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Abstract— This paper proposes an adaptation of classical
image-based visual servoing to a generalised imaging model
where cameras are modelled as sets of 3D viewing rays.
This new model leads to a generalised visual servoing control
formalism that can be applied to any type of imaging system
whether it be multi-camera, catadioptric, non-central, etc. In
this paper the generalised 3D viewing cones are parameterised
geometrically via Plücker line coordinates. The new visual
servoing model is tested on an a-typical stereo-camera system
with non-overlapping cameras. In this case no 3D information
is available from triangulation and the system is comparable to
a 2D visual servoing system with non-central ray-based control
law.

I. INTRODUCTION

The use of camera sensors to control robotic systems is an

established problem that has been studied in detail for the

last two decades [1], [2], [3]. In the past various cameras

including perspective, stereo [4], [5], catadioptric and omni-

directional cameras [6], [7] have been used to perform visual

servoing [8]. The unified projection model, proposed in [9],

[10], takes a first step towards a generalised camera model

by classifying cameras, that view the scene through mirrors

and lenses, to be grouped together with classic lens based

perspective models by a two step mapping via the sphere. In

this case, the perspective camera is modelled with a planar

mirror. Recently advantages of performing visual servoing

from spheres has also been shown in [11].

Although the unified camera model encompasses a wide

class of camera models, it is limited to the class of cen-

tral catadioptric sensors which requires a single effective

viewpoint whereby all viewing rays pass through the same

nodal point. The aim of this paper is to relax this constraint

and extend the visual servoing model to encompass both

central and non-central projection cameras, including multi-

camera systems, in a general framework. This allows one

to use a much wider class of sensors including modelling

many cameras as one [12] or even conical [13] or spherical

mirrors. Such sensors are particularly important in applica-

tions requiring wide angle panoramic views of the world.

Furthermore, this will allow greater freedom in the design of

systems because it will allow the construction of systems that

don’t need to be carefully designed and calibrated to ensure

that the sensor(s) share a common centre of projection.

The idea of a more general camera model has been

around for quite some time (note perhaps its first introduction

in [14]). In the computer vision literature, the generalised

camera model [15] has recently attracted much attention

(see [16] and references therein). This model, which will be

investigated in detail later, defines the relationship between

different types of image measurements so as to unify the

wide variety of camera designs. There exists a hierarchy of

camera models ranging from x-slit cameras, multi-camera

systems and non-central catadioptric cameras [17]. The

classical perspective imaging model defines a camera as a

bearing only sensor, however, when more than one camera is

available or when cameras do not project centrally, different

pixels sense bearings from different positions in space. In the

generalised model all cameras are unified into a single sensor

by modelling each pixel as sensing a cone in 3D space.

The model proposed in [15] defines the imaging cones

in terms of raxels. A raxel is defined in terms of a 3D

line defined by a starting point (X,Y,Z) and a direction

(φ, θ). The imaging sensor captures light from a cone with

this line as it’s axis. The cone is defined by its aspect ratio

and orientation (fa, fb,Γ). Although this model allows the

radiometric quantities to vary for each pixel, this study will

focus on the geometric properties and each pixel will be

approximated by it’s ray. An important paper in this respect is

given by Pless [12] who introduced an in-depth formalisation

based on defining viewing rays via Plücker lines to derive the

structure from motion equations from generalised cameras.

This study resulted in a comparison of the information

provided by different multi-camera configurations.

A pertinent example of a generalised camera, composed

of non-central projections, is a multi-camera system. Whilst

the study of multi-camera systems has mainly been focused

on systems with large overlap, few works have exploited the

advantages of non-overlapping systems. Of course, in the

former case it is possible to match features and perform

3D triangulation, however, the field of view is heavily

constrained and subsequently has limited information to con-

strain the six degrees of freedom of the camera motion. As

shown through the simulations performed in [12], the most

informative configuration, in terms of the Fisher Information,

is that of opposite facing cameras. One initial work on non-

overlapping cameras is [18] but it was assumed that optical

centers were co-located and the study thus concentrates on

the case of cameras lying close together. This was extended

in [19] to cameras with non-zero baseline. More recently,
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Fig. 1. (a) An arbitrary physical imaging system composed of central
and non-central projection systems. The incoming light rays are projected
through the imaging system onto the pixels m. The generalised imaging
system is modelled as a set of Plücker lines (or more generally raxels [15]
including radiometric and optical parameters).

the case of non-overlapping cameras has also been studied

in [20], [21] to perform structure and motion estimation.

There is also a conceptual relation to earlier studies on

hand-eye calibration such as [22] (as will be used in the

experiments) since they allow to determine the relationship

between non-overlapping cameras via known movement.

The remainder of the paper is presented as follows.

Section II-A defines the Plücker coordinates of viewing

rays necessary for the remainder of the paper. Section III

outlines the visual servoing approach and integrates the use

of generalised viewing rays into a control scheme. Section IV

looks at the case study of the generalised camera model

applied to two non-overlapping cameras.

II. GENERALISED CAMERA MODEL

The generalised camera model is depicted in Figure 1. A

point P ∈ R
3 is imaged at a pixel m = (u, v) that is found

by following the ray through the physical system. In the

generalised model, each ray leaving the viewing surface can

be modeled by a 3D line. Several groups have calibrated

these cameras through non-conventional models such that

each pixel is individually mapped to a particular viewing

ray through lookup tables. The interested reader may refer

to [15], [23].

A. 3D Viewing Rays and Plücker lines

In order to formalise a generalised camera model, a

parameterisation for the viewing ray of each pixel will be

given. A line can be defined by the join of two points

or the intersection of two planes. Many parameterisations

exist ranging from the null space and span representation,

to Plücker matrices and Plücker vectors (see [24] for a brief

survey). In this work Plücker vectors will be employed as

in [12] and a short summary is given here.

Let P1 and P2 ∈ R
3 be two 3D points defining a line and

P1 = (X1, Y1, Z1,W1)
⊤ and P2 = (X2, Y2, Z2,W2)

⊤ ∈
RP

3 be their homogeneous coordinates. The line joining the

two points is given as the Plücker matrix [24]:

L = P1P
⊤

2 − P2P
⊤

1 . (1)

The Plücker coordinates are subsequently the 6 non-zero

independent elements of this 4 × 4 skew-symmetric matrix

~q

P

q′

Pc

~q

L

q′

P⊥

Fig. 2. A generalised camera viewing ray. The line is defined by Plücker
coordinates L = (q,q′) where q′ goes into the page. P⊥ is the point on
the line closest the origin. Pc is a point on the line that is rigidly linked to
the generalised camera. P is a point in the 3D scene.

given as:

L =





L41

L42

L43

L32

−L31

L21




=





W1X2 − X1W2

W1Y2 − Y1W2

W1Z2 − Z1W2

Z1Y2 − Y1Z2

X1Z2 − Z1X2

Y1X2 − X1Y2




∈ RP

5, (2)

giving the Plücker coordinates as L = (q,q′)⊤.

With the normalised homogeneous coordinate W1 =
W2 = 1, (2) simplifies to give q = P2 − P1 as the

direction vector (of any length) and q′ = P1 × P2 is the

moment vector of the line. Geometrically, the moment vector

is perpendicular to the plane containing L and the origin, and

its magnitude is twice the area of the triangle formed by the

two points and the origin. Substituting for P1 in q′, it can

be easily seen that the moment vector is orthogonal to any

point on the line P and the vector q so that:

q′ = q × P. (3)

See Figure 2 for a visualisation.

The line L has 4 degrees of freedom which can be

determined as follows. The Plücker line defined in (2) has

6 parameters, however, they are only unique up to scale

(only the 5 ratios are significant). Secondly, by definition

the moment vector is perpendicular to every displacement

along the line, so:

qT q′ = 0, (4)

which is quadratic in the Plücker line coordinates and can be

obtained by evaluating det(L) = 0. This leaves a minimal

representation of 4 parameters.

In this paper the direction vector, q, is normalised to be

a unit vector so as to define the scale of the remaining

homogeneous parameters:

~q = q

|q| , ~q ∈ S2. (5)

In this case, the point P = ~q × q′ is the point on the line

closest to the origin which is denoted here P⊥.

III. VISUAL SERVOING

A. Visual Servoing Model

In classic image-based control [1], [2], many different

types of features s have been used to perform visual ser-

voing. Interesting features range from sets of points to lines,
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ellipses, cylinders, distances to 3D models and moments

using various types of optical systems. In all these cases the

2D image-sensor measurements m belong to rays passing

through a common nodal point.

In general, a vision based control scheme aims to define

a task function for the robot as [8]:

e(t) = s(m(t),a) − s∗, (6)

where the vector m(t) is usually a set of image measure-

ments in pixel coordinates, a is a vector containing any

a priori knowledge about the system such as intrinsic or

extrinsic camera calibration parameters or a 3D object model

and where s(m(t),a) is a vector of n visual features that

has been constructed from the image measurements and

may take into account the prior knowledge such as pixel to

metric conversion. s∗ is a corresponding vector of features

containing their positions in the desired image.

The design of the control scheme then requires relating

the movement of the visual measurements in the image to

the movement of the robot. A first step is to determine the

relationship between the time variation of s and the camera.

The instantaneous spatial velocity of the camera x ∈ R
6 is

parameterised by the Lie algebra se(3) as:

x = (υ,ω)⊤ ∈ se(3), (7)

where υ and ω are the instantaneous linear and angular

velocities respectively. This velocity twist is related to a

displacement via integration as:

T(x) = exp

([
[ω]× υ

0 0

])
, (8)

where exp is the exponential map, T = (R, t) ∈ SE(3) is

the homogeneous matrix of describing the camera displace-

ment, R ∈ SO(3) is a rotation matrix such that R⊤R = I

and det(R) = 1, t ∈ R
3 is the translation vector, [.]×

represents the skew symmetric matrix operator and where

the integration period is taken as ∆t = 1.

The kinematics of the task function (6) for a eye-in-hand

system are then given as:

ė = Lx, (9)

where L is the interaction matrix related to s.

If the robot is controlled by velocity then x can be taken

as the input to the robot controller. If an exponential decrease

of the error is imposed then ė = −λe and the control law is

given by:

x = −λL̂+e, (10)

where the hat operator signifies that the interaction matrix

is computed from uncertain measurements and therefore it

is only an approximation. L+ = (L⊤L)L⊤ ∈ R
6×n is the

pseudo inverse of L which must be of full rank 6.

In summary, the classic model is quite general in that any

type of feature s may be constructed from both m and the a-

priori parameters a. It is also worth noting that multi-camera

systems have been classically modelled by forming the task

error directly in each camera’s reference frame and not via

generalised coordinates as will be shown in the next section.

B. Generalised Visual Servoing

In this paper, the generalised camera model is used to

construct a visual servoing control law in which the sensor

measures a set of 3D viewing rays L = (L⊤
1 , . . . ,L⊤

n )⊤ with

n the number of rays (and not just 2D pixel coordinates m as

does a classic camera sensor). In this way (2) defines a broad

group of possible physical measurements and represents a

general class of cameras including non-central projection

cameras. This encompasses non-central projection cameras

including multi-camera systems. An important result of this

is that it amounts to considering that the sensor measure’s

noisy lines in space whereby the line coordinates encompass

all measurement errors including both classical 2D measure-

ment and extrinsic calibration errors.

Given this general model, the rays can be constructed from

any type of sensor and the visual servoing task (6) becomes:

e(t) = s(L(a, t),b) − s∗, (11)

and where a is now redefined as a vector of general camera

parameters and b is a vector containing any a priori knowl-

edge about the system such as a 3D object model, etc.

1) Perspective camera: In this case the viewing rays

of the general model can be shown to depend only on a

classic pinhole model as L(m(t), ξ), where ξ is the vector

of the intrinsic camera parameters required to determine

the normalised rays. Under the generalised model a pixel

coordinate forms a 3D ray L that passes through the image

plane at the point m and intersects with the optical centre

of the camera. If the pinhole camera is calibrated with the

calibration matrix K(ξ) ∈ R
3×3, then a normalised point

p = (x, y, 1) may be determined from the image coordinates.

In this case the moment vector is q′ = 0 since the origin,

P = (0, 0, 0), belongs to the ray. The 3D ray is subsequently

defined by the Plücker vector L = ( Km
|Km| ,0).

2) Multi-camera system: On the other hand, if the

camera has multiple centres of projection, the moment vector

is non-null. For example, take a multi-camera system as a

generalised non-central projection camera. In this case the

rays depend on each camera’s pixels M = (m1, . . . ,mn)
and the cameras’ intrinsic and extrinsic parameters a =
(ξc,xc). In this case each camera c has a moment vector

obtained from (15) as q′ = ~q×Pc, where Pc = −Re⊤te is

the origin of the camera seen in the generalised coordinate

system with (Re, te) being the extrinsic camera rotation and

translation parameters. The direction vector is ~q = Re⊤~q =
Re⊤ Km

|Km| .

3) Generalised-camera system: Consider now, a

generalised-camera system that directly measures a set

of viewing rays L(q(t),q′(t)) defined in a generalised

reference frame. It is attached to an eye-in-hand visual

servoing system that moves wrt. an inertial coordinate

system. Viewing rays are directly used to define the task

function (higher order features s(L) are not considered

here):

e(t) = L(t) − L
∗, (12)
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The set of all viewing rays are related to movement of the

camera via the analytical relationship given in section II-A.

Each direction vector is related to a 3D world point as:

qi = Pw

i (t) − Pc

i , (13)

where Pw
i

is the coordinate of a point in the inertial world

coordinate system and Pc
i

is the point which is rigidly

fixed to the generalised camera (for a perspective camera

it is the optical center). To simplify the discussion, a-priori

knowledge of Pc is considered available, however, it will

be shown in Subsection III-B.4 that is not required in a

generalised camera system.

From (13), the normalised unit direction vector is:

~q(t) =
q(t)

|q(t)|
=

Pw(t) − Pc

|q(t)|
, (14)

where the ray index is assumed implicit.

The moment vector defining each view ray is subse-

quently:

q′(t) = ~q(t) × Pc. (15)

Taking first the time derivative of the direction vector

equation (14) gives:

~̇q = |q|−1q̇ +
d

dt
(|q|−1)q, (16)

where q̇ = Ṗw giving well known motion for a point:

q̇ = −[ω]×q − (υ + [ω]×Pc) (17)

where both υ and ω form the velocity twist of the generalised

reference frame wrt. the world frame.

The second term of (16) is developed and simplified as:

d

dt

(
|q|−1

)
= d

dt

((
q⊤q

)− 1

2

)
,

= − 1

2

d

dt

(
q⊤q

) (
q⊤q

)− 3

2 ,

= − 1

2

(
q̇⊤q

) (
q⊤q

)− 3

2 − 1

2

(
q⊤q̇

) (
q⊤q

)− 3

2 ,

= −
(
|q|3

)−1 (
q⊤q̇

)
.

(18)

Substituting (17) and (18) into (16) gives the dynamic

equation for the unit direction vector as:

~̇q = 1

|q| q̇ − 1

|q|3 q
⊤q̇q,

= − 1

|q| [ω]×q − 1

|q|π~q (υ + [ω]×Pc) ,
(19)

where π~q = (I − ~q~q⊤) is an orthogonal projection

π~q : R
3 → T~qS

2 onto the tangent space of the sphere S
2 at

the point ~q ∈ S
2.

Equation (19) is equivalent to the adjoint transformation

of the spherical projection of a point in a classic perspec-

tive camera in which the unknown Pw can be eliminated

from (19) as:

~̇q = [~q]×ω +
1

|q|
π~q (υ + [ω]×Pc) , (20)

where the skew symmetric property [a]×b = −[b]×a has

been used.

Taking then, the time derivative of equation (15) gives

simply:

q̇′ = ~̇q × Pc (21)

−4

−2

0

2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

Englobing sphere

Fig. 3. (a) A simulated generalised camera (used in Section IV-A) which
is ’calibrated’ such that a sphere encloses all viewing rays. This is simpler
since there is only one ”base-line” parameter (the sphere radius).

4) Generalised parametrisation: Here it is assumed that

a mapping from sensor space to the generalised coordinate

space has been achieved by a general calibration model [15],

[23] whereby the viewing rays contain all necessary infor-

mation. In that case no other information is required such

as calibration parameters. This means that the center of

projection Pc used previously is unknown. This system can

be defined simply by a sphere that englobes all the viewing

rays (see Figure 3).

From each q and q′ it is possible to determine the point of

the line that is closest to the origin of the generalised camera

system as:

P⊥(t) = ~q(t) × q′(t), (22)

The variation of Ṗ⊥ is then approximated as a function

of its gradient:

Ṗ⊥(t) ≈ P(t)⊥ − P⊥∗ (23)

which is determined directly from the current L(t) and

desired L
∗ viewing rays. It’s maximum variation is bounded

by Pc and it is assumed that the control law will be chosen

to maintain this assumption.

In that case (13) is:

q⊥ = Pw(t) − P⊥(t). (24)

Following through the same derivation in the previous

section leads to the dynamic equation for the unit direction

vector as:

~̇q =
1

|q⊥|
π~q(Ṗw + Ṗ⊥). (25)

Since equation (17) requires Pw, it can be substituted

using (13) and (14) by:

Pw = |q⊥|~q + P⊥, (26)

into (25) to give:

~̇q = [~q]×ω −
1

|q⊥|
π~q

(
υ + [[~q]×q′]×ω + Ṗ⊥

)
. (27)

If the moment vector is evaluated with the current defini-

tion using (22) to give:

q̇′ = ~q × Ṗ⊥ − [[q]×q′]× ~̇q. (28)
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LL =

[
− 1

|q⊥|
π~q [~q]× + 1

|q⊥|
π~q[[~q]×q′]×

1

|q⊥|
[[~q]×q′]×π~q −

(
[[~q]×q′]

×

)(
[~q]× + 1

|q⊥|
π~q[[~q]×q′]×

)
]

(28)

The resulting equations (27) and (28) relate the velocity

of the 3D point to the spatial velocity of a viewing ray as:

L̇ = LLx + B, (29)

where x is the kinematic screw between the generalised

camera frame and the world and LL is given in (28). B =(
− 1

|q⊥|
π~qṖ

⊥, ~q × Ṗ⊥
)⊤

is the bias term related due to P⊥.

Even if the interaction matrix is rank 2 (since q̇′ is a

linear combination of q), using both measurement vectors

provides increased robustness with respect to measurement

noise. Notably, if there is more noise in ~q than q′ then

the moment vector helps minimise this (see Figure 4(b)).

Similarly to classical visual servoing, a rough estimate of

the depth |q⊥| of the 3D point to P⊥ and is required in

practice.

In order to have full rank 6 to control 6dof it is necessary

to have at least three non-degenerate and non-singular points

in a single view configuration [25]. In a stereo-perspective

case it is necessary to avoid that the 3D point lies on the

baseline [24]. Here the control law is built by stacking

multiple viewing ray interaction matrices with more than

three non-coplanar points in an appropriate configuration to

avoid singularities or ambiguous global minima.

The stability of the system can be analysed by considering

the l2 − norm candidate Lyapunov function V = |
∑n

i=1
ei|

which is derived as:

V̇ = eB
⊤ėB

= −λeB
⊤LeL̂

+
e eB,

(31)

where eB = e − B and from which the global asymptotic

stability is ensured if the following condition is respected:

LeL̂
+
e > 0. (32)

IV. RESULTS

In order to test this model a series of simulations were

performed followed by validation on a real robotic platform.

An eye-in-hand visual servoing experiment is considered.

A. Simulation

Several simulations were perfomed to test the generalised

camera visual servoing configuration (see Figure 3). In the

simulation an arbitrary number of centers of projection and

an arbitrary number of points were generated. In the results

shown in Figure 4, 200 projection centers were considered

with 10 lines projecting onto each center. The initial general

camera pose was set to (0.5, 0.1, 2.5, 280o, 52o, 0o) and the

final to (0, 0, 1, 0o, 0o, 0o). Noise was added onto both q and

q′ and the effect is compared and as expected the added task

vector for q′ improves when there is a large amount of noise

on q. Even with a large rotation of 180o around the x-axis,

the control performs quite nicely. Of course this assumes that
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Fig. 4. A visual servoing simulation for a generalised camera configuration
using 200 randomly generated centers of projection on a sphere with radius
1m with 10 random points in each. A large rotation of 180o around the x

axis was made. Red is q, blue is L and yellow q′. (a) The error norm with
σ = 0.05 Gaussian noise on q ,(b) The error norm with the same noise
on q′. (c) The trajectory in 3D with the red the desired position, blue the
trajectory, and the blue star the initial camera position.

(a)
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Fig. 5. (a) The non-overlapping stereo eye-in-hand configuration attached
to INRIA’s 6dof. Afma 6 robot. (b) A 3D trajectory of the robot performing
visual servoing from (12). A video of the experiment is available accompa-
nying this paper.

the points are visibile over a large domain which is not easily

the case in practice as will be seen in the next experiment.

B. Non-overlapping visual servoing

Since both cameras are not viewing the same 3D points,

conventional extrinsic camera calibration was not possible.

It was necessary to calibrate each camera individually with

respect to a common coordinate system. In this case the

cameras were mounted on the robot (see Figure 5) and the

robot was used as the common coordinate frame. The robot

makes a series of automatically planned movements with a

camera rigidly mounted at the gripper. At the end of each

move, feature coordinates are extracted and camera extrinsic

calibration is performed using the technique given in [22].
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(a) (b)

(c) (d)

Fig. 6. A visual servoing experiment for a non-overlapping stereo eye-in-
hand configuration using 2 viewing rays in each camera. The red crosses
display the desired image positions and the blue crosses the current point
match. (a) Camera 1’s initial image. (b) Camera 2’s initial image. (c) Camera
1’s 149th image. (d) Camera 2’s 149th image.
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Fig. 7. The non-overlapping stereo visual servoing experiment (a) The
camera control velocities. (b) The error of the control vector.

To test the limits of the system a task involving a near

90deg rotation around the z axis, along with a considerable

translation was considered. The initial and desired images

are shown in Figure 6. It can be seen that two points

have been used in each image marked by blue crosses. The

desired positions, marked in red, have been determined from

a desired robot pose and model-based pose estimation has

been used to determine the initial position. As can be seen

in Figure 7 (a) and (b), an exponential decrease in the overall

error is obtained and smooth velocities are used to control

the robot. Furthermore a smooth trajectory in both rotation

and translation is obtained in 3D shown in Figure 5(b).

V. CONCLUSIONS AND FUTURE WORKS

In conclusion, this paper presented an alternative visual

servoing model based on the concept of a generalised camera.

This was achieved through the use of Plücker line coordinates

to geometrically model general viewing rays in 3D. This

has allowed to develop a visual servoing control law that

has been tested on a non-overlapping stereo configuration

and shown to give very satisfactory results. Future work will

be dedicated to the investigation of the use of this general

formalism to develop interesting higher level control features.
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