hybrid schemes, showing nice properties. Finally,
experiments are performed on a real object that is tracked by
a pose estimation algorithm. Results validate the approach by
showing the object stays entirely in the image �eld of view.

Index Terms � Visual servoing, hybrid control

I . I N T R O D U C T I O N

A main issue in visual servoing is the choice of the set of
visual features. Indeed, contrary to classical sensors such as
laser range sensors or robot encoders, cameras deliver high-
dimensional data that need to be processed in order to obtain
information about the robot environment. Visual servo are
classically divided in two main approaches [2]. Image-based
visual servoing (IBVS) focus on using geometric features
that can be directly obtained from the image. When used
with a teaching-by-showing to specify the desired robot
pose, these schemes are known to be robust to calibration
and model errors. The main drawback is that the induced
3D trajectory is not predictable and may be unsatisfactory.
Also, jacobian singularities or local minima may exist [1].
On the opposite, position-based visual servoing (PBVS)
uses the 3D pose of the camera as visual features and is
globally asymptotically stable when the pose is assumed to
be perfectly estimated. Additional information such as true
camera parameters and a 3D model of the observed object
are necessary to estimate the camera pose from the acquired
images. For some PBVS schemes, the induced 3D trajectory
is a 3D straight line, but there is no control in the image
space and the object may get out of the �eld of view (FoV).
Another design of PBVS does not lead to a straight line but
implicitly ensures that the object reference point stays in the
image [15]. A similar approach is called 2 1/2D VS, where
some of the 3D features are replaced by 2D information,
leading to a set of 6 features that allow analytical proof of
convergence and study the sensibility to calibration errors.
Popular choices are to use 2D coordinates of an image point
together with 3D translation (resp. rotation) along the z -axis
and the whole vector for 3D rotation (resp. translation) [11].
This strategy ensures the reference point stays in the image,
yet the object may partially leave the FoV. In [14] another
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6-feature-set is designed to cope the visibility issue: 2D
coordinates and 3D rotation together with the radius of the
circumcircle of the object projection. Yet, this shape may not
be suited for all 3D objects, and a planning strategy must be
done in the general case. When using more than 6 features,
merging 2D and 3D information leads to various hybrid
approaches. In [3], PBVS translational and rotational motion
are switched when the image points are near to the border.
The goal is to perform only the 3D motion that will keep the
points in the image. Isolating the z -axis is also considered
in [5] with a partitioned strategy. In practice, this leads to
backward translational motions which is not an optimal 3D
trajectory. In [7], a switching between IBVS and PBVS is
proposed. A maximum error is de�ned for each scheme, that
makes the system switch to IBVS (resp. PBVS) if the 2D
(resp. 3D) error norm is too high. However the maximum
acceptable 2D error may be dif�cult to de�ne: if too high, a
point may be able to reach the image border. If too small the
scheme may stay in IBVS mode. Finally, a hybrid control law
has been proposed in [10] with a 5D-objective function that
allows determining the best weighting between IBVS and
PBVS. Once again, the tuning may be dif�cult in practice
and does not ensure the visibility because the 2D weights are
bounded. To cope with partial visibility lost, a scheme has
been proposed in [8] where the features can be continuously
added and removed from the task when they enter or get out
of the �eld of view. As a point is approaching the image
border, its participation in the control law is decreasing and
becomes null before it is no more visible. Still, the number
of observed points must be enough to perform the pose
estimation. Our work is part of the hybrid approaches that let
PBVS keep the points in sight. The main idea is to modify
the PBVS as little as possible since this scheme provides nice
3D trajectories. To do so, we choose the opposite approach
of [8]: instead of not taking into account the points that
are about to leave the �eld of view, we inject them into
the control law so that they stay in the image. Contrary to
previous hybrid schemes, all point coordinates are treated
separately depending on their distance to the image border.
First, visual servoing classical control laws are recalled. In
Section III we expose the proposed hybrid scheme and we
proof the local stability. We also consider particular issues
due to discretization. Finally, we compare our approach to
other popular schemes in both simulations and experiments.

I I . V I S U A L S E RV O I N G S C H E M E S

In this section we recall the modeling of classical visual
servoing control laws. VS schemes consist in de�ning a robot
task by an error function to be minimized:

e = s − s ∗ (1)



where s is a vector of m visual features with s ∗ being their
desired values. In the following, we assume m ≥ 6 . Once
the visual features have been chosen, the time variation of s
is directly related to the camera velocity screw v s by:

˙s = ˙e = L s v s (2)
where L s is the interaction matrix related to s and can usually
be computed analytically [2]. Assuming the robot can be
controlled with the camera velocity, (2) leads to the following
control law:

v s = − λ ̂L s
+ e (3)

where ̂L s
+ is an estimation of the Moore-Penrose pseudo-

inverse of L s , that ensures at best that the error e is
exponentially minimized in terms of euclidean norm. We
now recall the VS schemes that are considered in our hybrid
approach.

A. Position-based visual servoing

In PBVS [16], a computer vision method retrieves the
3D pose (position and orientation) of the camera, which is
then used as the visual features. If a CAD model of the
object is known, tracking the edges of the object [4], [6]
is a popular pose estimation approach. On the other hand,
a model-free method has been presented in [11], allowing
for the homography estimation from a set of corresponding
points. The pose matrix that transforms points from object
frame to camera frame is an element of the group of rigid
body transformations S E (3) and can be written:

c M o =
[

c R o
c t o

0 1

]
(4)

where c R o ∈ S O (3) is a rotation matrix and c t o ∈ R 3 is a
translation vector. Classically, 3D features are s = ( t , c ∗ θ u c )
where c ∗ θ u c expresses the angle and the axis of the 3D
rotation that the robot has to achieve. Two popular choices
exist for the translation, determining the behavior of the robot
[2].

1) 3D straight line: t can be chosen to express the
transformation between the current camera frame F c and
the desired one F c ∗ , that is s = ( c ∗ t c , c ∗ θ u c ) . In this case
the corresponding desired feature is a null vector, and the
interaction matrix is known to be bloc-diagonal, inducing
decoupled translational and rotational motions. The corre-
sponding camera trajectory is a straight 3D line. Although
this scheme, that is denoted in this paper as c ∗ t c -PBVS, is
popular for its very nice behavior in the 3D space, no control
at all is done in the image and the visual features that allow
for the pose estimation may be lost.

2) 2D straight line: Another choice is to use the trans-
lational vector relative to the observed object frame, that
can be retrieved from the pose estimation algorithm. In this
case, s = ( c t o , c ∗ θ u c ) and the interaction matrix L s is bloc-
triangular. The corresponding control law, denoted c t o -PBVS,
implicitly ensures that the reference point of the object frame
F o draws a straight line trajectory in the image. On the other
hand, the camera trajectory does not follow a 3D straight
line as soon as a rotational motion has to be performed.
When the reference point is in the center of the object this

scheme is very similar to 2 1/2D VS [11]. However, even
if one point is ensured to stay in the image, nothing can be
said for the other points or visual elements used in the pose
estimation. Visibility is improved in [14] but problems still
remain depending on the object shape and the camera pose.
In the following the interaction matrix of the PBVS scheme
is denoted L 3 d .

B. Image-based visual servoing

IBVS uses features that can be measured in the image.
Although many choices exist for 2D visual features, most
hybrid strategies use the cartesian coordinates of image
points. These features are known to induce large 3D motion
in particular cases [1], however they are well-suited for the
problem of visibility lost: indeed, as images are rectangular
the distance to the border expresses naturally. The analytical
expression of the interaction matrix of an image point,
denoted L 2 d , depends both on its image coordinates ( x, y )
and on its depth Z . While x and y can be retrieved from the
image, a common issue in IBVS is that the depth has to be
estimated. However in hybrid control the pose is assumed
to be estimated hence point depths can be easily retrieved.
The IBVS control law induces straight line trajectories of the
selected points in the image. The main drawback is a lack of
control in 3D space. Actually, in the case of a task controlling
all the 6-DOFs, at least 4 points have to be used in order to
avoid potential singularities of L 2 d [1]. As L 2 d is of rank
6 at most, it is overdetermined, which makes it possible to
reach a local minimum, and prevents from ensuring perfect
straight line trajectories for each point in some cases.

Finally, 2D virtual points can be computed from any
3D point when the camera pose c M o is known. Denoting
o x the coordinates of a 3D point in the object frame, the
corresponding coordinates c x = ( X , Y , Z ) in the camera
frame yield: [

c x
1

]
= c M o

[
o x
1

]
(5)

2D coordinates can then be expressed with: {
x = X/Z
y = Y /Z

(6)

Hence, the interaction matrix of the image projection of a 3D
point can be computed even if the point is not actually ex-
tracted from the image. Similarly, the corresponding desired
features s ∗ = ( x ∗ , y ∗ ) can be computed from the desired
camera position c ∗ M o if this matrix is known. We now show
how a set of 2D points can improve PBVS.

I I I . 2 D - A U G M E N T E D P B V S

A. Hybrid control law

We assume a PBVS scheme is performed with the cor-
responding task denoted e 3 d = s 3 d − s ∗3 d . Considering a
set of p 3D points ( o x 1 , . . . ,

o x p ) attached to the observed
object frame, a 2D task e 2 d = s 2 d − s ∗2 d can be de�ned as
described in Section II-B. We de�ne the global weighted task
of dimension (6 + 2 p ) by:

e H = H
[

e 3 d

e 2 d

]
= He (7)



where H is a positive semi-de�nite diagonal activation
matrix that allows continuous adding and removing of some
features [12]. The global minimum of e corresponds to the
desired pose of the sole PBVS scheme, that is s 3 d = s ∗3 d .
Indeed, the latter is equivalent to having c M o = c ∗ M o , hence
s 2 d = s ∗2 d whatever the value of H . The derivative of the
task is ˙e H = H ˙e + ˙He . The second term can be neglected
in a neighborhood of the desired position [2], leading to the
following error time derivative:

˙e H = H
[

L 3 d

L 2 d

]
v s = HL s v s (8)

which, by analogy with (3), leads to the control law:

v s = − λ ( H ̂L s ) + He (9)
In the considered approach, H allows for the continuous in-
jection of 2D features into the PBVS scheme. The weighting
matrix is written under a particular form:

H =
[

I 6 0
0 H 2 d

]
(10)

where the weights are always equal to 1 for the 3D part,
while the 2 p weights corresponding to the 2D features are
varying. In the following, the resulting control law is denoted
2D-augmented PBVS. Such a control law with varying
weights is known to be continuous under three conditions.
HL s and He have to be continuous, which is ensured by the
computation of the weights that is exposed in Section III-C.
The third condition is the pseudo-inverse being continuous,
that is also ensured in our case since HL s is always of full
rank 6 thanks to the PBVS scheme that has non-null weights.

The nearest approach to the proposed one is found in [10]
and called 5D VS. In this case, the control law yields:

v s = − λ ̂L s

+
[

h 3 d I 6 0
0 h 2 d I 2 p

]
e (11)

where scalars h 3 d and h 2 d allow for balancing the PBVS and
the IBVS schemes. However, all 2D features are treated as
a whole IBVS. Also, not taking into account the weighting
matrix in the pseudo-inverse induces a conservative behavior
in the case of small weights. Indeed, the zeroed error
components are still taken into account, which is not the
case with our approach as we will show in the next section.
Finally, the weighting strategy that is proposed for 5D VS
does not ensure that the points stay in the image FoV.

B. Stability analysis

In the case of null 2D feature weights H 2 d = 0 , the
proposed control law (9) is equivalent to the PBVS part:

v s = − λ

[ ̂L 3 d

H 2 d
̂L 2 d

] + [
e 3 d

H 2 d e 2 d

]
= − λ

[ ̂L 3 d

0

] + [
e 3 d

0

]
= − λ

[ ̂L 3 d

+
0

] [
e 3 d

0

]
= − λ L +

3 d e 3 d (12)

Our scheme is thus different from (11). In the following of
this section we assume at least one weight is non-null.
From (8) and (10), HL s is of dimension ((6 + 2 p ) × 6) and
is of full rank 6. Following the classical stability analysis
of overdetermined VS schemes [2], local stability can be
ensured as long as L s is suf�ciently well estimated. However,

potential local minima may exist in the con�gurations where
H 2 e ∈ Ker L >s . In practice, we have not encountered any.
We modify as little as possible the PBVS scheme and results
will show that the domain of stability is very large.

C. Computation of the weights

In this section we �rst show that a suf�ciently high weight
ensures that the corresponding feature stays in the image. We
then expose our weighting strategy for the 2D features.

1) 2D features convergence: A classical Lyapunov func-
tion associated with the task (7) is V ( e H ) = 1

2 e
>
H e H .

Assuming we are in the domain of local stability, the time
derivative of V yields:

˙V =
∂ V

∂ e
˙e =

6+2 p∑
i =1

h 2
i e i ˙e i < 0 (13)

Let i > 6 be a 2D feature index. We consider the desired
feature s ∗i is strictly inside the image FoV. A suf�cient
condition for that feature to stay in the image is e i ˙e i ≤ 0 ,
which is ensured in three cases:

1) e i = 0 : thanks to the decoupled decrease, ˙e i is very
small when e i = 0 . Since the feature s i = s ∗i is strictly
inside the image, it does not leave the FoV at the next
iteration.

2) ˙e i = 0 : the feature has no motion in the image, hence
it stays in the FoV at the next iteration.

3) e i ˙e i < 0 : in that case, (13) is equivalent to:

h 2
i > − 1

e i ˙e i

∑
j 6= i

h 2
j e j ˙e j (14)

where j is the index for the other features.

At any position there exists a suf�ciently high weight that
prevents an image point from leaving the �eld of view.
However, when several feature points have to be considered
simultaneously, the exact set of suf�cient values may not be
possible to determine: indeed, in (14) the minimum value of
h i depends on the other weights ( h j ) j 6= i . In the next section,
the weights are computed independently from one another.
This prevents from computing the smallest weights, but we
will see in Section V that the obtained values are still small
in practice.

2) Weighting strategy: Classically when dealing with con-
trol in the image space, the smaller distance from the 2D
points to the image border is computed. This value is then
used to weight the IBVS scheme [3], [9]. In our case, each
2D feature is treated separately . Let ( x − , x + , y − , y + ) be
the image borders. We de�ne the image safe region S =
[ x s − , x s + ] × [ y s − , y s + ] with:{

x s − = x − + ρ ( x + − x − )
x s + = x + − ρ ( x + − x − ) ,

{
y s − = y − + ρ ( y + − y − )
y s + = y + − ρ ( y + − y − )

where ρ ∈ [0 , 0 . 5] is a tuning parameter. We have shown that
a suf�ciently high weight ensures that the feature stays in the
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(d) 2D-augmented PBVS

Fig. 1. Image behavior for the 4 schemes. c t o -PBVS (a) and 2D-augmented
(d) keep the points in the image while c ∗t c -PBVS (b) and 5D VS (c) lose
visibility.

FoV. Hence, we propose the following weighting function:

h ( x ) =


x − x s +

x + − x if x > x s +

x − x s −

x − − x if x < x s −

0 otherwise
(15)

h ( y ) =


y − y s +

y + − y if y > y s +

y − y s −

y − − y if y < y s −

0 otherwise

(16)

h is null in the safe region and increases to ∞ as the
feature approaches the image border. The condition (14)
is thus ensured when any point is close to the border. All
weights being continuous, the corresponding control law is
continuous. Since very high values are never encountered in
practice, they do not endanger the conditioning of HL s for
computing the pseudo-inverse. The only parameter fo r the
tuning is ρ , that de�nes the image safe area.

I V. S I M U L AT I O N R E S U LT S

The considered schemes are evaluated in a simulation
environment with ViSP software [13]. The object simply con-
sists in four coplanar 3D points forming a square. First, we
present the results of exhaustive runs, then the comparison
with other schemes is exposed.

A. Exhaustive tests

We have generated a set of 100 random poses such that the
4 points are in the image safe area de�ned by ρ = 0 . 05 . All
combinations of initial and desired poses, that is 9900 runs,
are performed with our control law based on c ∗ t c -PBVS.
All runs converge without leaving the image FoV with the
control gain of λ = 0 . 1 . Furthermore, even if only local
stability has been proven, all runs converge to the global
minimum. Over all the runs, the maximum weight is less
than 20 , and the mean of the maximum weight of each run
is about 2 . 4 . This reveals 2D features can very easily cope
with the visibility constraint without impacting the control
law conditioning. Still, as exhibited in [7] potential issues
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Fig. 2. Camera velocity in c t o -PBVS and 2D-augmented PBVS. The
velocities are similar although the schemes are different.
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Fig. 3. Global error of 2D-augmented PBVS. 3D error (a) shows nice
convergence of the pose, while the weighted 2D errors (b) illustrates the
injection of 2D points during the task.

due to discretization may be encountered in the case of high
control gain when some points are very near to the border. An
easy way to cope with such problems is to use an adaptative
gain that decreases as a point approaches the image border.

B. Comparison with PBVS

Four schemes are compared in this section: c t o -PBVS, c ∗ t c -
PBVS, 5D VS [10] and 2D-augmented PBVS, with an initial
pose making it necessary to perform both translational and
rotational motions. The two hybrid schemes are performed
together with the c ∗ t c -PBVS, that is the one inducing a
straight 3D trajectory and the worst image behavior.

c t o -PBVS performs well as seen in Fig. 1a. In the
considered case, the object reference point is in the middle of
the square and c t o -PBVS is similar to 2 1/2D VS. No control
is done in the image except for the straight line trajectory
of the object center, yet none of the 4 points leave the FoV.
We will see in the next section that it can happen for other
con�gurations. On the opposite, Fig. 1b shows that c ∗ t c -
PBVS induces a large motion out of the image. The 5D VS
is able to reduce the motion, but Fig. 1c shows the points still
leave the FoV because of the bounded weights induced by
this strategy. Finally, 2D-augmented PBVS is represented in
Fig. 1d and is able to keep the points in sight. The trajectory
change for the 2D points is particularly visible in the unsafe
area, where the image border avoidance is performed. The
two successful schemes are compared in terms of velocity in
Fig. 2. It is interesting to notice that the camera velocities are
very similar, although the control law are based on different
schemes. Actually, the behaviors differ at the very beginning
in Fig. 2b. Important variations are about v x and ω y , which
are the main velocities that control the x -coordinate of the 2D
points, that matches to Fig. 1b showing that in c ∗ t c -PBVS the
points leave the FoV along the image x -axis.

The global error of 2D-augmented PBVS is represented in



(a) c t o -PBVS at iteration 20 (b) c t o -PBVS at iteration 76 (c) Final image for c t o -PBVS (bad convergence)

(d) c ∗t c -PBVS at iteration 20 (e) c ∗t c -PBVS at iteration 76 (f) c ∗t c -PBVS stops at iteration 113

(g) 2D-augmented PBVS at iteration 20 (h) 2D-augmented PBVS at iteration 76 (i) Final image for 2D-augmented (converged)

Fig. 4. Evolution of the acquired image for c t o -PBVS (top), c ∗t c -PBVS (middle) and 2D-augmented PBVS (bottom). In c t o -PBVS the object partially
leaves the FoV, inducing bad pose estimation. In c ∗t c -PBVS the object quickly leave the FoV and the task fails. Our scheme converges with the desired
position being unsafe for some points

Fig. 3. 3D convergence to the desired pose is clearly visible
in Fig. 3a. The weighted 2D error, that is H 2 d e 2 d , is shown
in Fig. 3b. As can be seen, only 4 features out of 8 are
used in the servo. As expected the �rst one is a x -coordinate
(red curve), inducing the velocity change that can be seen in
Fig. 2b. Basic correspondences can be done between Fig. 3b
and Fig. 1d:
• During the task, 2 x -coordinates and 2 y -coordinates have

been activated. They correspond to the unsafe trajectories
that appear on the left or above the safe area in Fig. 1d.
• Only point 2 has both coordinates activated. Hence, it is the
only point approaching the top left hand corner in Fig. 1d.

V. E X P E R I M E N TA L R E S U LT S

Experiments are carried on a 6 DOFs gantry robot (see
the video accompanying this paper). The camera and the
robot are calibrated. The camera observes a mechanical
object, the CAD model of which being known. During the
task, the object lies on a textured surface. The edges are

tracked to allow for the pose estimation [4] at camera rate
(30Hz). Three schemes are compared: c t o -PBVS, c ∗ t c -PBVS,
and 2D-augmented PBVS. As in Section IV, the latter is
performed with c ∗ t c -PBVS. This time, the 3D points are the
ones de�ning the 24 nodes of the CAD model. In order to
reduce the number of considered 3D points, one could use
the set that de�nes the model envelope, since the inner points
can never leave the FoV if the outer points are in the image.

The image behavior of the 3 schemes are represented in
Fig. 4. The safe area is represented in red dotted line. The
current projected CAD model is in green, while the desired
one is in cyan. This time, c t o -PBVS makes some points
leave the image as can be seen in Fig. 4b. This occlusion
prevents the successful tracking of the object, which leads
to a convergence that does not correspond to the desired
camera pose: the edges that are displayed in Fig. 4c are not
the actual object edges. c ∗ t c -PBVS induces a trajectory that
lacks of control in the image and quickly loses the object
(see Fig. 4f). Our control law allows for the convergence of
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Fig. 5. 3D behavior of our scheme. Camera velocity (a), pose error (b)
and 3D trajectory (c). 2D features slightly modify the trajectory (c).

the scheme. The 2D features that are used are represented
in orange. They are in the left side in the �rst images, that
is the direction the c ∗ t c -PBVS leaves the FoV. As can be
seen in Fig. 4i, during the task several 2D features have
been activated and deactivated. Contrary to the simulation
case, the �nal pose corresponds to the unsafe area for some
points. This does not prevent the scheme from converging.

The 3D behavior of the camera is represented in Fig. 5.
A large rotational motion around the optical axis can be
seen in Fig. 5a. Although our scheme is based on the c ∗ t c -
PBVS where the 3D trajectory is a straight line, Fig. 5c
shows that here this is not the case at all. However, the nice
convergence to the desired pose is observed in Fig. 5b.

Fig. 6a shows that several 2D features have non-null
weights at the en d of the task. They correspond to the �nal
points being in the unsafe area in Fig. 4i. More particularly,
4 features have non-null weights at iterations 20-80. They
correspond to the object corner being in the unsafe area in
terms of x -coordinates in Fig. 4h. In Fig. 6b we can see
these 4 features induce a large 2D error, that prevents from
leaving the FoV. After iteration 100, very small 2D error is
suf�cient for keeping the object in the image. As announced
in Section III-C, the corresponding weights are not high: the
maximum value is about 2.6 and corresponds to a feature
that is about in the middle of the unsafe area.

V I . C O N C L U S I O N

A new approach has been proposed to address the classical
balance between PBVS and IBVS scheme. Starting with a
PBVS that is known to have nice 3D properties, we use only
the 2D features that are necessary for keeping the object in
the �eld of view. The corresponding control law is locally
stable and has its global minimum at the PBVS desired pose.
The parameter for the injection of the 2D features sets the
safe distance to the image border. Comparison with classical
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Fig. 6. 2D behavior of our scheme. Several weights are non-null at the
end of the task, yet the 2D error is null as the points have converged to
their desired position in the image.

PBVS schemes show that a few 2D features allow to ensure
the visibility constraint.
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