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Abstract— A low-level sensor fusion scheme is presented for
the positioning of a multi-sensor robot. This non-hierarchical
framework can be used for robot arms or other velocity-
controlled robots, and is part of the task function approach.
A stability analysis is presented for the general case, then
several control laws illustrate the versatility of the framework.
This approach is applied to the multi-camera eye-in-hand/eye-
to-hand configuration in visual servoing. Experimental results
point out the feasibility and the effectiveness of the proposed
control laws. Mono-camera and multi-camera schemes are
compared, showing that the proposed sensor fusion scheme
improves the behavior of a robot arm.

Index Terms— sensor fusion, multi-sensor, visual servoing,
multi-camera

I. INTRODUCTION

Most actuated systems use sensors to obtain information
about their environment. They can be a camera, ranging
devices or temperature or force sensors. The concept of data
fusion is the answer to how to combine features coming from
the same environment, yet through different sensors.

A wide classification of sensor data fusion approaches
is done in [10]. The most popular approach is to use the
sensor data to estimate the robot state [4]. For instance, in
[6], inertial measurements are used to correct the force and
wrist estimation of a force sensor. In [9], several cameras
are used together to estimate the 3D-position of an object.
In this approach, sensor data are not directly used in the
control loop and are part of the real-time estimation of the
robot state. A model-based control law can then be applied.

The main alternative to state estimation is named sensor-
based control. Here, one does not use the sensors to estimate
the system state, but rather sticks to the sensor space. In
this approach, each sensor is given a reference signal and
considered as an independent subtask of the global task
function. A classical scheme, often named hybrid control,
is to draw a hierarchy between the different sensors and to
build a control scheme that prevents lower subtasks to disturb
higher ones [7]. This hierarchy can be made dynamic to
prevent from reaching local minima [12]. With another for-
mulation, sensor-based control laws can be designed without
imposing a strict hierarchy between the sensors. Here the
data coming from different sensors is treated as a unique,
higher-dimensional signal. This is the approach chosen in
[11] to fuse two cameras, and a force sensor and a camera,
where the designed control law is equivalent to a weighted
sum of the subtask control laws.
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Our work is part of the non-hierarchical class of sensor
data fusion schemes. Contrary to the previously presented
approaches, there is no concept of priority between the
different sensors: therefore only the global error is taken into
account. The main contribution is the exhibition of a class
of easy-tuned control laws that do not require any a priori
hierarchy between the sensors and show nice properties in
the sensor space and in the robot behavior.

Section II is dedicated to the modeling of multi-sensor-
based control. Afterwards, a stability analysis is performed,
from which several control laws are proposed. Finally, Sec-
tion IV illustrates the control laws, with experiments in the
case of multi-camera eye-in-hand/eye-to-hand cooperation.
Results validate that non-hierarchical schemes can induce
nice behaviors for a multi-sensor system.

II. MULTI-SENSOR MODELING

This section covers and adapts the modeling used in [11]
for the control from multiple sensors. We consider a robotic
system equipped with k sensors providing data about the
robot pose in its environment. Each sensor Si delivers a
signal si of dimension ni with

∑k
i=1 ni = n and we assume

n≥ 6. In the case of a motionless environment, the signal
time derivative is directly related to the sensor velocity screw
vi expressed in the sensor frame:

ṡi = Livi (1)

where Li is named the interaction matrix of si [2], [14] and
is of dimension (ni×6). Its analytical form can be derived for
many features coming from exteroceptive sensors. It depends
mainly on the type of considered sensory data s and on the
sensor intrinsic parameters. Li may also depend on other
data: for instance the interaction matrix of an image point
observed by a camera depends on the depth of that point,
which is not actually measured in the image.

Now, we consider a reference frame Fe in which the
robot velocity can be controlled. This frame can be the end-
effector frame for a manipulator, or the vehicle body frame
for a mobile robot. The screw transformation matrix allows
expressing the sensor velocity vi wrt. the robot velocity ve:

vi = iWeve (2)
iWe is given by:

iWe =
[

iRe

[
ite
]
×

iRe

03×3
iRe

]
(3)

where iRe ∈ SO(3) and ite ∈ R3 are respectively the rotation
and the translation between Fe and Fsi.

[
ite
]
× is the (3×3)

skew-symmetric matrix related to ite. From (1) and (2) we



Fig. 1. Multi-sensor model.

can express the time variation of a sensor signal wrt. the
robot velocity screw:

ṡi = Li
iWeve (4)

Denoting s = (s1, . . . , sk) the n-dimensional signal of the
multi-sensor set, (4) allows linking the signal time variation
with the robot velocity:

ṡ = Lsve (5)

with:

Ls =

 L1 . . . 0
...

. . .
...

0 . . . Lk




1We

...
kWe

 = LWe (6)

where L ∈ Rn×6k contains the interaction matrices of
the sensors and We ∈ R6k×6 contains the transformation
matrices, making Ls ∈ Rn×6 the global interaction matrix
of the task. Note that this modeling can be expressed in any
frame used for the robot control: indeed, for any frame Ff

we have Weve = We
eWfvf = Wfvf .

The goal of multi-sensor servoing is to design a control
law that makes the robot reach the desired sensor measure-
ment s∗. To do so, a simple proportional control law yields:

ve = −λC(s− s∗) (7)

where λ is a positive scalar gain and C ∈ R6×n is named the
combination matrix and has to be defined. For instance, if
we want to ensure an exponential decoupled decrease of the
error (s− s∗), then (5) leads to:

C = L+
s (8)

L+
s being the Moore-Penrose pseudo-inverse of Ls, that is

L+
s = (Lᵀ

sLs)−1Lᵀ
s when Ls is of full rank 6. In practice,

an estimation L̂s
+ is used, as both (Li)i and

(
iWe

)
i

depend
on potentially unknown parameters and are subject to noise
or calibration errors: Li relies on the sensor model and
the direct sensor measurements, while iWe depends on the
pose between the sensor and the robot. Actually, the frame
transformation matrix iWe is subject to change during the
task when the sensor Si is not rigidly attached to the robot
control frame, which is the case for instance for an eye-to-
hand system. The final control law thus yields:

ve = −λL̂s
+(s− s∗) (9)

where:
L̂s

+ = (L̂Ŵe)+ (10)

The system behavior thus depends on the chosen estima-
tion of L and We. The pseudo-inverse inherits the anti-
commutativity from the classical inverse, that is (L̂Ŵe)+ =
Ŵe

+L̂+, when L̂ (resp. Ŵe) has orthonormal columns (resp.

rows) or when both matrices are of full rank equal to their
common dimension [1]. For the proposed configuration, this
property is ensured in two cases:

1) Ŵe has orthonormal rows, which is equivalent to
having only one sensor and no translation between this
sensor and the control frame (see (3))

2) L̂ and Ŵe are both of rank 6k, which can be ensured
again if there is only one sensor, using n≥6 features
that induce a full-rank interaction matrix

Therefore as soon as one fuses several sensors, (10) must be
used as such.

III. STABILITY ANALYSIS

From (5) and (9), the evolution of the sensor signal yields:

ṡ = Lsve = −λLsC(s− s∗) (11)

The proportional scheme (11) has different stability proper-
ties depending on the number of features [2].

a) n=6: denoting the signal error e = (s−s∗), we can
define the candidate Lyapunov function that is the squared
error norm L = 1

2‖e‖2, whose deritative yields:

L̇ = eᵀė = −λeᵀLsCe (12)

Hence, using the combination matrix defined in (8) the sys-
tem is globally asymptotically stable (GAS) if the following
condition is ensured:

LsC = LsL̂s
+ = LWe(L̂Ŵe)+ > 0 (13)

Therefore, if the features and sensor positions are chosen so
that Ls and L̂s

+ are of full rank, the system is stable as soon
as the estimations of L and We are close enough from their
actual value, the ideal case being of course L̂Ŵe = LWe.

b) n > 6: here condition (13) is never ensured as
LsC ∈ Rn×n is of rank 6 at most. This means local minima
may exist, for configurations such that e ∈ KerC. Stability
can thus be at most local. Defining the task error as e′ = Ce
yields:

ė′ = Cė + Ċe = (CLs + O)ve

= −λ(CLs + O)e′ (14)

where O ∈ R6×6 = 0 when e = 0 [2]. With the combi-
nation matrix from (8), this scheme is known to be locally
asymptotically stable in a neighborhood of e = e∗ = 0 [8]
if:

CLs = L̂s
+Ls = (L̂Ŵe)+LWe > 0 (15)

If the features and sensor positions are chosen so that Ls

and L̂s
+ are of full rank 6, the system is locally stable as

soon as the estimations of L and We are not too coarse.

Finally, when the number of features is sufficient,
that is n ≥ 6, the stability mainly depends on the chosen
estimation for L̂s

+. For this purpose, several control laws are
proposed. The final choice depends of which information is
available during the servoing:

1) Ccur = (LWe)+ when both matrices can be measured
(usually with noise) during the task.



2) C∗ = (L∗We)+ if We is measured, while L∗ is
computed at the desired position.

3) C3 = (L∗W∗
e )+ uses the values computed at the

desired position. In this case, the combination matrix is
constant. This choice is equal to the previous one when
We is constant, that is for instance for an eye-in-hand
system.

4) C4 = (LWe)+ where L is the mean interaction matrix
allowing second-order minimization [15], that is

L =


1
2 (L1 + L∗1

1∗W1) . . . 0
...

. . .
...

0 . . . 1
2 (Lk + L∗k

k∗Wk)

.

5) C5 = ( 1
2 (LWe + L∗W∗

e )+ is known to have nice
properties in the visual servoing case [2] and is an
approximation of the previous one.

6) C 1
2

= ( 1
2 (L + L∗)We)+ is another approximation of

the second order minimization, by setting i∗Wi = I6.
Again, this choice is equal to the previous one when
We is constant.

When a sensor is not rigidly attached to the effector, for
instance in an eye-to-hand case, We is not constant and the
desired value W∗

e depends on the final 3D pose of the sensors
wrt. the effector. This pose is generally unknown, making
schemes C3 and C5 implausible choices. C4 involves the
knowledge of the pose error for each sensor i∗Wi, which is
usually not known either. C 1

2
is thus an acceptable estimation

for second order minimization. That is why only Ccur,C∗
and C 1

2
are considered in the next section. When reaching

the final position all possibilities lead to the same behavior,
hence local stability, as all combination matrices converge
towards C∗. However, the behaviors can be very different
when s is far from s∗.

Additionally, in [11] the authors designed a combination
matrix such that the resulting control law is a weighted sum
of each subsystem task function (hence named subsystem-
based fusion):

C = C# =
[
κ1

1W−1
e L+

1 . . . κk
kW−1

e L+
k

]
(16)

leading to the following control law:

ve = −λ
k∑

i=1

κi
iW−1

e L+
i (si − s∗i ) =

k∑
i=1

κivi (17)

with κi > 0 and
∑k

i=1 κi = 1. This formulation is intuitive
when each subsystem is of rank 6, and allows a very easy
stability analysis: indeed, a sufficient condition for the whole
system to be stable is that each subsystem is stable, the
main drawback being that the non-stability of one subsys-
tem prevents from ascertaining the stability of the whole
system. However, not taking into account the coupling of
the subsystems prevents from ensuring a decoupled decrease
of the error near the convergence. This approach also makes
it necessary to tune every subsystem gain in order to obtain a
generic acceptable behavior: this is mainly due to the usually
unbalanced velocity contribution from each sensor. In the
next section, the combination matrix C# is also compared
in order to point out these unbalanced velocity contributions

Fig. 2. Eye-in-hand/eye-to-hand cameras. Pose between the two cameras
is computed from robot kinematics and initial calibration. Pose between a
camera and its landmark is computed during the task

and the non-decoupling of the convergence.
Finally, the behavior is of course highly depending on

which features are used by each sensor and the sensor poses
wrt. the robot frame, that define the structure of L and We.

IV. EXPERIMENTAL RESULTS

Experiments have been carried on a 6 degrees-of-freedom
Gantry robot, the control laws are implemented using ViSP
software [13]. We have chosen to perform a visual servoing
(VS) image-based task [2] with two cameras. VS configura-
tions can be divided into two categories: eye-in-hand, when
the camera is attached to the end-effector, and eye-to-hand
when the camera is fixed in the workspace. The combination
of the two is called eye-in-hand/eye-to-hand cooperation and
is a classical VS approach that leads to many applications
[9], [3], [5]. This configuration allows a versatile comparison
of the proposed sensor data fusion schemes: indeed, the two
sensors are not rigidly attached, and known or unknown
current interaction matrix represent common situations in
visual servoing. We first describe the experimental conditions
before presenting the behavior of the robot controlled by
only one camera at a time. Afterwards, several multi-camera
schemes are compared.

A. Experimental conditions

The eye-in-hand camera Fc1 is observing a fixed landmark
Fo1 composed of four points. The end-effector carries a
second landmark Fo2 also composed of four points, which is
observed by the eye-to-hand camera Fc2. s is composed of
2D-point cartesian coordinates, hence both subsystems are
of dimension ni =8, making s of dimension n=16. A pose
computation is performed from each image thanks to the
knowledge of the landmark dimensions, to make it possible
to estimate the depth of each point and thus use the current
interaction matrix if needed. The objective of the task is to
position the end-effector so that both cameras reach their
respective reference image. To do so, the robot is controlled
in the eye-in-hand camera frame where all velocities are
expressed. As previously said in Section II, any other control
frame would lead to the same results.
To make it possible to express all velocities in Fc1, the pose
between the fixed camera and the fixed robot frame, that
is c2Mf , is calibrated. From a configuration making both
cameras observe the fixed landmark, pose computation is
performed from each image that gives c1Mo1 and c2Mo1. We
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a) Eye-in-hand scheme b) Eye-to-hand scheme
Fig. 3. Mono-camera, eye-in-hand (left) and eye-to-hand (right) VS.
Velocities, feature errors and trajectories in eye-in-hand (top) and eye-to-
hand (bottom) images.

deduce c2Mf = c2Mo1
c1M−1

o1
c1Mf where c1Mf is available

through the robot geometrical model and odometry.
In order to avoid any incompatibility between the two

reference images, we initially choose a desired pose
(0, 0, 0.5, 0, 0, 0) (m,deg) for the eye-in-hand camera, which
means we want to have the camera 0.5 m from the landmark,
the latter drawing a centered square in the image. From this
pose, a reference image is computed and a single, eye-in-
hand camera VS task is performed. When the convergence
is obtained, the corresponding eye-to-hand image is acquired
and is then used as the desired eye-to-hand image in the
multi-camera schemes.
The initial eye-in-hand pose is (0.02, 0.02, 0.52, 47, 12, 28).
An ideal behavior would be to follow a geodesic in 3D space,
while having trajectories in the image without approaching
the image borders.

B. Mono-camera behavior

The first mono-camera VS scheme is the eye-in-hand
configuration with the desired interaction matrix, represented
in Fig. 3a. Actually, even if only the eye-in-hand camera
is used, the eye-to-hand features have a nice trajectory in
the image. On a second step, we perform an eye-to-hand
VS with the desired interaction matrix, the results of which
are shown in Fig. 3b. This time, some of the eye-in-hand
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a) Eye-in-hand camera b) Eye-to-hand camera
Fig. 4. Subsystem-based fusion C#. Unweighted velocity contributions
and trajectories for eye-in-hand (left) and eye-to-hand (right) cameras. The
eye-to-hand contribution is more important, the eye-in-hand camera nearly
loses some features

features quickly leave the image range, while the task is
performed in the eye-to-hand image. A case of unbalanced
velocity contribution can be seen on the velocity figures:
indeed, vx is the opposite from one scheme to another. That is
why the eye-in-hand points have a totally irrelevant x-motion
in the eye-to-hand scheme. Hence, mono-camera schemes
do not have the same behavior although they are built on
coherent features. Of course, fusing several sensors does not
systematically lead to unbalanced velocity contribution but
this case allows illustrating the proposed fusion schemes.

C. Multi-camera behavior

At first, the subsystem-based fusion C = C# is per-
formed. If equal weights are chosen in (17), that is κ1 =
κ2 = 0.5, the behavior induced by the eye-to-hand view
is predominant and the system acts like in the mono-
camera, eye-to-hand scheme: eye-in-hand features go out
of the image range. This can be explained by the different
conditionning of the interaction matrices: indeed, for a point
the interaction matrix depends on the inverse depth, and here
the desired depth is 0.5m for the eye-in-hand view and about
1.2m for the eye-to-hand view. Therefore, the scheme has to
be tuned and we choose a lower weight for the eye-to-hand
subsystem: κ1 =0.7 and κ2 =0.3. The results of the weighted
task are shown in Fig. 4, where the eye-in-hand features are
still close from leaving the image.

On the contrary, the three proposed low-level fusion
schemes are performed without any tuning. Results are given
in Fig. 5. The use of Ccur leads to a very nice behavior in both
images, but the robot trajectory is not satisfactory. As for the
desired matrices configuration, results show that the eye-in-
hand behavior is improved compared to IV-B, by taking into
account the eye-to-hand view. An even better behavior is
obtained by using the mean value C 1

2
. Results show very

regular velocities and error decrease, while trajectories in
both images are quite smooth. Actually, this scheme also
induces a smooth 3D trajectory of the end-effector.

First experiments show the robustness of low-level fusion
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Fig. 5. Fusion schemes: Velocities (top), feature error (middle), eye-in-hand and eye-to-hand images, and 3D trajectory of c1. All schemes converge
without any subtask weighting. Image trajectories are satisfactory, but 3D behavior is far from geodesic for Ccur.

when using the different proposed schemes. In order to illus-
trate the possible limitations, new runs are performed with
another initial position (−0.12, 0.08, 0.8,−33,−63,−30),
necessiting more complex motion and increasing the desired
eye-to-hand depth to 1.4 m.

Mono-camera behaviors (not represented) still indicate
that with the new initial position, eye-in-hand scheme per-
forms as in Fig. 3a and eye-to-hand scheme as in Fig. 3b,
making eye-in-hand features leave the image range. This
is confirmed by the subsystem-based fusion scheme (not
represented) that can be achieved again only if the subtask
weights are adequately tuned.

As for the proposed low-level fusion schemes, this time
they do not behave the same. Schemes using Ccur or C 1

2
still

converge to the desired position with nice behaviors in both
images (Fig. 6a,c). Both schemes induce also satisfactory
3D-trajectories. On the opposite, the use of C∗ suffers from

the large distance from the initial pose to the desired one, as
eye-in-hand trajectory is not satisfactory (Fig. 6b).

V. CONCLUSIONS

By using the global sensor signal, a multi-sensor fusion
scheme can be designed without imposing any hierarchy
between the sensors. The stability analysis concurs to the
classical conditions on the system rank, with potential local
minima in the case of redundancy. Several control laws
have been compared in order to illustrate the proposed
generic scheme, in the case of image-based visual servoing.
Although unsatisfactory cases may be encountered for some
control laws when the displacement to realize is very large,
experiments highlight the advantages of these schemes and
the nice behavior they induce wrt. mono-camera schemes or a
weighted multi-camera control law. This framework does not
depend on the sensor nature, making possible to extend the
proposed scheme to other types of sensors or visual features.
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Fig. 6. Fusion schemes for new initial position. Nice behaviors are found with current (a) and mean (c) combination matrix. C∗ (b) draws unsatisfactory
image behavior, making eye-in-hand view nearly lose some features.
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