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Abstract—We propose an autonomous vehicle guidance frame-
work which combines visual navigation with simultaneous obsta-
cle avoidance. The method was originally designed in [1], but real
outdoor experiments and major improvements have been added
in this paper. Kinematic redundancy guarantees that obstacle
avoidance and navigation are achieved concurrently. The two
tasks are realized both in an obstacle-free and in a dangerous
context, and the control law is smoothened in between. The
experiments show that with our method, the vehicle can replay
a taught visual path while avoiding collisions.

Index Terms—Navigation systems, Visual Servoing, Au-
tonomous driving.

I. INTRODUCTION

A great amount of robotics research focuses on vehicle
guidance, with the ultimate goal of automatically reproducing
the tasks usually performed by human drivers [2 – 6]. In many
works, information from visual sensors is used for localization
[7 – 9] or navigation [10]. In the case of autonomous naviga-
tion, an important task is obstacle avoidance, which consists
of generating a collision-free trajectory to the goal [11]. If
bypassing is impossible, the vehicle must decelerate to prevent
collision [12]. A classical technique for avoidance is the
potential field method [13], which is often associated to a
global path planner.

The framework presented in our work does not require a
global model of the environment (e.g., based on geometric
primitives). It enables execution of a sensor-based task, with
simultaneous collision avoidance. We focus on following a
visual path, represented by a database of ordered key im-
ages [14]. The task is therefore defined in the image space,
and not in the pose space, and it is divided into subtasks, each
consisting of reaching the next key image in the database. This
scheme, which is quite common in the robotics community
[14 – 17], has been rarely extended to take into account
obstacles.

Obstacle avoidance has been integrated in navigation frame-
works in [18 – 22]. The authors of [18] use a model-based
vision system with retroactive position correction. In [19], a
laser range finder and monocular vision enable navigation in
an office environment. Simultaneous obstacle avoidance and
path following is presented in [20], where the geometry of the
path (a curve on the ground) is perfectly known. The authors
of [21] deform the desired trajectory to avoid sensed obstacles.
In practice, all these methods are based on the environment 3D
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model, including, e.g. walls and doors. An exception is [22],
where redundancy enables reactive obstacle avoidance, without
requiring any 3D model.

Our scheme also exploits redundancy. A robot is redun-
dant when it has more DOFs than those required for the
primary task [23]; then, a secondary task can also be executed.
Here, we focus on this problem: a wheeled vehicle, equipped
with an actuated pinhole camera and with a forward-looking
range scanner, must follow a visual path represented by key
images, without colliding with the ground obstacles. The
camera detects the features required for navigating, while the
scanner senses the obstacles (in contrast with other works,
such as [24], only one sensor is used to detect the obstacles).
As in [22], we guarantee that obstacle avoidance has no effect
on visual navigation. However, our controller is compact, and
the transition between safe and dangerous contexts is operated
only for the secondary task, while in [22], three controllers are
needed, and the transitions are more complex.

Although the approach was designed in [1], the contri-
butions of this paper are various. Here, we experimentally
validate the scheme, and to our knowledge, this is the first
time that obstacle avoidance and outdoor visual navigation
are merged directly at the control level. Many changes were
necessary in order to adapt the system in [1] to the real world:
in particular, the linear velocity, which was constant in [1], had
to be varied to improve visual tracking and security (it must
diminish in dangerous situations). As a consequence, the task
dimension and context definition also had to be modified. Un-
der these real world constraints, we have designed a compact
general controller, which provides visual navigation, obstacle
circumnavigation, and collision avoidance by deceleration.

II. PROBLEM CHARACTERISTICS
The reader is referred to Fig. 1 for the definitions below.

We define the robot frame FR (R,X ′, Y ′, Z ′) (R is the robot
center of rotation), image frame FI(O, x, y) (O is the image
center), and camera frame FC(C,X, Y, Z) (C is the optical
center). The robot control inputs are:

u = [v ω ϕ̇]>

These are, respectively, the linear and angular velocities of
the vehicle, and the camera pan angular velocity. We use the
normalized perspective camera model:

x =
X

Z
, y =

Y

Z

We assume that |ϕ| ≤ π
2 , that C belongs to the camera pan

rotation axis, and that the path can be tracked with continuous
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Fig. 1. Top view of the robot (orange), equipped with an actuated camera (blue). (a) Reference frames. (b) Obstacle-induced vortex fields, and control
variables (v, ω, ϕ̇). (c) Occupancy grid and potential field f construction.

v (t) > 0. This ensures safety, since only obstacles in front of
the robot can be detected by our range scanner. The distance
between R and C is denoted by δ ≥ 0.

The visual path that the robot must follow is represented as
a database of ordered key images, such that each neighboring
pair contains some common static visual features. First, the
vehicle is manually driven along a taught path, with the
camera pointing forward (ϕ = 0), and all the images are
saved. Harris points [25] are detected in the first image, and a
modified Kanade-Lucas-Tomasi (KLT) algorithm [26] tracks
the features in successive images, to generate the database
of N key images I1, . . . , IN (Fig. 2) that represents the path.
Then, during autonomous navigation, the current image, noted
I , is compared with the database, to drive the vehicle velocity.
SIFT descriptors [27] are used to initialize the KLT algorithm,
which tracks the features while the taught path is replayed.
Visual navigation is divided into N subtasks, each consisting
of driving the current image I to the next key image Î . To
check whether Î has been reached, we perform a coarse three-
view pose calculation between the previous, current and next
key images. As soon as Î is reached, a topological transition
is made, and the tracker is reinitialized: the next image in the
set becomes the desired one, and so on, until IN is reached.
More details on these algorithms are in [14].

Along with the visual path following problem, which we
have tackled in [14] and in [28], here we consider obstacles
which are present on the path, but not in the database, and
sensed by the range scanner. For obstacle modeling, as in [1],
an occupancy grid, shown in Fig. 1(c), is used: it is linked to

KEY 
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DESIRED IMAGE  I

Visual path
following task

x

x
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CURRENT IMAGE

NEXT KEY IMAGE

COARSE
LOCALIZATION

ˆ
ˆ

Fig. 2. The current and desired images contain some common visual features,
which are used for navigation.

FR, with cell sides parallel to the X ′ and Z ′ axes. Its forward
and lateral extensions are smaller than the scanner radial range,
to ignore obstacles that are too far away to jeopardize the
robot. The grid is built from the latest 2K + 1 scans. For
each cell centered at c = [X ′ Z ′]>, we define the 2K + 1
occupancies r at the j-th oldest iteration as:

rj (c) = {0, 1}, j = 0, . . . , 2K + 1

We set rj = 1 if an obstacle has been sensed in c at the j-th
iteration prior to the current one, and 0 otherwise. Then, we
associate to each cell a coefficient µ (c), obtained by linear
combination of the occupancies, weighed with a normalized
Gaussian filter that smoothens the cell effect over time:

µ (c) =
2K+1∑
j=0

e−(j−K)2/K

√
Kπ

rj (c)

The filter maximum weight is set at the K-th latest scan, to
avoid the control inputs overshoot at a new obstacle detection
(an issue which existed in [1]). If the robot velocity is negligi-
ble with respect to the scanner acquisition frequency, and K is
reasonably small, the effect of motion on the occupancies can
be ignored, and the above model is consistent with the current
robot position. Later in this paper, we will explain how the
occupancy grid is utilized in our controller, and we will show
that the above assumptions are appropriate in our setup.

III. REDUNDANCY FRAMEWORK FOR 2 TASKS
We hereby recall the redundancy-based controller used

in [1], and originally introduced in [29]. We name s1 ∈ IRk
the primary task vector, and u ∈ IRm the control inputs.
Redundancy exists when m > k, and enables handling a
secondary task, s2 ∈ IRm−k. The tasks dynamics are related
to the control inputs by:

ṡi = Jiu, i = 1, 2 (1)

where J1 and J2 are the task jacobians, respectively of size
k×m and (m− k)×m. We assume that both have full rank.

With the Projected Gradient method [23], the solution
of (1), for tracking the primary task is:

u = J+
1 ṡ∗1 + P1h (2)
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In the above equation:

• J+
1 = J>1

(
J1J>1

)−1
is the m × k Moore-Penrose pseu-

doinverse of J1, i.e., a particular solution of: J1J+
1 = I;

• ṡ∗1 ∈ IR
k is the required primary task error evolution;

• h ∈ IRm is an arbitrary control input;
• P1 = I−J+

1 J1 projects h on the kernel of J1; hence, P1h
has no effect on the primary task.

Vector h can be used to apply a command that will carry
out at best the secondary task s2, without disturbing s1.

Introducing (2) in (1) (with i = 2), we obtain:

ṡ2 = J2J+
1 ṡ∗1 + J2P1h

In [29], h is derived from this equation to track ṡ∗2:

h = (J2P1)
+ (ṡ∗2 − J2J+

1 ṡ∗1
)

(3)

Plugging into (2), we obtain:

u = J+
1 ṡ∗1 + P1 (J2P1)

+ (ṡ∗2 − J2J+
1 ṡ∗1
)

The term J2P1 gives the available range for s∗2 to be performed
without affecting s1, while ṡ∗2 − J2J+

1 ṡ∗1 is the secondary task
function, without the part J2J+

1 ṡ∗1 accomplished by the first
task. Since P1 is Hermitian and idempotent (it is a projection
operator), the above equation becomes:

u = J+
1 ṡ∗1 + h (4)

with h defined in (3).
The desired evolution of the task errors can be written:

ṡ∗i = ˙̂si − λi (si − ŝi) , i = 1, 2 (5)

with ŝi and ˙̂si indicating the desired values of the i-th task,
and of its first derivative, and λi > 0 the associated gain.

Controller (4) has the following properties.
• It guarantees convergence of the primary task. Replac-

ing (4) in (1) yields:

ṡ1 = ṡ∗1
Considering (5), this is equivalent to the linear system:

ṡ1 − ˙̂s1 = −λ1 (s1 − ŝ1)

for which, as desired,
(

ŝ1, ˙̂s1
)

is an exponentially stable
equilibrium, since λ1 > 0.

• The secondary task s2 has no effect on the primary task,
since h is projected onto the null space of J1.

• The secondary task s2 is realized at best, under the
constraint that it does not affect the primary task.

In this work, the desired specifications are:
1) orienting the camera to maximize the similarity of I

with the next key image Î in the database,
2) making the vehicle progress forward along the path,
3) avoiding collision with the obstacles, while remaining

near the 3D taught path.
For our system, m = 3. We will fulfill a primary task of
dimension k = 1 (orienting the camera), and use the 2
remaining degrees of freedom for a secondary task s2 ∈ IR2

that realizes the two other specifications. We discern two
contexts (safe and dangerous). To smoothen transitions, we
design an obstacle activation function:

H : C 7→ [0, 1]

where the context C indicates the danger represented by
detected obstacles. The definition of H will be given later.
• In the safe context (H = 0), since no obstacles are

present, it is not necessary to deform the taught path.
We use ω for the primary task (i.e., to orient the camera
for image tracking). Then, we can set ϕ = 0, as was done
during teaching. Moreover, the linear velocity v must be
reduced in the presence of sharp turns, to ease the visual
tracking of quickly moving features in the image. Hence,
we formulate the secondary task as:{

v = vs
ϕ̇ = −λ2ϕ ∀ (s1, ṡ1) ∈ IR× IR

(6)

The function vs, which defines the linear velocity in the
safe context, will be given later. Condition (6) will be
guaranteed by control input hs, defined just below.

• In the dangerous context (H > 0), obstacles are present.
Sometimes (H < 1), these can be circumnavigated, while
tracking the visual features. In this case, the robot should
reduce its velocity, and avoid collision by orienting its
heading to a desired value α. The value of α is related
to the obstacles position (see Fig. 1(c)), and defined later
in the paper. The secondary task is:{

v < vs
ω = λ2α ∀ (s1, ṡ1) ∈ IR× IR

(7)

This condition provokes a deformation of the taught 3D
path. Correspondingly, the camera pan angle must be
actuated to maintain visibility of the database features
(i.e., the primary task). If the obstacles are too near to be
circumnavigated (H = 1), the vehicle should stop:

v = 0 ∀ (s1, ṡ1) ∈ IR× IR (8)

Conditions (7), and (8) will be guaranteed by control
input hd, defined below.

A smooth transition between the inputs associated to the
two contexts can be achieved by setting, in (4):

h = Hhd + (1−H) hs

to obtain: 
u = J+

1 ṡ∗1 +Hhd + (1−H) hs
hd = (JdP1)

+ (ṡ∗d − JdJ+
1 ṡ∗1
)

hs = (JsP1)
+ (ṡ∗s − JsJ+

1 ṡ∗1
) (9)

In the above equation:
• ṡ∗d,s are the desired secondary tasks dynamics, in the

dangerous and safe context; recalling (5), they are:{
ṡ∗d = ˙̂sd − λ2 (sd − ŝd)
ṡ∗s = ˙̂ss − λ2 (ss − ŝs)

(10)
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• Jd,s are the corresponding jacobian matrices.
In Sect. V, controller (9) will be instantiated for the problem

of visual navigation with obstacle avoidance.

IV. SYSTEM MODELING
In this section, we define precisely the variables that have

been introduced above. In particular, we will show how the
linear velocity vs for maximal visibility is designed, and
how we use the occupancy grid to derive the robot heading
for avoidance α, and the activation function H for varying
between the safe and dangerous contexts.

A. Linear Velocity For Maximal Visibility

As we mentioned above, features can be lost in the presence
of sharp turns. Hence, we relate the vehicle linear velocity v to
the weighted difference between the abscissa of the centroids
in the current image (x), and in the next (x̂), and second next
(ˆ̂x) key images1:

vs =
V

2

1 + tanh

π −
∣∣∣2x̂+ ˆ̂x− 3x

∣∣∣
γ

 (11)

This function has an upper bound V > 0, and smoothly
decreases to 0, as the abscissa difference grows. Its inflection
point is determined by positive parameter γ.

B. Modeling The Obstacles

Obstacle avoidance is derived by using vortex potential
fields [30]. For each cell c, we define the potential:

Uc =
µ (c)
‖c‖

where ‖c‖ is the distance2 of the cell from R. In practice, for
two occupied cells with equal µ (c) 6= 0, the nearest one will
yield the highest potential. We define the vortex field for each
cell simply as the rotor of Uc:

fc =

[
fc,X′

fc,Z′

]
=

 ±
∂U

∂Z ′

∓ ∂U

∂X ′

 = µ (c)


∓ Z ′

‖c‖3

± X ′

‖c‖3


The signs of fc,X′ and fc,Z′ depend on the cell abscissa:

positive (negative) X ′ will induce a clockwise (counterclock-
wise) vortex, so that the field always points forward. The fields
fc,i generated by all the n cells ci are then superimposed to
obtain the total field:

f =
n∑
i=1

fc,i

The orientation α ∈
[
−π2 ,

π
2

]
of this field (see Fig. 1) is:

α =
{

0 if f = 0
−ATAN2 (fX′ , fZ′) otherwise

1When the next image is the final one, we use ˆ̂x = x̂, since the second
next image is undefined.

2Designing the grid without the cell at R = [0 0]> (where obstacles are
not detectable by the range scanner), guarantees that Uc is non-singular.

As in [1] and [30], this is the desired heading for obstacle
circumnavigation in dangerous situations (see (7)).

However, α is not indicative of the chances of successful
circumnavigation. For this, we use the field norm:

|f | =
√
f2
X′ + f2

Z′

which is a good metric for evaluating the obstacle distance,
and reducing v accordingly, in order to fulfill (7) and (8).

In summary, to assess the context danger, we consider both
α and |f |, and using two empirically tuned thresholds ρ and %
such that 0 < ρ < %, we design the activation function as:

H=


κ |α| if |f | <= ρ

κ |α|+ (1− κ |α|) |f |−ρ%−ρ if |f | ∈ ]ρ, %[
1 if |f | >= %

Note that H = 0 if no obstacle is detected (since both |f |
and α are null in that case), and it is bounded by 1. For small
|f |, H is determined only by α: the obstacles are ’far enough’
to be circumnavigated using (7), and parameter κ ∈

]
0, 2

π

]
weighs the danger provoked by the field orientation3. On the
other hand, for large |f | ≥ %, the obstacles are ’too near’:
H = 1 and the robot stops. We use a linear function to
guarantee continuity in between. Parameters ρ and % are tuned
to determine the three intervals. For example, small values of
% make the approach more conservative, since the robot will
stop in the presence of farther obstacles.

V. CONTROL SCHEME

A. Primary Task: Camera Orientation

We do not take directly into account occlusions, or feature
position, and assume that the visible features are homoge-
neously distributed in the environment. Then, the task of
maximizing the similarity between current image I , and next
key image Î , can be achieved with only one visual feature:
the abscissa x of the centroid of the points matched on I and
Î [14]. Hence, for s1, we use:

s1 = x, ŝ1 = x̂, ˙̂s1 = 0

which, replaced in (5), yields:

ṡ∗1 = λ1 (x̂− x)

Assuming static features, the corresponding primary task Ja-
cobian is:

J1 = [jv jω jϕ̇] , (12)

where an approximation of the components is (see [28]):

jv = − sinϕ+x cosϕ
Z

jω = δ(cosϕ+x sinϕ)
Z + 1 + x2

jϕ̇ = 1 + x2

(13)

As in [28], to avoid depth estimation, which can be unreliable,
we set the depth to a fixed value Z.

3To guarantee H ≤ 1, parameter κ must be chosen smaller than 2
π

.
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The Moore-Penrose pseudoinverse of J1 is:

J+
1 =

[jv jω jϕ̇]>

j2v + j2ω + j2ϕ̇

Since jϕ̇ 6= 0, ∀x ∈ IR (see (13)), J+
1 is full rank. The

projecting operator P1 can also be derived:

P1 =
1

j2v + j2ω + j2ϕ̇

 j2ω + j2ϕ̇ −jvjω −jvjϕ̇
−jvjω j2v + j2ϕ̇ −jωjϕ̇
−jvjϕ̇ −jωjϕ̇ j2v + j2ω


B. Safe Secondary Task: Taught Path Following

In the safe context, since path deformation is not necessary,
the robot must follow at best the 3D taught path. Thus, as
it was during teaching, the camera pan should point forward
(i.e, the pan angle should be set to 0, with null angular speed
at the equilibrium). To maximize visibility, the linear velocity
should be reduced when the path curvature is large. These two
requirements can be formulated by using:

ss=
[ ∫ t

0
v(t)dt
ϕ

]
, ŝs=

[ ∫ t
0
v(t)dt
0

]
, ˙̂ss=

[
vs
0

]
which, replaced in (10), yields:

ṡ∗s =
[

vs
−λ2ϕ

]
Since deriving ss yields [v ϕ̇]>, the corresponding secondary
task Jacobian is:

Js =
[

1 0 0
0 0 1

]
and we obtain:

(JsP1)
+ =

 1 0
− jv
jω

− jϕ̇
jω

0 1

 , JsJ1
+ =

[jv jϕ̇]>

j2v + j2ω + j2ϕ̇

C. Secondary Task In The Dangerous Context: Safety
In the dangerous context, the secondary task consists of

aligning the robot with f (i.e., shifting its heading by α, with
null angular speed at the equilibrium), and reducing the linear
velocity, if the obstacles are ’too’ near. Denoting with θ the
current robot orientation, this is done by using:

sd=
[ ∫ t

0
v(t)dt
θ

]
, ŝd=

[ ∫ t
0
v(t)dt
θ + α

]
, ˙̂sd=

[
0
0

]
which, replaced in (10), yields:

ṡ∗d =
[

0
λ2α

]
Since deriving sd yields [v ω]>, the corresponding secondary
task Jacobian is:

Jd =
[

1 0 0
0 1 0

]
and we obtain:

(JdP1)
+ =

 1 0
0 1
− jv
jϕ̇
− jω

jϕ̇

 , JdJ1
+ =

[jv jω]>

j2v + j2ω + j2ϕ̇

D. Complete Control Design

Let us now use the variables defined above, to instantiate
our controller (9) for visual navigation:

v = (1−H) vs
ω = (1−H) λ1(x̂−x)−jvvs+λ2jϕ̇ϕ

jω
+Hλ2α

ϕ̇ = H λ1(x̂−x)−λ2jωα
jϕ̇

− (1−H)λ2ϕ

(14)

This control law has the following nice properties.
1) In the safe context (H = 0), (14) becomes:

v = vs
ω = λ1(x̂−x)−jvvs+λ2jϕ̇ϕ

jω

ϕ̇ = −λ2ϕ

(15)

The image error is controlled only by ω, as in [14]
and [28], where obstacles were not considered. The
secondary task of maximal visibility (6), instead, is
achieved by inputs v and ϕ̇: the linear velocity is reduced
to improve tracking according to (11), while the camera
is driven forward, to ϕ = 0.

2) In the dangerous context (H ≈ 1), a good approximation
of (14) is: 

v = (1−H) vs
ω = λ2α

ϕ̇ = λ1(x̂−x)−λ2jωα
jϕ̇

In this case, the primary task is executed by ϕ̇, while
the secondary task of safety (7-8) is controlled by the 2
other degrees of freedom: the linear velocity is reduced
(and even zeroed, for H = 1), while the angular
velocity aligns the robot with f . The camera velocity
compensates the robot rotation, to keep the features in
view. Note that, for large Z, and small image error,
ϕ̇ ≈ −ω (since, from (13), jω ≈ jϕ̇), which is an
expected behavior.

3) Since jϕ̇ 6= 0, ∀x ∈ IR, for (14) to be well defined
when the centroid is visible, it is sufficient that jω 6= 0,
which is guaranteed, since |ϕ| ≤ π

2 , by choosing Z > δ
2 ,

as we have proved in [1]. Moreover, in [28], we have
shown that overestimating Z with respect to its real
value, is more effective than underestimating it, in terms
of navigation performance.

VI. EXPERIMENTAL RESULTS

Experiments have been carried out on a CyCab vehicle, set
in car-like mode (i.e., using only the front wheels for steering).
The robot is equipped with a coarsely calibrated 70◦ field of
view, B&W camera mounted on a TRACLabs Biclops Pan/Tilt
head (the tilt angle is null, to keep the optical axis parallel to
the ground), and with a 4-layer, 110◦ scanning angle, laser
SICK LD-MRS. The offset between R and C is δ = 0.7
m, and we set Z = 15 m, to prevent singularities in (14).
We build the grid by projecting the laser readings from the 4
layers on the ground, and limiting its size to 1.5 m on each
side, and 5 m in front. The linear velocity is designed with
V = 0.4 ms−1 and γ = 225. The velocity has been limited for
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Fig. 3. Top to bottom: experiments 1 to 3. Left: reconstruction of the replayed path with (red) and without (yellow) obstacles. Right: snapshots (above) and
grids (below) in the presence of obstacles. The red vectors show the orientation of f .

security reasons, and because of the low camera frequency (10
Hz). At this speed, since the scanner acquires at 40 Hz and
K = 20, neglecting the effect of motion on the occupancies
is reasonable. We set: λ1 = 0.5, λ2 = 0.3, κ = 0.25, ρ = 3
and % = 4.

Control scheme (14) has been validated in the three exper-
iments, which are shown in Fig. 3, as well as in the video at:
www.irisa.fr/lagadic/demo/demo-cycab-vis-navigation/obstAv.avi.

In each case, after having manually driven CyCab to acquire
the image database, two setups (safe and dangerous) are tested.
First, no obstacle is present: since H is constantly null, (15)
is used, with fixed forward-looking camera (ϕ = 0). Then,
some obstacles (including pedestrians) are present, near and
on the taught path, and the robot must deal with them, during
navigation; in addition to endangering the robot, the obstacles
may occlude the features. The replayed paths, estimated from
odometry and snapshots, are outlined on the left in Fig. 3,
both in the safe (yellow) and dangerous (red) setup. Since the
focus here is on obstacle avoidance, and accuracy of obstacle-
free navigation has been proved in [14], the taught path is

0.51 column

00
400400

0.2

00
400

-0.2
400

0.50.5

0
400400

-0.5

Fig. 4. Relevant variables in experiment 1: v (black, in ms−1), ω (green,
in rad s−1), ϕ (blue, in rad) and ϕ̇ (red, in rad s−1). The iterations with
non-null H are highlighted in yellow.

not drawn. Giving a general interpretation of the results is
hard, since many factors intervene (e.g., obstacles and visual
features positions). Nevertheless, in all the experiments, the
robot follows the path without colliding, and in spite of
occlusions (although a minimal number of visual features is
obviously required). Although some portions of the replayed
3D path are far from the taught one, these motions are
indispensable to avoid collisions. In the following, we detail
the experiments.

The first path (used in experiment 1) is 60 m long, and
composed of N = 34 key images. Three obstacles are on
the path, and the robot is able to overtake them all (the first
and third on the left, the second on the right), and reach the
last key image. For the dangerous setup, snapshots are shown
on top of Fig. 3, and v, ω, ϕ̇ and ϕ are plotted4 in Fig. 4.
The iterations, with H > 0 are highlighted in yellow. CyCab
is initially near a wall parallel to the Z ′ axis, which is too
far to be considered in the grid. This shows the utility of
ignoring lateral data, which would have made the vehicle curve
farther from the path. The first obstacle is detected at iteration
60: the vector field f generates a positive rotation (green in
Fig. 4), compensated by the camera pan, and v is reduced.
The obstacle is overtaken while maintaining feature visibility.
Then, since the path is free, the pan angle (blue) is reset to 0 ,
until the second obstacle detection, which triggers a negative
ω, and positive ϕ̇. Afterwards, H is activated again by the third
obstacle, which is overtaken on the left (iteration 300), while
decelerating. The activation function is canceled at iteration
360, and the variables are then driven by (15). The average
vehicle velocity v, is slightly reduced, from 0.39 ms−1 in the
safe setup, to 0.35 in the presence of obstacles. The image
error with respect to the visual database, averaged over the

4The smooth trend of v at the beginning and end of the 3 experiments is
due to the acceleration saturation that is carried out at the control low-level.
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Fig. 5. Relevant variables in experiment 2: v (black, in ms−1), ω (green,
in rad s−1), ϕ (blue, in rad) and ϕ̇ (red, in rad s−1). The iterations with
non-null H are highlighted in yellow.

experiment, increases from 11 to 17 pixels.
Experiments 2 and 3 are carried out on a path of 50 m and

N = 30 key images. The path is straight, and there are many
cars parked on the street.

In experiment 2, a gray car is parked on the path, and
a barrier blocks the road halfway through. Snapshots of the
experiment are shown in the center of Fig. 3, and the velocities
are plotted in Fig. 5. The car is overtaken on the left at
iterations 120−190, while the robot slows down (black curve).
Then, as soon as the street is free again, the robot accelerates
and returns on the path, while the camera is reset forward. The
barrier is more difficult to deal with. In fact, when detected,
it is centered on the Z ′ axis and orthogonal to it (see grids on
the right of Fig. 3); this induces α = 0 and drives the robot
towards the barrier. However, as the CyCab approaches the
barrier, the norm of vector field f increases, and eventually
becomes greater than %, to make H = 1 and stop the robot.
Note that when there is no obstacle, v ≈ V , because, in
contrast with experiment 1, the taught path here is straight,
leading to vs ≈ V , from (11). The value of v, averaged over
the path diminishes, from 0.39 ms−1 in the safe setup, to 0.34
in the dangerous one. This time, the average image error does
not vary in the two setups (13 pixels in both cases).

In experiment 3, although the gray car and barrier are not
present, three persons are standing on the path. On Fig. 3
(bottom), we show some snapshots of the experiment, while
the velocities are plotted in Fig. 6. From iteration 50 to
120, the activation function is triggered by the detection of

1 column velocities ped 0.51 column velocities ped
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Fig. 6. Relevant variables in experiment 3: v (black, in ms−1), ω (green,
in rad s−1), ϕ (blue, in rad) and ϕ̇ (red, in rad s−1). The iterations with
non-null H are highlighted in yellow.

the pedestrians. This generates a counterclockwise angular
velocity (the persons are overtaken on the left), and a slight
deceleration. Afterwards, since the street is free again, the
robot accelerates and returns on the path, which this time is
completed up to the last key image, since the barrier has been
removed. Just like in experiment 2, when there is no obstacle,
v ≈ V , since the path is straight. The average linear velocity
(v = 0.38 ms−1), is almost the same as in the safe setup
(0.39), and so is the average image error (12 pixels).

VII. CONCLUSIONS

We have designed and implemented a framework with
simultaneous obstacle avoidance and vision-based navigation
for an outdoor vehicle. It merges techniques from redundancy,
potential fields, and visual servoing, and guarantees visual
navigation, obstacle bypassing, and collision avoidance by
deceleration. The method is validated in outdoor experiments,
with real obstacles, such as parked cars and pedestrians. In
the future, we plan to take into account moving obstacles, as
well as visual occlusions provoked by the obstacles. We also
plan to test other obstacle modeling techniques, such as the
’tentacles’ presented in [31].
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