


L XS is known as the interaction matrix (for a relative pose,
here) and is [10]:

L XS =
( 1
ρ ( X S X

T
S − I 3×3 ) [ X S ] ×

)
: (12)

L XS mainly depends on the coordinates of a spherical point,
apart from � , which is the distance of the 3D point in the
current camera frame (eq. 1). This distance is obtained by
intersecting a viewline and the 3D plane.

Equations (10) and (11) lead to the image Jacobian related
to I S at spherical point X S :

G IS ( X S ) = −∇ I TS G XSh: (13)

D. Tracking of several planes

To deal with a moving camera and tracking multiple
planes, the problem can be formulated to compute only one
relative pose and several normal and distances. In such a
case, intensities of a planar region are used to compute their
corresponding plane whereas the intensities of all the planar
regions are used to compute the relative pose. Hence, the
Jacobian linking the variation of image intensities to the
camera motion and parameters of p planes is:

G IS =


−∇ I (1)S
−∇ I (2)S

: : :
−∇ I (p)S


T

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0 : : : 0 L
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: : :
... L

(2)
XS

... : : :
. . . 0

...
0 : : : 0 J

(p)
XS

L
(p)
XS


(14)

where ( i ) shows the plane number to which the Jacobian is
related to and its corresponding feature set. Then, the error
vectors corresponding to each plane are stacked together and
are related, thanks to the latter multiple planes Jacobian, to
the camera and planes parameters velocity:

V =
[
_n (1) _d(1) _n (2) _d(2) : : : _n (p) _d(p) v

]T
(15)

E. Parameters update

The time variation of planes and relative pose vector is
computed thanks to a Levenberg-Marquart (LM) optimiza-
tion method:

V = −� ( Q + � diag ( Q ))
−1

G T
IS

 I S ( h
(1) ) − I ∗S

...
I S ( h

(p) ) − I ∗S

 (16)

with Q = G T
IS
G IS and h (i) =

(
n (i); d (i); r

)T
. If � is

very high, the optimization behaves like a steepest descent
whereas a very low value for � leads equation (16) to behave
like a Gauss-Newton method. LM is often used since it
ensures a better convergence, thanks to a controlled and
efficient step.

The relative pose is updated at iteration it with the expo-
nential map of se(3) [13] using c2 M it

c1 = c2 M it−1
c1 e[v]. Plane

parameters are updated by addition of their time variation.

F. Gradients computation on the sphere

Computing ∇ I S means to compute the spherical image
derivation along X , Y and Z axes. Since the spherical
image is a surface which can be minimally parameterized
using azimuth and elevation angles, � and � , spherical image
gradients are computed w.r.t. to these parameters and then
transformed to get the “3D” image gradient.

Omnidirectional image filtering is only valid on the equiv-
alent sphere where convolution is commutative with regular
sampling. The technique to compute gradients is to use inten-
sities from a spherical neighborhood for the convolution [6].

The two linear neighborhoods � N
and � N of length l , considering
� φ,θ = arc cos( |

(
0 0 1

)
:pr−1ξ (

[
u0 + 1 v0 1

]T
) |) ,

are expressed as:� N =
{(

�; � + k� φ

)T ;− l
2 ≤ k ≤ l

2 ; k 6= 0
}

� N =
{(

� + k� θ; �
)T ;− l

2 ≤ k ≤ l
2 ; k 6= 0

} : (17)

Neighborhoods are then projected on the image plane to
retrieve intensities. Nearest neighbor interpolation is done
to make the process fast and to allow precomputation of
spherical neighbors projected in the image plane for each
pixel. These neighborhoods are used with an image derivative
filter.

Finally, gradient values I φ, I θ are used to com-
pute IXS , I YS and IZS , where IA = ∂I

∂A knowing the
Cartesian-polar coordinates transformation, � = arccos( ZS )
and � = arctan( YS=XS ) , and using partial derivatives ∂φ,θ

∂XS
.

III. STEREOSCOPIC SPHERICAL 3D PLANE TRACKING

Relative pose estimation in a monocular plane tracking,
even with several planes, is estimated up to a scale factor.
Dealing with a calibrated stereo rig allows to fix the scale
and to have planes and relative position in meters.

Figure 2 shows the geometric relations between corre-
sponding points in spherical views. Based on these consider-
ations, the stereoscopic plane tracking has two main stages.
First, the search for regions in the three views corresponding
to the reference template is made, estimating the 3D plane
parameters. Then, for any new stereo image, the relative
pose is computed simultaneously to the plane parameters
optimization. Therefore, we estimate only a minimal set of
parameters.

A. Stereoscopic model

For a stereo rig of N cameras, each camera is modeled
using the spherical model. Relative poses of N − 1 cameras
cj , j = 1 ::N , of the rig, modeled by homogeneous matrices
cj M c1 , are defined w.r.t. the reference one, c1. In the present
case, since the used stereo sensor for our experiments is
composed of one orthographic camera and four parabolic
mirrors, we consider a stereo rig of four central cameras
(N = 4 ). Simultaneous intrinsic and extrinsic calibration
has been done using an extension of a stereo omnidirectional
virtual visual servoing approach [5].



Fig. 2. Geometric relations between views. For brevity, a two views stereo
rig is presented.

B. Stereoscopic spherical 3D plane tracking
Tackling planar region tracking in stereovision images,

the reference region is defined in the part of the image
corresponding to the first camera c1. Before tracking the
plane over time, dense correspondence is needed in the three
other views. It is simultaneously done with the 3D plane
reconstruction in a tracking process, thanks to the short
baseline of the used stereo sensor.

1) Stereoscopic initialization: For the stereo initialization
step, only the plane normal and its orthogonal distance to
the reference camera center is computed. Indeed, from ho-
mogeneous transformations cj M c1 , rotation and translation
from a camera to the reference one are known. Hence, the
intensities of the three other views are related to the image
of c1, merging together the information of the four views to
compute one 3D plane expressed in the c1 frame.

A spherical point of the first camera is transfered to
the camera j using equation (4) and cj M c1 obtained from
the stereo calibration. Merging together the four spherical
images in a LM minimization method, leads to the following
Jacobian and error vector:

J =

J IS2
( X S )

J IS3
( X S )

J IS4
( X S )

 and e =

I S2 ( c2 H c1 X
∗
S ) − I S1 ( X

∗
S )

I S3 (
c3 H c1 X

∗
S ) − I S1 ( X

∗
S )

I S4 (
c4 H c1 X

∗
S ) − I S1 ( X

∗
S )


(18)

where J ISj
( X S ) is the Jacobian related to intensity of the

j -th spherical image at point X S (eq. (11)):

J ISj
( X S ) = −∇ I TSj

[
∂XS
∂N

∂XS
∂d

]
: (19)

Then, the normal and the distance are updated adding their
time variation to their previous values and homographies
cj H c1 are recomputed after this update using cj R c1 and cj t c1
obtained by calibration, similarly to equation (3).

2) Eight views stereoscopic tracking of several planes:
After the stereoscopic initialization step of each plane, their
tracking over time is led, estimating the relative pose t M 0

between two stereo rig poses. This relative pose is expressed
between the current position at time t and the reference

position at time 0 of the reference camera, c01 and ct1, of
the stereo rig. Hence, at time t , image features of cameras
c2, c3, c4 are expressed w.r.t. c1. Then, the information at
time t are linked to the image of camera c1 at time 0 . The
information of the four cameras at time 0 are still used to
constrain the parameters of the 3D plane.

So, to sum up, the image region of c01, corresponding to the
plane of interest, forms the desired features and the images
of c02, c03, c04 are used to optimize c1 n and d. ct1, ct2, ct3, ct4
are used to optimize both the 3D plane parameters and the
relative pose of the stereo rig.

Considering the pose ctj M c01
, the pose Jacobian L IS ( X S )

related to I S at point X S is:

L ISj
( X S ) = −∇ I TSj L XSj

: (20)

L XS is defined in equation (12).
However, L XS of mirrors 2, 3 and 4 are transformed to be

expressed in the c1 frame [5] using the twist transformation
matrix, computed thanks to cj M c1 , between velocity vectors
of camera 1 and camera j . This leads to the Jacobian G
for the stereoscopic tracking of several planes. For brevity, a
Jacobian of two planes tracked by a stereo rig of two cameras
is shown but it is extendable to any number of planes and
cameras (four cameras and two planes in the results). The
Jacobian relates spherical image intensities to the 3D planes
and the relative pose between current and reference stereo
rig positions:

G =



J
(1)
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( X S ) 0
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ISt
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ISt
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ISt

2

( X S )
c2 V c1

0 J
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ISt

1

( X S ) L
(2)
ISt

1

( X S )

0 J
(2)
ISt

2

( X S ) L
(2)
ISt

2

( X S )
c2 V c1


:

(21)
ctj H c01

is the homography, related to the plane of interest
between c1 at time 0 and cj at time t , computed using
estimated plane normal and distance and the rotation and
translation extracted from ctj M c01

= cj M c1
t M 0. Finally, Ja-

cobians J IS0
j

are recomputed at each iteration since the 3D
plane parameters are always updated.

For brevity, details of the LM optimization are not given
here but the equation is really similar to equation (16).
Finally, without giving much details, a robust estimator based
on M-Estimation [11] is considered to reject outliers and
improve robustness w.r.t. illumination changes, including
specularity, and partial occlusion.

IV. RESULTS

The initial plane selection is done manually by clicking
four points to define a reference template in the first image.
In stereovision images, the selection is only done in the
top left mirror. Corresponding regions in other mirrors are
automatically found.
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(a) Image 0 / 900 (b) Image 216 / 900 (P0 occluded)

(c) Evolution of the P0 normal. (d) Evolution of the P1 normal.

(e) Estimated trajectory with a circled green cross marking the starting
position and two sets of a circle and a cross showing the trajectory parts
when tracked planes are occluded (red for P0 and black for P1 ). The
orange cross marks the end of the tracking of P1 and a straight black
line links the start position to the end.

Fig. 3. Curve motion along 11 m with partial occlusion. Planes P0 and
P1 are simultaneously tracked in a sequence of 900 images until P1 is no
more visible. The rest of the estimation is done with the tracking of P1
(from the orange cross on trajectory (e)). To have the trajectory at the good
scale in meter, the distance to P0 is manually measured from the initial
camera position. The final position error is below 1 cm (unmeasurable) and
the standard deviation of the estimation of the Z coordinate is about 2.64 cm
for the complete estimated trajectory.

(a) Image 0 / 450 (b) Image 220 / 450

(c) Estimated angles of rotation w.r.t. the reference image.

Fig. 4. Stereoscopic tracking of a plane all around the sensor. The rotation
of the planar object is nearly pure around the camera axis (c).

(a) Image 0 / 230 (b) Image 230 / 230

(c) Estimated trajectory in blue and reference one in dashed black. The
unit is the meter and the circled green cross shows the start position.

(d) Plane normal vectors evolution along the sequence.

Fig. 5. Straight motion along 2.40 m. The final position error is 10 cm in
3D leading to an error ratio over the path length of around 4%. Note that
the smallest plane in images (a) and (b) is not vertical, that is why its Z
component is not 0.


