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Abstract— This paper proposes a method to achieve paramet-
ric motion estimation based on mutual information and its use
in video mosaicing applications. Sum of Squared Differences
(SSD) is widely considered in motion estimation. Here, we
consider another metric, Mutual Information (MI), which is far
less sensitive to changes in the lighting condition, to occlusions,
and to a wide class of non-linear image transformation. Results
under various complex conditions are presented.

I. INTRODUCTION

Image mosaics are a collection of overlapping images. The
goal of the mosaicing problem is to find the transformations
that relate the different image coordinates. Once the trans-
formation between all the images is known, an image of the
whole scene can be constructed. This problem requires to
find a warping function that maps the coordinates of one
image into the coordinate system of another image. When
considering a video, one has to warp each new image into
the coordinate system of the very first image of the video [15]
[3] [8] [6].

This is basically a motion estimation process. One can
consider to estimate this motion using matched keypoints as
in [3] or using SSD based motion estimation as in [8] [6].
The latter approach is very efficient when image sequences
are considered, that is, when displacements between one
frame to an other are small. Indeed, if the motion is small
enough motion estimation can be achieved by an energy min-
imization process. Such approaches are related to the early
work of Lucas and Kanade [9] that use images difference as
energy [1].

These classical SSD-based approaches are based on the
temporal luminance constancy hypothesis. However, it is
well known that this hypothesis can be easily violated leading
to important errors in the motion estimation process. Dealing
with target tracking illumination variations can be taken into
account for example using M-estimator [7] [12] or by the
illumination changes as a surface that evolves over time [14].

To deal with occlusions, and illumination variations we
propose to use the mutual information [13], [17] as the
alignment function, that is, as we will see, robust to all
this variations of appearance. Mutual information, especially
studied in medical image registration, tolerates such changes.
It is another metric well adapted and more robust for the
tracking or motion estimation problems. Since its derivative
form have been recently studied in many works [16] [11] [5]
[4], its application for mosaicing has been considered here.

In the remainder of this paper, we recall the MI principle
and present the MI-based motion estimation process that

allows to estimate the dominant motion in the image. Finally,
results are given on various image sequence.

II. MOTION ESTIMATION

We recall here the basic principle of the differential motion
estimation methods that can be used for motion estimation.
These methods are based on the optimization of a similarity
measure f . The goal is to estimate the displacement p of
an image template I∗ in a sequence of images I0..It. In the
mosaicing application I∗ = I0. In the case of a similarity
function, the problem can be written as:

p̂t = arg max
p

(f(I∗, w(It,p))) . (1)

where we search the displacement p̂t that maximizes the
similarity between the template I∗ and the warped current
image It.

To solve the maximization problem, the assumption made
is that the global displacement between two consecutive
frames is quite small. The previous estimated displacement
p̂t−1 can therefore be used as first estimation of the current
displacement to perform the optimization of f and incremen-
tally reach the best estimation p̂t.

Multiple solutions are possible to perform the iterative
process and compute the update of the current displacement
parameters. Indeed Baker and Matthews showed that two
formulations were equivalent [1]. In our case we consider
the inverse compositional formulation which considers that
the update is modifying the reference image, so that ∆p is
chosen to maximize:

∆pk = arg max
∆p

f(w(I∗,∆p), w(It,pk)). (2)

In this case the current parameters will be update using:

w( w−1(x,∆pk),pk)→ w(x,pk+1). (3)

In this formulation, since the update parameters is applied
to the reference image, the derivatives with respect to the
displacement parameters will classically be computed using
the gradient of the reference image. Thus, these derivatives
can be partially precomputed and the algorithm is far less
time consuming.

One essential choice remains the one of the alignment
function f . One natural solution is to choose the function
f as the sum of the squared differences (SSD) of the pixel
intensities between the reference image and the transformed
current image:

p̂t = arg min
p

∑
x∈ROI

(I∗(x)− It(w(x,p)))
2 (4)



where the summation is computed on each point x of the
reference template, that is, the region of interest (ROI , in
our case this is the whole image) of the reference image.
As its definition suggests this similarity function is very
sensitive to occlusions and illumination variations. Many
solutions have been proposed to make the SSD robust.
M-estimators robustifies the least squared problem toward
occlusions [7] [12] and illumination modeling can be used
to handle illumination changes [7] [14].

III. MUTUAL INFORMATION-BASED MOTION ESTIMATION

A. Mutual information
Rather than comparing intensities, mutual information is

the quantity of information shared between two random
variables. Mutual information of two random variableI and
I∗ is then given by the following equation:

MI(I, I∗) = h(I) + h(I∗)− h(I, I∗). (5)

where the entropy h(I) is a measure of variability of a
random variable I (signal, image...). If r are the possible
values of I and pI(r) = P (I = r) is the probability
distribution function of r, then the Shannon entropy h(I)
of a discrete variable I is given by the following expression:

h(I) = −
∑
r

pI(r) log (pI(r)) . (6)

The probability distribution function of the gray-level values
is then simply given by a the normalized histogram of the
image I . The entropy can therefore be considered as a
measure of dispersion of the image histogram.

Following the same principle, joint entropy h(I, I∗) of two
random variables I and I∗ can be defined as the variability
of the couple of variables (I, I∗). The Shannon joint entropy
expression is given by:

h(I, I∗) = −
∑
r,t

pII∗(r, t) log (pII∗(r, t)) (7)

where r and t are respectively the possible values of the
variables I and I∗, and pII∗(r, t) = P (I = r ∩ I∗ = t) is
the joint probability distribution function. In our problem I
and I∗ are images. Then r and t are the gray-level values of
the two images and the joint probability distribution function
is a normalized bidimensional histogram of the two images.
As for entropy, joint entropy corresponds to a measure of
dispersion of the joint histogram of (I, I∗).

The analytical formulation of a normalized histogram of
an image I∗ is classically written as follows:

pI(r,p) =
1

Nx

∑
x

φ
(
r − I(w(x,p))

)
(8)

pII∗(r, t,p) =
1

Nx

∑
x

φ
(
r − I(w(x,p))

)
φ
(
t− I∗(x)

)
where x are the points of the region of interest in the
image, Nx is the number of points and t are the possible
values of I∗(x), i.e. t ∈ [0, Nc]. Let us note that to have a
smooth mutual information it is important to maintain the
low (Nc = 8 in our implemantation) the number of bins
of the histogram (and thus to scale image intensity between

Ī ∈ [0, Nc]. In the classical formulation φ is a Kronecker’s
function: φ(x) = 1 for x = 0 and φ(x) = 0 otherwise.
So that each time I∗(x) = i the ith histogram bin value
is incremented. Nevertheless, several solutions have been
proposed to simultaneously smooth the mutual information
function and keep its accuracy [17] [10]. Our approach is
based on the use of B-spline functions for φ [10].

B. Mutual information-based motion estimation

In this section we will see how to use the MI cost
function with the motion estimation process presented in
section II. Let us remind that the goal is to estimate the
displacement parameters pt that maximizes the MI using a
first estimation of the parameters pt−1 and an iterative update
of the parameters.

a) Derivative function analysis: This problem implies
a strong correlation between the elements of the vector p.
Therefore, the use of first-order optimization method such
as the gradient “descent” is not adapted. Such non-linear
optimization are usually performed using a Newton’s method
that assume the shape of the function to be parabolic.

Newton’s method uses a second order Taylor expansion at
the current position pk−1 to estimate the update ∆p required
to reach the optimum of the function (where the gradient
of the function is null). The same estimation and update
is performed until the parameter pk effectively reaches the
optimum. The update is estimated following the equation:

∆p = −H−1G> (9)

where G and H are respectively the Hessian and gradient
matrices of the mutual information with respect to the update
∆p. Following the inverse compositional formulation defined
in equation (2) those matrices are equal to:

G =
∂MI(w(I∗,∆p), w(I,p))

∂∆p
(10)

H =
∂2MI(w(I∗,∆p), w(I,p))

∂∆p2
(11)

Applying the derivative chain rules yields the following
gradient and Hessian matrices:

G =
∑
r,t

∂pII∗

∂∆p

(
1 + log

(
pII∗

pI

))
(12)

H =
∑
r,t

∂pII∗

∂∆p

>∂pII∗

∂∆p

(
1

pII∗
− 1

pI

)
+
∂2pII∗

∂∆p2

(
1 + log

pII∗

pI

)
(13)

For the purpose of clarity, the marginal probabilities and
joint probability that are actually depending on r, t, p * and
∆p are simply denoted as pI , pI∗ and pII∗ . The details of
the calculation from equation (10) to equation (12) can be
found in [5] for a direct additional formulation.

By analogy with classical Hessian computation in SSD
minimization, second order derivatives are usually neglected
in the Hessian matrix computation [16] [5]. In our approach
we compute the Hessian matrix using the second order



derivatives that are, in our point of view, required to obtain
a precise estimation of the motion.

As we can see in equation (12) and equation (13), the
derivatives of the mutual information depend on the deriva-
tives of the joint probability. Using the previous definition in
(8) and passing the derivative operator through the summa-
tion yields the following expressions:

∂pII∗

∂∆p
=

1

Nx

∑
x

φ
(
t− I(w(x,p))

) ∂φ

∂∆p

(
r − I∗(w(x,∆p))

)
∂2pII∗

∂∆p2
=

1

Nx

∑
x

φ
(
t− I(w(x,p))

) ∂2φ

∂∆p2

(
r − I∗(w(x,∆p))

)
.

The remaining expressions to evaluate are the variations
of the B-spline function φ with respect to the update. Its
derivatives are obtained using the chain rule and gives:

∂φ

∂∆p
(r − I∗(w(x,∆p))) = −∂φ

∂r

∂I∗

∂∆p
(14)

∂2φ

∂∆p2

(
r − I∗(w(x,∆p))

)
=

∂2φ

∂t2
∂I∗

∂∆p

>
∂I∗

∂∆p
− ∂φ

∂r

∂2I∗

∂∆p2
.

Finally the derivatives of the reference image intensity
with respect to the update parameters ∆p is given by the
following expressions:

∂I∗

∂∆p
= ∇I∗ ∂w(x,p)

∂∆p
(15)

∂2I∗

∂∆p2
=

∂w

∂∆p

>
∇2I∗

∂w

∂∆p
+∇I∗x

∂2wx

∂∆p2
+∇I∗y

∂2wy

∂∆p2
(16)

The motivation for using the inverse compositional formu-
lation is then obvious. The derivatives of the warp function
are all computed at ∆p = 0, their values are then constant
for each pixels of the template. Moreover, since the reference
image is constant, all the expressions from equation (14) to
equation (16) are constants and have to be precomputed only
one time.

To improve the optimization process we propose to use an
approximation of the Hessian matrix computed in the case
of a perfect alignment between the template and the current
image that is given for I(w(x,p)) = I∗(x) [4].

This solution has several advantages: first it gives a definite
negative Hessian matrix that yields to have a wide conver-
gence domain; second, since the Hessian matrix used in the
Newton’s method is the Hessian matrix after convergence,
the behavior of the optimization near convergence is optimal
and the final estimated displacement parameters is very
accurate; finally, the Hessian matrix, representing 80 of the
computation time in one iteration, is computed only one time.

In this work we focus on mosaicing application. Usually
motion is mainly a rotation and a homogoraphy is then well
suited. The warp function is thus defined by the group action
w : SL(3)×P2 with x ∈ P2 and p defines the 8 parameters of
the sl(3) lie algebra associated to the SL(3) group. However,
affin transformation has also been considered. All details
regarding the derivatives of the chosen warp function can
be found in [2].

IV. EXPERIMENTAL RESULTS

These experiments show the application of the MI -based
motion estimation algorithm to the mosaicing problem. In
these sequence, since some part of scene completely disap-
pears, it is necessary to define multiple reference images.
The approach is build as follows:

• Initialization: the first image is chosen as reference
image, i.e. I∗0 = I0.

• Tracking: for every frame, we compute the displacement
pk between It and I∗k.

• Reference Update: every 30 images, the reference image
I∗k is changed and defined as the current image, i.e.
I∗k = It for t = 30k.

Using the homography from the current image to the cur-
rent reference image and the homographies between the
references, we retrieve the homography between the current
image and the first image. Using this homography, we can
project all the images of the sequence into the mosaic image
and construct the global image of the whole scene.

In the first experiment (Figure 1 and 2), the overlapping
images are simply a compressed sequence of 3600 images
obtained from Youtube. The aerial scene is acquired from a
camera embedded on a flying UAV and shows the ground that
is approximately 1 kilometer away from the camera. Since
this distance is very large, the scene can be approximated
as a plane and tracked using homographies. During the
acquisition of the sequence, the camera is moving forward
and is rotating around the vertical axis.

In Figure 1 we show some images from the sequence. This
sequence has been downloaded on Youtube and is affected by
the H264 coding artifacts. We can also note the poor quality
of the images. As we can see in the resulting mosaic image.
Despite this poor quality, the resulting mosaic presented in
Figure 2 shows the accuracy of the MI tracker. Since the
camera is making an entire revolution, the first and last
images are overlapping. A small shift occurs between the first
and last estimated positions: we highlight two corresponding
patterns that should have been at the same location on the
mosaic. Let us note that nothing has been performed to
reduce the drift (such as the bundle adjustment approach
proposed by [3]). Considering the template update problem
and the planar assumption, the estimated homographies are
accurate. The same experiment was performed using the SSD
tracker. In this case, due to the noise, blur, and illumination
variations, this registration approach diverges after a few
iterations.

The second experiment presents a mosaic build from
more than 10000 images. Image are extracted from a highly
compressed video. The camera was attached to a free flying
balloon flying over Paris. Figure 3 shows three steps of the
mosaic construction.

In this last experiment (see mosaic in Figure 4), we
consider a sequence extracted from the John Ford movie
“she wore a yellow ribbon”. In that case an affine motion
model was consider. The interest of this sequence is that
some cavalrymen are moving all along the sequence and,
therefore, act as important occlusions as can be seen on
Figure 5.



Fig. 4. Mosaic created from the John Ford movie “she wore a yellow ribbon”. A affine motion model was considered. Note that some cavalrymen are
moving all along the sequence. Despite these disturbances, motion is correctly estimated.

Fig. 1. Some overlapping key images used for the mosaicing application.

Fig. 2. Resulting mosaic image: despite the poor quality of the sequence
and the approximation that the scene is planar, the final displacement
between the first and last image is accurate. The red and green contours
show the position of one physical pattern in the first and last images of the
sequence.

Fig. 3. Three steps of the “Paris” mosaic construction. The sequence
feature more than 10000 images acquired from a camera attached to free-
flying balloon.

Fig. 5. Three images used for the “yellow ribbon” mosaic construction.
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