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Abstract— We present and validate a framework for vi-
sual navigation with obstacle avoidance. The approach was
originally designed in [1], but major improvements and real
outdoor experiments are added here. Visual navigation consists
of following a path, represented as an ordered set of key images,
that have been acquired in a preliminary teaching phase. While
following such path, the robot is able to avoid new obstacles
which were not present during teaching, and which are sensed
by a range scanner. We guarantee that collision avoidance
and navigation are achieved simultaneously by actuating the
camera pan angle, in the presence of obstacles, to maintain
scene visibility as the robot circumnavigates the obstacle. The
circumnavigation verse and the collision risk are estimated
using a potential vector field derived from an occupancy grid.
The framework can also deal with unavoidable obstacles, which
make the robot decelerate and eventually stop.

Index Terms— Visual Navigation, Visual Servoing, Collision
Avoidance.

I. INTRODUCTION

A great amount of robotics research focuses on vehicle
guidance, with the goal of automatically reproducing the
tasks usually performed by humans [2], [3]. Among others,
an important task is obstacle avoidance, i.e., computing a
control such that the trajectory generated is collision-free,
and drives the robot to the goal [4]. A common obstacle
avoidance technique is the potential field method [5], which
is often associated to a global path planner. Instead of
using a global model, we propose a framework for obstacle
avoidance with simultaneous execution of a visual servoing
task [6]. Visual servoing is a well known method that
uses vision directly in the control loop, and that has been
applied on mobile robots in [7 – 9]. In [7] and [8], the
epipoles are exploited to drive a nonholonomic robot to a
desired configuration. Trajectory tracking is tackled in [9]
by merging differential flatness and predictive control.

We focus on appearance-based navigation, which in con-
trast with model-based navigation, operates in the sen-
sor space, without any geometrical knowledge of the en-
vironment. In the framework that we developed in the
past [10, 11], the path is represented by a database of
ordered key images1. Navigation is divided into subtasks,
each consisting of driving the robot towards the next key
image in the database. To our knowledge, this scheme,
which is popular in robotics [12 – 15], has never been
extended to take into account obstacles. Navigation schemes
with obstacle avoidance have been presented in [16 – 19].
However, all these approaches require a 3D model of the
environment (e.g., of walls and doors). An exception is [20],
which exploits redundancy to avoid obstacles during a visual
positioning task. Here, we focus on this problem: a wheeled
robot, equipped with an actuated pinhole camera and with
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1See: www.irisa.fr/lagadic/demo/demo-cycab-vis-navigation/vis-navigation.

ω

(b)

x

y δ

z

x’

z’

C

Ry’

ϕ

(a)
X

Y

O

v

.
ϕ

1 column

z’

c1
c2

c3 fc,2

fc,1

f

Ry’

fc,3

α

(c)

x’

Fig. 1. Top view of the robot (orange), equipped with an actuated camera
(blue). (a) Reference frames. (b) Obstacle-induced vortex fields, and control
variables (v, ω, ϕ̇). (c) Occupancy grid and potential field f construction.

a range scanner, must follow a visual path represented by
key images, without colliding with the ground obstacles.
To maintain scene visibility while avoiding the obstacles,
we have decided to use an actuated camera. Although an
alternative design would consist of using an omnidirec-
tional camera, we have prefered a more conventional and
widespread platform setup. The camera detects the features
for navigating, while the scanner senses the obstacles in
front of the robot. As in [20], we guarantee that obstacle
avoidance has no effect on the visual task. In contrast with
that work, however, our controller is compact, while in [20]
three controllers are needed and the transitions between them
are quite complex.

Let us summarize the main contributions of our work. For
the first time, obstacle avoidance and visual navigation are
merged at the control level (without the need for planning),
and validated in real outdoor experiments. Besides, our
approach is merely appearance-based, and no model of the
environment is necessary. Moreover, the desired states are
globally asymptotically stable for our closed-loop system in
the safe context and when the obstacles are unavoidable,
guaranteeing that the robot never collides. Our framework is
inspired from the work in [1]. However, many modifications
have been applied. Firstly, the current framework does not
require redundancy, as in [1]. Besides, the linear velocity,
which was constant in [1], is varied here, to improve visual
tracking and eventually stop the robot in the presence of
unavoidable obstacles. Thirdly, the design of the activation
function has been modified, to reduce undesired acceler-
ations, which jeopardize convergence. Finally, the present
article reports real experiments, carried out on our outdoor
mobile robot.

II. MODELING AND CONTROL

A. General Definitions

The reader is referred to Fig. 1 for the definitions below.
We define the robot frame FR (R,X ′, Y ′, Z ′) (R is the robot
center of rotation), image frame FI(O, x, y) (O is the image
center), and camera frame FC(C,X, Y, Z) (C is the optical
center). The robot control inputs are:

u = (v, ω, ϕ̇)
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Fig. 2. The current and desired images contain some common visual
features, that are used for navigation.

These are, respectively, the linear and angular velocities of
the vehicle, and the camera pan angular velocity. We use the
normalized perspective camera model:

x =
X

Z
, y =

Y

Z

We assume that the camera pan angle is bounded: |ϕ| ≤ π
2 ,

that C belongs to the pan axis, and that the path can be
tracked with continuous v (t) > 0. This ensures safety, since
only obstacles in front of the robot can be detected by our
scanner. The distance between R and C is denoted by δ ≥ 0.

The path that the robot must follow is represented as a
database of ordered key images, such that each neighboring
pair contains some common static visual features (points).
First, the vehicle is manually driven along a taught path,
with the camera pointing forward (ϕ = 0), and all the images
are saved. Afterwards, a subset (database) of N key images
I1, . . . , IN representing the path (Fig. 2) is selected. Then,
during autonomous navigation, the current image, noted I ,
is compared with the next key image in the database, Id ∈
{I1, . . . , IN}, and a pose estimation between I and the key
images is used to check when the robot passes the pose where
Id was acquired. For key image selection, as well as visual
point detection and tracking, we use the algorithm presented
in [12], which has proved successful in the presence of
environmental changes (e.g., luminosity variation) and non-
static features. The output of this algorithm, which is used by
our navigation controller, is the set of points which are visible
in both I and Id. Then, navigation consists of driving the
robot forward, while I is driven towards the next key image
in the database. The task of maximizing similarity between
I and Id can be achieved with only one feature: the abscissa
x of the centroid of the points matched on I and Id [10].
When Id has been passed, a topological transition is made:
the next image in the set becomes the desired one, and so
on, until IN is reached.

Along with the visual path following problem, which we
have tackled in [10] and [11], here we consider obstacles
which are on the path, but not in the database, and sensed
by the range scanner. To model these obstacles, we use an
occupancy grid, yellow in Fig. 1(c). In Sect. II-C, we will
explain how it is utilized in our controller.

In summary, the desired specifications, in this work, are:
1) orienting the camera to drive the feature centroid

abscissa x to its value at the next key image xd,
2) making the vehicle progress forward along the path,
3) avoiding collision with the obstacles, while remaining

near the 3D taught path.
These specifications will be detailed just below.

B. Task Specifications and Control Design

Let us recall the Jacobian paradigm which relates the
control inputs and the desired task. We name s ∈ IRm the

task vector, and u ∈ IRm the inputs. These are related by:

ṡ = Ju

where J is the task jacobian of size m ×m. In this work,
m = 3. The required task evolution can be written:

ṡ∗ = ṡd − Λ
(
s− sd

)
with sd and ṡd indicating the desired values of the task, and
of its first derivative, and Λ = diag (λ1 . . . λm) a positive
definite diagonal gain matrix.

Since we assume that the visual features are static, the first
specification on camera orientation can be expressed by:

ẋ∗ = −λx
(
x− xd

)
(1)

This guarantees that the abscissa of the centroid of the points
converges exponentially to its value at the next key image
xd, with null velocity there (ẋd = 0). The dynamics of this
task can be related to the robot control inputs by:

ẋ = Jxu = [ jv jω jϕ̇ ] u (2)

The components of Jx will be given in Sect. II-C.
The two other specifications (vehicle progression with

collision avoidance) are related to the danger represented by
the obstacles. To assess such danger, we discern two contexts
(safe and unsafe), and we design the following obstacle
activation function to smoothen the transition in between:

H : C 7→ [0, 1]

The value of H indicates the danger in a given context C,
and it will be defined in Sect. II-C.
• In the safe context (H = 0), since no obstacles are

present, it is not necessary to deform the taught path.
We use ω for the visual task (1). Thus, as it was during
teaching, the camera pan should point forward (i.e, to
ϕ = 0, ϕ̇ = 0). Moreover, the linear velocity v must
be reduced in the presence of sharp turns, to ease the
visual tracking of quickly moving features; we specify
this using a function vs, which will be given in Sect. II-
C. In summary, the specifications in the safe context are: ẋ = −λx

(
x− xd

)
v = vs
ϕ̇ = −λϕϕ

(3)

Thus, the current and desired task dynamics are:

ṡs =

[
ẋ
v
ϕ̇

]
ṡ∗s =

 −λx (x− xd)vs
−λϕϕ


With (2) we can derive the Jacobian relating ṡs and u:

ṡs = Jsu =

[
jv jω jϕ̇
1 0 0
0 0 1

]
u (4)

Matrix Js is invertible if jω 6= 0, a condition that we
can easily guarantee, as will be shown in Sect. II-C.

• In the unsafe context (H > 0), obstacles are present.
If they are too near to be circumnavigated (H = 1),
the vehicle should stop (v = 0). Instead, if they can be
circumnavigated (0 < H < 1), the robot should avoid
collision by orienting its heading to a desired value α



(i.e., by setting ω = λαα). The value of α is related
to the obstacles position (see Fig. 1(c)), and will be
defined in Sect. II-C. Since this heading variation drives
the robot away from the 3D taught path, the camera
pan angle must be actuated to maintain visibility of the
features, i.e., to guarantee (1). The linear velocity must
be reduced for safety reasons; we specify this using
a function vu, which will be given in Sect. II-C. In
summary, the specifications in the unsafe context are: ẋ = −λx

(
x− xd

)
v = vu
ω = λαα

(5)

Thus, the current and desired task dynamics are:

ṡu =

[
ẋ
v
ω

]
ṡ∗u =

 −λx (x− xd)vu
λαα

 (6)

With (2) we can derive the Jacobian relating ṡu and u:

ṡu = Juu =

[
jv jω jϕ̇
1 0 0
0 1 0

]
u (7)

Matrix Ju is invertible if jϕ 6= 0, a condition that we
will prove to be always true in Sect. II-C.

To fulfill the desired tasks in the safe and unsafe contexts,
we propose the following control law:

u = HJ−1
u ṡ∗u + (1−H) J−1

s ṡ∗s (8)

Replacing (8) in (4) and (7) it is trivial to see that this
controller leads to convergence to the desired tasks:

ṡs = ṡ∗s if H = 0
ṡu = ṡ∗u if H = 1

and that, in these cases, the desired states are globally
asymptotically stable for the closed loop system. Note also
that, since the first rows of J−1

u and J−1
s are both equal to

[0 1 0], the linear velocity derived using (8) is:

v = Hvu + (1−H) vs (9)

This equation will be used in Sect. II-C to derive vu and vs.

C. System Characteristics
In this section, we will define the variables introduced

above. We will show how to derive the centroid abscissa
Jacobian Jx, the linear velocity in the safe and unsafe context
(vs and vu), and the obstacle characteristics (heading for
avoidance α, and activation function H).

1) Jacobian of the Centroid Abscissa: We will hereby
derive the components of Jx introduced in (2). Let us define:
v = (vc, ωc) the camera velocity, expressed in FC . Since we
have assumed that the features are static, the dynamics of x
can be related to v by:

ẋ = Lxv

where Lx is the interaction matrix of x [6]. In the case of a
point of depth Z, it is given by [6]:

Lx =
[
− 1
Z 0 x

Z xy −1− x2 y
]

(10)

We consider the centroid as a point, which is known to
be a sufficiently accurate approximation. We thus use (10)

instead of the exact but more complex form given in [21].
To avoid depth estimation, which can be unreliable and time-
consuming, we set the depth to a fixed value. Although this
approximation requires Z to be tuned by the user, depending
on the workspace characteristics, it has proved successful
for most visual servoing applications [6], including nonholo-
nomic navigation [11]. In that work, we have also shown that
the uniform depth approximation proved successful even in
the presence of depth tuning errors.

For our robot model, the camera velocity v can be
expressed in function of u by using the homogeneous
transformation:

v =C TRu

with:

CTR =


sinϕ −δ cosϕ 0

0 0 0
cosϕ δ sinϕ 0

0 0 0
0 −1 −1
0 0 0


Then, multiplying Lx by CTR, it is trivial to obtain:

jv = − sinϕ+x cosϕ
Z

jω = δ(cosϕ+x sinϕ)
Z + 1 + x2

jϕ̇ = 1 + x2.

(11)

From (11) it is clear that jϕ̇ ≥ 1 ∀x ∈ IR; hence, Ju is
never singular (see (7)). On the other hand, it is possible to
ensure that jω 6= 0, so that Js is also invertible (see (4)), by
setting Z > δ

2 . Indeed, condition jω 6= 0 is equivalent to:

δ (cosϕ+ x sinϕ)
Z

+ 1 + x2 6= 0 (12)

Since |ϕ| ≤ π
2 : cosϕ + x sinϕ ≥ −x, ∀x ∈ IR. Hence, a

sufficient condition for (12) is:

x2 − δ

Z
x+ 1 > 0

which occurs ∀x ∈ IR when δ
Z < 2. In practice, δ

Z < 2 is
always guaranteed, since on most robots δ < 1 m, which
is much less than the scene depth in outdoor environments.
Moreover, Z is tuned by the user, and in [11], we have shown
that overestimating it with respect to its real value is more
effective than underestimating it, for navigation performance.

2) Linear Velocity In The Safe and Unsafe Context: Let
us now define the velocities vs and vu, used in (9).

As we mentioned, when the features motion in the image
is fast, the visual tracker is less effective, and the linear
velocity should be reduced. To assess the features motion,
we compare their position in the current image I and in the
next Id and second next Isd key images2. Since the robot
moves on a plane, we relate vs to the image abscissa error
between the centroids of the points matched in I and Id:

ed = x− xd

and to the abscissa error between the centroids of the points
matched in I and Isd:

esd = x− xsd

2When the next image is the final one, we use Isd = Id, since the second
next key image is undefined.



Then, defining the weighted average between these errors as:

e =
2ed + esd

3
we design the linear velocity in the safe context as:

vs =
V

2

[
1 + tanh

(
π − |e|

γ

)]
(13)

Function (13) has an upper bound V > 0, and smoothly
decreases to 0, as |e| grows. Its inflection point is determined
by empirically tuned parameter γ > 0.

Instead, in the presence of obstacles, the robot should
reduce its linear velocity to vu, and stop for unitary H .
Imposing v = 0 when H = 1 in (9) obviously yields:

vu = 0

as our design choice for the velocity in the unsafe context.
3) Modeling The Obstacles: For obstacle modeling, we

use an occupancy grid linked to FR, with cell sides parallel
to the X ′ and Z ′ axes (see Fig. 1(c)). Its forward and lateral
extensions are smaller than the scanner radial range, to ignore
obstacles that are too far to jeopardize the robot. Given an
arbitrary integer K, the grid is built from the latest 2K + 1
scans. For each cell centered at c = (X ′, Z ′), we define the
2K + 1 occupancies r at the j-th oldest iteration as:

rj (c) = {0, 1}, j = 0, . . . , 2K + 1

We set rj = 1 if an obstacle has been sensed in c at the j-th
iteration prior to the current one, and 0 otherwise. Then, we
associate to each cell a coefficient µ (c), obtained by linear
combination of the occupancies, weighted with a normalized
Gaussian filter that smoothens the cell effect over time:

µ (c) =
2K+1∑
j=0

e−(j−K)2/K

√
Kπ

rj (c)

The filter maximum weight is set at the K-th latest scan, to
avoid control input overshoot at a new obstacle detection (an
issue that existed in [1]). If the robot velocity is negligible
with respect to the scanner acquisition frequency, and K is
reasonably small, the effect of motion on the occupancies
can be ignored, and this model is consistent with the current
robot position. We will show that the above assumptions are
appropriate in our experimental setup.

Obstacle avoidance is derived by using vortex potential
fields [22]. For each cell c, we define the potential:

Uc =
µ (c)
‖c‖

where µ (c) has been defined above, and ‖c‖ is the distance
from R to the cell3. In practice, for two cells with equal
µ (c) 6= 0, the nearest one will yield the highest potential.
We define the vortex field for each cell as the rotor of Uc:

fc =

[
fc,X′

fc,Z′

]
=

 ±
∂Uc
∂Z ′

∓ ∂Uc
∂X ′

 = µ (c)


∓ Z ′

‖c‖3

± X ′

‖c‖3


3Designing the grid without the cell at R = (0, 0) (where obstacles are

not detectable by the range scanner), guarantees that Uc is non-singular.

The signs of fc,X′ and fc,Z′ depend on the cell abscissa: X ′
positive (strictly negative) will induce a clockwise (counter-
clockwise) vortex, so that the field always points forward.
The fields fc,i generated by all the n cells ci are then
superimposed to obtain the total field:

f =
n∑
i=1

fc,i

The orientation α ∈
[
−π2 ,

π
2

]
of this field is (see Fig. 1):

α =
{

0 if f = 0
−ATAN2 (fX′ , fZ′) otherwise

As in [22], this is the desired heading for circumnavigation
in unsafe situations (see Sect. II-B). However, α alone is not
indicative of the danger. Thus, we also use the field norm:

|f | =
√
f2
X′ + f2

Z′

which is a good metric for evaluating the obstacle distance,
and reducing v accordingly, when the obstacles are near.
Hence, to assess the context danger, we consider both α and
|f |, and using two empirically tuned thresholds ρ and % such
that 0 < ρ < %, we design the activation function as:

H=


κ |α| if |f | <= ρ
1 if |f | >= %
1+κ|α|

2 + 1−κ|α|
2 tanh

(
1

%−|f |+
1

ρ−|f |

)
otherwise

Note that H = 0 if no obstacle is detected (since both |f | and
α are null in that case), and it is bounded by 1. For small |f |,
H is determined only by α: the obstacles are ’far enough’
to be circumnavigated, and parameter κ ∈

]
0, 2

π

]
weighs the

danger provoked by the field orientation4. On the other hand,
for large |f | ≥ %, the obstacles are ’too near’: H = 1 and
the robot must stop. A hyperbolic function guarantees that
H is C∞ for all (X ′, Z ′) ∈ IR∗2. Parameters ρ and % are
tuned to determine the three intervals. For example, small
values of % make the approach more conservative, since the
robot will stop even in the presence of distant obstacles.

D. Control Analysis
In this section, we will instantiate and comment our

controller for visual navigation with obstacle avoidance.
Plugging all the variables defined above in (8) we obtain:

v = (1−H) vs
ω = (1−H)

λx(xd−x)−jvvs+λϕjϕ̇ϕ
jω

+Hλαα

ϕ̇ = H
λx(xd−x)−λαjωα

jϕ̇
− (1−H)λϕϕ

(14)

This control law has the following interesting properties.
1) In the safe context (H = 0), (14) becomes:

v = vs

ω =
λx(xd−x)−jvvs+λϕjϕ̇ϕ

jω
ϕ̇ = −λϕϕ

(15)

As in [10] and [11], where obstacles were not consid-
ered, the visual task (1) is realized by ω, which also
compensates the centroid displacements due to v and

4To guarantee H < 1, parameter κ must be chosen smaller than 2
π

.
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Fig. 3. Top to bottom: experiments 1 to 3. Left: reconstruction of the
replayed path with (red) and without (yellow) obstacles. Right: snapshots
(above) and grids (below) in the presence of obstacles. The red vectors show
the orientation of f .

to ϕ̇ through the image jacobian components (11). The
two other specifications in (3) are achieved by v and
ϕ̇: v is regulated to improve tracking according to (13),
while the camera is driven forward, to ϕ = 0.

2) In the unsafe context when H ≈ 1, a good approxi-
mation of (14) is:

v = (1−H) vs
ω = λαα

ϕ̇ =
λx(xd−x)−λαjωα

jϕ̇

(16)

In this case, the visual task (1) is executed by ϕ̇,
which also compensates the robot rotation, to keep
the features in view. The two other specifications are
ensured by v and ω: the linear velocity is reduced (and
even zeroed to v = vu = 0, for H = 1), while the
angular velocity aligns the robot with f .

3) Control law (14) can also be derived using a
redundancy-based framework, as has been done in [1].
In that work, we proved that for a similar problem,
obstacle avoidance had no effect on the visual task,
which could be achieved for any H ∈ [0, 1]. Note
that also here, plugging the expressions of v, ω, and ϕ̇
from (14) into the visual task equation:

ẋ = jvv + jωω + jϕ̇ϕ̇

yields (1). Thus, desired state xd is globally asymptot-
ically stable for the closed loop system, ∀H ∈ [0, 1].

III. EXPERIMENTAL RESULTS
Here, we report the experiments obtained with con-

troller (14) and shown in the video attached to this paper.
All experiments have been carried out on a CyCab robot
equipped with a 70◦ field of view, B&W camera mounted
on a TRACLabs Biclops Pan/Tilt head (the tilt angle is null,
to keep the optical axis parallel to the ground), and with a 4-
layer, 110◦ scanning angle, laser SICK LD-MRS. The offset
between R and C is δ = 0.7 m, and we set Z = 15 m that
meets condition Z > δ

2 . The grid is limited to 1.5 m on each
side, and to 5 m in front, and it is built by projecting the
laser readings from the 4 layers on the ground. Since camera
(10 Hz) and laser (40 Hz) processing are not synchronized,
they run on two different threads, and control input u is
sent to the robot when the visual information is available
(10 Hz). For the linear velocity design, we use V = 0.4
ms−1 and γ = 75. The velocity is limited for safety reasons,
since the framework runs on a real robot, operating on our

campus, with image processing at 10 Hz. With V = 0.4
ms−1, scanner acquisition at 40 Hz, and K = 20, neglecting
the effect of motion on the occupancies is reasonable. In all
experiments, we set: λx = 0.5, λϕ = λα = 0.3, κ = 0.25,
ρ = 3 and % = 4.

Controller (14) has been validated in the three experiments
in Fig. 3. In each case, after manually driving CyCab to
acquire the image database, we test two setups (safe and
unsafe). First, no obstacle is present: since H = 0, (15)
is used, with fixed forward-looking camera (ϕ = 0). Then,
some obstacles (including pedestrians) are present, near and
on the taught path, and the robot must deal with them; in ad-
dition, the obstacles may occlude the features. The replayed
paths, estimated from odometry and snapshots, are outlined
in Fig. 3 (left), in the safe (yellow) and unsafe (red) setup.
Since the focus here is on obstacle avoidance, the taught
path is not drawn. It is hard to find a general interpretation
of the results, since these depend on many factors (e.g.,
position of obstacles and visual features). Nevertheless, in
all the experiments, the robot follows the visual path without
colliding, in spite of occlusions (although a minimal number
of visual features is obviously required). Although some
portions of the replayed 3D path are far from the taught
one, these motions are indispensable to avoid collisions. In
the following, we detail the experiments.

The path used in experiment 1 is 60 m long, and composed
of N = 34 key images. Three obstacles are present, and the
robot overtakes them all (the first and third on the left, the
second on the right), to reach the last key image. For the
unsafe setup, snapshots are shown in Fig. 3 (top), and v,
ω, ϕ̇ and ϕ are plotted in Fig. 4 (left). The iterations with
H > 0 are highlighted in yellow. The smooth trend of v
at the beginning and end of all three experiments is due to
the acceleration saturation carried out at the CyCab low-level
control. CyCab is initially near a wall parallel to the Z ′ axis,
which is too far to be considered in the grid. This shows
the utility of ignoring lateral data, which would have driven
the robot away from the path. The first obstacle is detected
at iteration 250: vector field f generates a positive rotation
(green in the figure), compensated by the camera pan, and
v is reduced. The obstacle is overtaken while maintaining
feature visibility. Then, since the path is free, the pan angle
(blue) is zeroed, until the second obstacle, which triggers
negative ω, and positive ϕ̇. Afterwards, H is activated by
the third obstacle, which is overtaken on the left (iteration
1200), while decelerating. Again, H is canceled at iteration
1400, and the robot is driven by (15). The average velocity v
is slightly reduced, from 0.39 ms−1 in the safe setup, to 0.35
in the presence of obstacles. The image error with respect to
the database, averaged over the experiment, increases from
11 to 17 pixels. This slight increment in the unsafe setup is
simply due to the visual occlusions provoked by the obstacles
(as shown in the video).

Experiments 2 and 3 are carried out on a straight path of
60 m and N = 30 key images.

In experiment 2, a grey car, which was not present during
teaching, is on the path during navigation, and a barrier
blocks the road halfway through. Snapshots of the experi-
ment are shown in the center of Fig. 3, and the velocities
are plotted in Fig. 4 (center). The grey car is overtaken on the
left at iterations 240−380, while the robot slows down (black
curve). Then, as soon as the context is safe again, the robot
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Fig. 4. Relevant variables in experiments 1 to 3 (left to right): v (black, in ms−1), ω (green, in rad s−1), ϕ (blue, in rad) and ϕ̇ (red, in rad s−1). The
iterations with non-null H are highlighted in yellow.

accelerates and returns on the path, while the camera is reset
forward. The barrier is more difficult to deal with. In fact,
when detected, it is centered on the Z ′ axis and orthogonal to
it (see the grids on Fig. 3); this induces α ≈ 0 and drives the
robot towards the barrier. However, as the CyCab approaches
the barrier, the norm of f increases, and eventually becomes
greater than %, to make H = 1 and stop the robot. Note
that when there is no obstacle, v ≈ V , because, in contrast
with experiment 1, the taught path here is straight, leading
to vs ≈ V , from (13). The value of v, averaged over the path
diminishes, from 0.39 in the safe setup, to 0.34 in the unsafe
one. This time, the image error, averaged up to the barrier,
does not vary in the two setups (13 pixels in both cases).

In experiment 3, although the grey car and barrier are
not present anymore, three persons are standing on the
path. On Fig. 3 (bottom), we show some snapshots of
the experiment, while the velocities are plotted in Fig. 4
(right). From iteration 100 to 320, the activation function is
triggered by the detection of the pedestrians. This generates a
counterclockwise angular velocity (the persons are overtaken
on the left), and a slight deceleration. Afterwards, since the
street is free again, the robot accelerates and returns on the
path, which this time is completed up to the last key image,
since the barrier has been removed. Just like in experiment 2,
when there is no obstacle, v ≈ V , since the path is straight.
The average linear velocity (v = 0.38 ms−1) is almost the
same as in the safe setup (0.39), and so is the average image
error (12 pixels).

IV. CONCLUSIONS

For the first time, a framework with simultaneous obsta-
cle avoidance and outdoor visual navigation is presented.
It merges techniques from potential fields and visual ser-
voing, and guarantees path following, obstacle bypassing,
and collision avoidance by deceleration. The method has
been validated by outdoor experiments with real obstacles
(parked cars and pedestrians). In the future, we plan to take
into account moving obstacles, as well as visual occlusions
provoked by the obstacles. Finally, it may be interesting to
record scanner data during the teaching step too, in order to
improve obstacle avoidance.
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