
No d’ordre : 4080 ANNÉE 2010
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préparée à l’IRISA. Équipe d’accueil : LAGADIC

Composante universitaire : IFSIC

Automatic guidance of

robotized 2D ultrasound

probes with visual

servoing based on

image moments

Thèse soutenue à Rennes
le 25 Mars 2010

devant le jury composé de :
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Chapter 1

Introduction

Robots are machines but dedicated to perform not a unique static task. They are designed

and endowed with a relative monitored freedom in such a way they can deal with dynamic

requirements. Their designed body structure allows them performing different kind of au-

tonomous actions and therefore interacting with their environment with predefined goals.

These interactions can also lead to exchanged forces between the robot and the environ-

ment. Robotic actions are generated by actuators embedded in the robot structure. The

robot can perform an action only if the latter is ordered and well formulated according to

robots’s own language, provided of course that the required action fits and lies within the

robot’s capabilities. This language is that the robot’s actuators understand and thus ac-

cordingly generate an action, that will be transmitted to the robot’s structure. The actions

separately generated by each of the actuators will result in an action at the structure’s end-

element. The robot is servoed to perform a task in its environment, and therefore needs

information about this latter in order to be able to interact with it. Such information are

generally afforded thanks to sensors attached to the structure of the robot. They can be

either proprioceptive or exteroceptive allowing respectively sensing the state of the robot

or sensing that of the environment. The task to be performed by the robot is conceived in

a language different from that understandable by the robot’s actuators. Such task orders

can be formulated, as for examples, by: move to position A then to position B; perform

motion with a certain velocity and then smoothly stop right arriving to a certain position;

grab the door and then correctly fix it in the car body; push the surface with a certain force

and perform back-and-forth motions for polishing; perform welding by following a certain

path; etc. The task orders can not be directly communicated to the robot since the latter’s

actuators do not understand the language with which the ordered task is formulated. The

actuators can perform according to orders formulated only in actuator’s language. A buffer

between the two languages is consequently crucial to translate the orders to be thus under-

stood and then accomplished by the robot. The technical field related to such buffers is well

known by the term Automatic Control in general, when dealing with machines, and more
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Figure 1.1: Sketch about robotics control

particularly by Robot Control when dealing with robots. The sensors provide with robot’s

or environment’s state information that are fed back to the buffer, that then computes the

commands which finally are sent to the robot. A sketch is given in Fig. 1.1.

Depending on kind of the task to be performed by the robot, different types of sensors are

considered. In the case only the proprioceptive sensors, as the robot’s encoders for example,

are used to convey the information relative to the pose of the robot, the servoing technique

is known as Position-based Servoing. Such techniques require prior knowledge about the

considered environment, as a CAD model representing its geometry for instance. They are

prone to errors in the task accomplishment if a change has occurred in a considered part

of the environment. An alternative consists in using exteroceptive sensors, as vision ones

that can enable the robot perceiving the environment with which it is interacting. This

approach is well known as Visual Servoing (VS) technique, that we draw a global scheme

on Fig. 1.2, grossly representing the different involved steps with the corresponding data

flow.

Visual sensors provide an image of the environment, thus reflecting its state. The informa-

tion contained in the image is extracted and then fed back for robot servoing. In the case

the information is directly used to compute the command to the robot, the visual servoing

technique is referred by Image-based visual servoing (IBVS) technique. If however the infor-

mation is processed to be transformed in 3D poses information, that is used to compute the

command, then the visual servoing technique is referred by Position-based visual servoing

(PBVS) one. Otherwise, part of the information is transformed in poses inputs which are

then compounded with other image information to compute the command. In this case we
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Figure 1.2: A typical visual servoing scheme.

refer to Hybrid Visual Servoing technique. Reviews are presented in [41] and [17, 18] . In

visual servoing, the feedback information used for computing the command is referred to

as visual feature.

Robotics has come into being with a main objective to enhance the capabilities of humans

and to afford what the latter could not. It was in fact a follow-up of the development of me-

chanical machines, which at that time already afforded the human with valuable services.

Such machines were however restrained for performing a unique task and were limited in

autonomy. This fueled the desire to make them versatile with a broad range of services and

with as higher as possible autonomy. More, investigations have already been undertaken

to make these machines smart, even with higher skills than human. Much of the efforts

therefore has been, and still are being in an increasing rate, devoted for enhancing the

robots autonomy and capabilities, as we have taken part through this thesis.

Robotics finds applications in numerous areas ranging from, but not limited to, the field

of automotive industry, aerospace, under-water, nuclear, military, and recently in the med-

ical intervention field. The latter represents the field this thesis is mainly targeting. We

introduce this area in Chapter 2. Visual sensors afford robotic systems with perception

of their environment and consequently with more abilities for autonomous actions with
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enhanced safety. Such sensors thus are of great interest, perhaps indispensable, for many

applications of the medical robotics field, where the environment with which the robot is

interacting is typically difficult to model. Possible continual environment’s state changes,

that may occur, make such difficulties stronger. Many of the medical robotic systems use,

indeed, visual sensors, and therefore are endowed with capabilities of interacting with their

environment. Those sensors are generally based on modalities such as optical, magnetic

resonance (MR), X-ray fluoroscopy or CT-scan, ultrasound, etc. We provide in the next

chapter a review about robotic systems guided with these imaging modalities, that we

present in more details for the case of ultrasound, since our work concerns this latter field.

A gap, however, still remains to be addressed before medical robotics become common

place for large applications range, due mainly to the fact that the information provided

by most of such sensors is not yet well exploited in servoing. Efforts are therefore needed

to deal with such issue and investigate how those sensors could be used, their information

exploited and translated in a language understood by the robot (i. e., new modeling along

with visual servoing techniques needs to be developed), so the latter behaves accordingly

and achieves the required medical task. This thesis concerns such objectives, and more

particularly it investigates how 2D ultrasound sensors, through their valuable information,

can be exploited in medical robotic systems in order to afford the latter with enhanced

autonomy and capabilities.

Contributions

Our work concerns the exploitation of 2D ultrasound images in the closed loop of visual

servoing scheme for automatic guidance of a robot arm, that carries at its end-effector a 2D

ultrasound probe; we consider in this work 6 degrees of freedom (DOFs) anthropomorphic

medical robot arms. We develop a new visual servoing method that allows for automatic

positioning of a robotized 2D ultrasound probe with respect to an observed soft tissue [54]

[57] [55], and [56]. It allows to control both the in-plane and out-of-plane motions of the

2D ultrasound probe. This method makes direct use of the observed 2D ultrasound im-

ages, continuously provided by the probe transducer, in the servoing loop (see Fig. 1.3). It

exploits the shape of the cross-section lying in the 2D image, by translating it in feedback

signals to the control loop. This is achieved by making use of image moments, that after

being extracted are compounded to build up the feedback visual features (an introduction

about image moments is given in Chapter 3). The choice of the components of the visual

features vector is also determinant. These features are transformed in a command signal

to the probe-carrier robot. To do so, we first develop the interaction matrix that relates

the image moments time variation to the probe velocity. This interaction matrix is sub-
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Figure 1.3: An overall scheme of the ultrasound (US) visual servoing method using
image moments, with the corresponding data flow.

sequently used to derive that related to the chosen visual features. The latter matrix is

crucial in the design of the visual servo scheme, since it is involved in the control law. We

propose six relevant visual features to control the 6 DOFs of the robot. The method we

develop allows for automatic reaching a target image starting from one totally different,

and does not require a prior calibration step with regard to parameters representing the en-

vironment with which the probe transducer is interacting. It is furthermore based on visual

features that can be readily computed after having segmented the cross-section of interest

in the image. These features do not warp but truly reflect the information conveyed by the

image. They are unlikely to misrepresenting the actual information of an image from which

they are extracted. These features are moreover relatively robust to image noise, which is

of great interest when dealing with the ultrasound modality whose images are, inherently,

very noisy. An image moments-based servoing system, namely the one presented in the

present dissertation, will then be, at its turn, robust to image noise. We will see this in
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Chapter 5.

The method we propose has numerous potential medical applications. First, it can be used

for diagnosis by providing an appropriate view of the organ of interest. As instance, in

[1] only the probe in-plane motions are automatically compensated to keep tubes centered

in the image. However, if the tubes are for example curved, they may vanish from the

image while the robotized probe is manipulated by the operator. Indeed, compensating

only in-plane motions is not enough to follow such tubes. With the method we propose,

however, it would be possible that the probe automatically follows the tubes’s curvatures

thanks to the compensation of the out-of-plane motions. Another potential applications is

needle insertion. Since the method we propose allows to keep the actuated probe on an

organ desired cross-section, it therefore would afford to stabilize an actuated needle with

respect to the targeted organ. This would prevent the needle from eventual bending or

breaking when the organ moves. The assumption and constraint assumed for example in

[38], where the needle is mechanically constrained to lie in the probe observation plane, thus

would be overcome since the system would automatically stabilize the needle in the desired

plane (organ’s slice). Another application is image 3-D registration, where currently in the

Lagadic group we have a colleague who works to exploit this method for that topic.

This thesis brings and states new modeling of the ultrasound visual information with re-

spect to the environment with which the robot is interacting. It is important to notice the

difference from the modeling of optical systems visual information, for example, which can

be found in different literature works. In case of optical systems, like a camera for example,

the transmitted image conveys information of 3D world scenes that are projected on the

image plane. In contrast, a 2D ultrasound transducer transmits a 2D image of the section

resulting from the intersection of the probe observation beam with the considered object.

In practice, the ultrasound beam is approximated with a perfect plane. A 2D ultrasound

probe thus provides information only in its observation plane but none outside of it. Con-

sequently, the modeling in case of optical systems quite differs from that of 2D ultrasound

systems (this contrast is sketched in Fig. 1.4). Most of the visual interaction modeling, and

thus visual servoing methods, are however devoted for optical systems. Therefore, they can

not be applied in case of 2D ultrasound due to the highlighted difference. New modeling

need therefore to be developed in order to design visual servoing systems using 2D ultra-

sound. We first derive the image velocity of points of the cross-section ultrasound image.

This velocity is analytically modeled, and is related as function of the probe velocity. It is

then used for deriving the analytical form of the image moments time variation as function

of the probe velocity. This latter formulae we obtain is nothing but the crucial interaction

matrix required in the control law of the visual servoing scheme. The modeling is developed

and presented in Chapter 3.



11

(a) (b)

Figure 1.4: Difference between an optical system and a 2D ultrasound one in the man-
ner they interact with their respective environments: (a) a 2D ultrasound probe ob-
serves an object, through the cross-section resulting from the intersection of its planar
beam with that object - (b) a perspective camera observes two 3D objects, which reflect
rays that are projected on the camera’s lens. (The camera picture, at the top, is from
http://www.irisa.fr/lagadic/).

Another challenging issue is that the interaction matrix strongly depends on the 3D shape

of the soft tissue with which the robotic system is interacting, when probe out-of-plane mo-

tions are involved. A first resolution that could be proposed is the use of a pre-operative 3D

model, of the considered soft tissue, that would be used to derive the interaction. However,

doing so would arise difficulties along with more challenges. Firstly, the pre-operative model

should be available. This suggest an off-line procedure in order to obtain it. Furthermore,

it would also require to register the pre-operative model with the current observed image.

The above issue is addressed in the present dissertation. Indeed, we develop an efficient

model-free visual servoing method that allows the system for automatic positioning without

any prior knowledge of the shape of the observed object, its 3D parameters, nor its location

in the 3D space. This model-free method efficiently estimates the 3D parameters involved

in the control law. The estimation is performed on-line during the servoing is applied. This

is presented in Chapter 4.



12

The developed methods have been validated from simulations and experiments, where

promising results have been obtained. This is presented in Chapter 5. The simulations

consist in scenarios where a 2D virtual probe is interacting with either a 3D mathemat-

ical model, a realistic object reconstructed from a set of real B-scan ultrasound images

previously captured, or a binary object reconstructed from a set of binary images. The

experiments have been conducted using a 6 DOFs medical robot arm carrying a 2D ul-

trasound probe transducer. The robot arm was interacting with an ultrasound phantom

which, inside, contained a soft tissue object, and also with soft tissue objects immersed in

a water-filled tank.

We finally conclude this document by providing some orientations for prospective investi-

gations.



Chapter 2

Prior Art

The focus of this thesis is robot automatic guidance from 2D ultrasound images. More

precisely, the objective of our investigations is to develop new modeling for image-based

visual servoing. It is therefore necessary to position our work between the former ones that

dealt with robot guidance from 2D ultrasound, and thus the contributions that this thesis

brings can also be contrasted from those of the literature works. This is the scope of the

present chapter. In this dissertation, in fact, we develop new methods aimed at more ef-

fective and broad exploitation of an imaging modality, namely the ultrasound imaging, for

medical robotics control. Consequently, it seems fundamental to first provide an overview

about medical robotics, from the point of view of robotics control, and to introduce medical

robot guidance performed with main imaging modalities. After doing so, we finally can

start dealing in more details with works that investigate the use of the ultrasound images

for robot control.

The remainder of the chapter is organized as follows. We present in the next section a

short introduction to medical robotics, along to human-machine interfaces. These lat-

ter are commonly used for the intercommunication between the clinician and the medical

robotic system for procedure monitoring. We also provide a classification that each of

which reflects a specific manner that, according to, the clinician interacts and orders the

robotic system for task achievements. Subsequently, we introduce the most used imaging

modalities as optical, X-ray and/or CT, MRI, and ultrasound. The ultrasound modality

represents the imaging whose employing, in guiding automatic robotic procedures, is in-

vestigated in the present thesis. Therefore, those remaining imaging modalities are briefly

presented. The examples of literature investigations related to those modalities are pro-

vided only to illustrate their corresponding field. We thus generally cite only one work for

each of those fields, since they are beyond the focus of this thesis. As for works dealing

with ultrasound-based automatic guidance, we finally present and organize them according

to a certain classification, as can be seen later. We afterwards briefly recall the contribu-
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Figure 2.1: Da Vinci robot (Photo: www.intuitivesurgical.com)

tions that this thesis brings to the field of 2D ultrasound-based robotic automatic guidance.

2.1 Medical robotics

Some parts of this section are inspired from [78].

Medical robotics has come into being to enhance and extend the clinician capabilities in

order to perform medical applications with better precision, dexterity, and speed leading

to medical procedures of shortened operative time, reduced error rate, and of reduced mor-

bidity (see [78]); its goal is not to replace the clinician. As examples to illustrate such

objectives, robotic systems could compensate for the surgeon’s hand tremors to remove

them during an intervention, or could be used to carry heavy tools with care. These sys-

tems could assist and provide the clinician with valuable information which are organized

and displayed on screens for visualization. The clinician could interact with the system to

obtain desired information, on which correct decisions can be made. The conveyed infor-

mation have therefore to be pertinent with at the same time not overwhelming the clinician.

Medical robots can be classified according to different ways [78]: by manipulator design

(e. g., kinematics, actuation); level of autonomy (e. g., programmed, teleoperated, con-

strained cooperative control); targeted anatomy or technique (e. g., cardiac, intravascu-

lar percutaneous, laparoscopic, microsurgical); intended operating environment (e. g., in-

scanner, conventional operating room); or by the devices used for sensing the information
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(e. g., camera, ultrasound, MR, CT, etc). An example of a well known medical robot is

shown on Fig. 2.1. Such robot is used for minimally invasive surgical procedures.

In contrast to industrial robots that generally deal with manufactured objects, medical

robots instead interact with human patients. Therefore, much constraints and difficulties

arise when dealing with medical robotics. The security is one of the requirements that med-

ical robotics typically must fulfill. Consequently, such robots are rigorously expected to

possess accuracy, and dexterity. The versatility is also of great interest allowing to perform

a range of robotized medical procedures with minimal changes to the medical room setup.

The robot should not be cumbersome in order to allow the clinical staff unimpeded access

to the patient, especially for the surgeon during the procedure. It can be ground-, ceiling-,

or patient-mounted. Such choice is subject to the tradeoff between the robot size, heavi-

ness, and access to the patient. Sterilization also must be addressed, especially for surgical

procedures. The patient can be in contact with parts of the robot, and consequently all

precautions must be taken in order to prevent any possible contamination of the surgical

field. The common practice for sterilization is the use of bags to cover the robot, and either

gas, soak, or autoclave steam to sterilize the end-effector holding the surgical instrument.

As introduced above, medical robotic systems use mainly visual sensors, whose modal-

ity is chosen depending on the kind of the application to perform. Each modality presents

specific advantages but also suffers from drawbacks. Soft tissues, for example, are well im-

aged and their structures well discriminated with the Magnetic Resonance Imaging (MRI).

This modality is extensively used to detect and then localize tumors for their treatment,

and is subject to different investigations to exploit it for robotized tumor treatment, where

the robot could assist needle insertion for better tumor targeting (e. g., [30]). Such imaging

is afforded by scanners of high intensity magnetic field. Therefore, ferromagnetic materi-

als exposed to such field undergo intense forces and could became dangerous projectiles.

Consequently, common robotic components do not apply since they are generally made

from such materials, and are therefore precluded for this imaging modality. Moreover, the

streaming rate at which the image are provided by the current MRI systems is relatively

low to envisage real-time robotic applications. As for bones, they are well imaged with

X-ray modality (or CT). Such imaging has been therefore the subject to investigations and

has found its use, for example, in robotically-assisted orthopedic surgery as spine surgery,

joint replacement, etc. This modality can, however, be harmful to the patient body due to

its radiation. Optical imaging sensors have also been considered. One of the most medical

application using such sensors concerns endoscopic surgery, where generally a small camera

is carried and passed inside the patient’s body through a small incision port, while two or

more surgical instruments are passed through separate other small incisions (see Fig. 2.2).

The camera is positioned in such a way it gives an appropriate view of the surgical in-
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Figure 2.2: Example of endoscopic surgery robot (Da Vinci robot) in action. (Photo:
http://biomed.brown.edu/.../Roboticsurgery.html)

struments. The surgeon thus can handle those surgical instruments and can observe their

interaction with soft tissues thanks to the conveyed images by the camera. Such proce-

dures have already been robotized, where each instrument is separately carried by a robot

arm. Both instruments are remotely operated by the surgeon through haptic devices. This

kind of robotic systems is already commercialized, as the one shown in Fig. 2.2, and these

robotized procedures have become commonplace in some medical centers. Research works

are however still being conducted in order to automatically assist the surgeon, by visually

servoing the instrument-holder arms (e. g., [47], [60]).

Another application of optical systems which new works have started to investigate is the

microsurgery robotics (e. g., [31]). It is introduced in Section 2.2. Other applications could

be considered but are however extremely invasive (e. g., [36], [7]). Therefore, the range

of potential applications based on optical imaging sensors seems to be restrained to few

applications as endoscopic surgery, wherein at least two incisions are required, leading to

possible hemorrhage and trauma for the patient. Bleeding can also hinder and, perhaps,

preclude visualization if blood encounters the camera lens, thus compromising the proce-

dure. Optical sensors require free space up to the region to visualize, which represents a

strong constraint that generally could not be satisfied when dealing with medical proce-

dures; where the camera is inside the body and encounters soft tissue walls from either

sides. The camera also needs to be passed inside the body up to the region to operate

on, which is however not always possible for some regions. We can note indeed that, as

instance, most of endoscopic procedures are laparoscopically performed (i.e., through the

abdomen), and thus the camera along with the instruments is passed through a patient
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(a) (b)

Figure 2.3: An example of a typical robotic system teleoperated through a human-
machine interface: three medical slave robot arms (left) are teleoperated by a user
thanks to a master handle device, and the procedure is monitored by the user through
display screens (right). (Photo: http://www.dlr.de/).

body’s region that is relatively less complicated in term of access since, for example, the

fewer presence of bones. In contrast, MR, X-ray, and ultrasound imaging modalities provide

internal body images without any incision, and thus circumvent the constraints imposed

when using optical systems and their effects. But as introduced above, MRI and X-ray

present drawbacks. The former modality currently does not provide images in real-time,

and precludes ferromagnetic materials. The latter is harmful. Ultrasound modality, how-

ever, provides internal body images noninvasively and is considered healthy for patient.

More particularly, 2D ultrasound provides images with high streaming rate. This latter

trait is of great interest when dealing with robot servoing for real-time applications. This

thesis concerns this modality, where it aims at addressing the issue of exploiting 2D ultra-

sound images for automatically performing robotized medical applications.

During a medical procedure, it is crucial that the clinician is present to supervise and

monitor the application. Therefore the clinician should be able to order and interact with

the robot. This is performed through an interface well known by the term of Human-

machine interface.

2.1.1 Human-machine interfaces

Human-machine interfaces (HMI) play an important role in medical robotics, more partic-

ularly they allow the clinician for supervising the procedure. An HMI is grossly composed

of a display screen on which different information are displayed, and a handle device with

which the clinician can send orders to the robotic system. Such device could be a joystick,
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or simply a mouse with which hand clicks are performed on the display screen. The clin-

ician thus can interactively send the orders to the robot through the HMI, and inversely,

can receive information about the clinical field’s state (see Fig. 2.3). However, the clinician

should receive important and precise information, while at the same time not be over-

whelmed by such data in order to take decisions based only on pertinent information. An

issue is the ability of the system to estimate the imprecision of the conveyed information,

such as registration errors, in order to prevent the clinician making decisions based on

wrong information [78]. An example of a human-machine interface developed for roboti-

cally assisted laparoscopic surgery is presented in [61].

2.1.2 Operator-robot interaction paradigms

Depending on the configuration reflecting the manner the operator commands the robotic

system, different paradigms could be considered, as those presented in the following.

Self-guided robotic system paradigm

In such a configuration, the robot autonomously performs a series of actions after a clini-

cian had previously indicated required objectives. That operator is in fact out-of-loop with

regard to the interaction of the robot with its environment, except for restrained actions

such as monitoring the development of the procedure and defining new objectives for the

robot, or stopping the procedure. Endowed with such a paradigm, a robotic system could

afford with valuable services that otherwise could not be performed. Such a system re-

quires therefore intelligent closed-loop servoing techniques to enable the robot undertaking

autonomous actions, especially when interacting with complex environments. The servoing

techniques developed through this thesis are ranged mainly within this paradigm class.

In contrast to this configuration, the below presented paradigms consist is the case where

the operator is involved within the interaction loop. Such configurations can therefore be

considered, with regard to the task to perform, belonging to the open-loop servoing classes.

Haptic interfaces: master-slave paradigm

Haptic interface systems have brought pertinent assistance for medical interventions. Typi-

cal systems consist of robot arms that can carry different variety of medical instruments (see

Fig. 2.3 top). By handling master devices, the clinician manipulates the instrument carried

by the robot end-effector (see Fig. 2.3 bottom). The clinician can remotely manipulate

the robot, and can feel what is being done thanks to reflected forces from the instrument
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Figure 2.4: Cooperative manipulation: a microsurgical instrument held by
both an operator and a robot. Device, developed by JHU robotics group,
aimed at injecting vision-saving drugs into tiny blood vessels in the eye (Photo:
http://www.sciencedaily.com).

(e. g., [49]). Force sensors attached between the carried instrument and its holder esti-

mate the forces applied on the manipulated patient’s tissue. The forces encountered by

the instrument are sensed, scaled, and then sent to the master handle. This latter moves

according to these sent forces, and thus it reflects the sensed forces to the clinician who is

operating on it. The clinician therefore can feel the sensed forces and consequently can be

aware about the effects of the interaction between the instrument and the patient’s tissue.

Inversely, the forces applied by the clinician on the master handle are scaled, transmit-

ted, and then transformed in motions of the slave instrument. Intercommunicating forces

as such allows to effectively slowing down abrupt motions that could be the result from

backlash movements of the operator, and to attenuate hand tremor which can be of great

interest for surgical procedures. It however does not allow the operator direct access to the

instrument, which thus can not be freely manipulated (see [78]).

One known application of the master-slave paradigm concerns endoscopic surgery. Such

procedures (they have been introduced above), whether robotically or freehand performed,

suffer from low dexterity because of the effect of the entry port placement, through which

the surgical instrument or the camera holder is passed. Another application concerns mi-

crosurgery robotics (it is introduced in Section 2.2). It suffers however from the fact that

current master-slave systems are not reactive to small forces.
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Figure 2.5: Hand-held instrument for microsurgery. (Photo:
http://www3.ntu.edu.sg/).

Cooperative manipulation

In this case, both the clinician and the robot hold the same instrument, e. g. [31], (see

Fig. 2.4). This paradigm keeps some advantages of the master-slave one, since it allows

effectively slowing down abrupt surgeon’s hand motions, and attenuating surgeon’s hand

tremor. In contrast to master-slave, this paradigm allows the surgeon to directly manip-

ulate the instrument, and be more closer to the patient, which is really appreciated by

surgeons [78].

Hand-held configuration

Another configuration consists in hand-held instruments (see Fig. 2.5), that find success in

hand tremor cancellation (e. g. [85]). Embedded inside the instrument are inertial sensors

that detect tremor motions and speed which both, by low amplitude actuators, are then

inertially canceled. The advantage of such a configuration is that beyond of leaving the

surgeon completely unimpeded, it lets the operating room uncumbersome, with less setup

changes. However, heavier tools are not supported and the instrument can not be left

stationary in position [78].

After we have presented an introduction to the medical robotic field, we now survey

exploitation of main imaging modalities in guiding such systems. We first introduce med-

ical robotic systems guided with optical images. Then, we present robotic guidance with

X-ray (or CT-scan) and MRI imaging modality, respectively. They are discussed briefly,

such that we present only few examples for illustration, since they are beyond the scope

of this thesis. Finally, we consider guidance using the ultrasound modality. We discuss it

with more details, since it represents the focus of this thesis. In particular, we provide a
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Figure 2.6: Microsurgery robotics: micro-surgical assistant workstation with retinal-
surgery model. (Photo: http://www.cs.jhu.edu/CIRL/).

detailed survey on works that are investigating the exploitation of 2D ultrasound imaging

for automatic guidance of medical robotic systems, as the work presented in this disserta-

tion.

2.2 Optical imaging-based guidance: microsurgery

robotics

Since endoscopic robotics, introduced above in Section 2.1, have become commonplace in

the medical field, only microsurgery robotics is considered in this section. Microsurgical

robotics is nothing but surgical robotics related to tasks performed at a small scale, e. g.

[31], (see Fig. 2.6). The typical sensor used to provide visual information about the soft

tissue environment is the microscope. In contrast to free hand performed microsurgery,

robots enhance the surgeon capabilities for performing tasks with fine control and precise

positioning. In many cases, microsurgical robots are based on force-reflecting master-slave

paradigm. The clinician remotely moves the slave by manipulating the master and applying

forces on it. Inversely, the forces encountered by the slave are scaled, amplified, and sent

back to the master manipulator that moves accordingly. The operator thus can feel the

encountered forces, and therefore is aware about the forces applied on the manipulated soft

tissue. Furthermore, this configuration allows to produce reduced motions on the slave.

Accordingly, this paradigm considerably prevents the manipulated soft tissue from possible

damages that can be the result of abrupt operator’s hand motion with/or high applied

forces. This configuration however suffers from two main disadvantages. One disadvantage

consists in the complexity and the cost of such systems, since they are composed of two

main mechanical systems: the master and the slave. Also, such a configuration does not
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Figure 2.7: ACROBAT robot in orthopaedic surgery aimed at hip reparation. (Photo:
http://medgadget.com).

allow the clinician directly manipulate the instrument [78]. Micorsurgery robotics finds

application, as instance, in the domain of ophthalmic surgery (e. g., [31]).

2.3 X-ray-based guidance

A well-known application of X-ray imaging is orthopaedic surgery. In orthopaedic surgery

robotics (see Fig. 2.7), the surgeon is assisted by the robot in order to enhance the proce-

dure performance. As in knee or hip replacement, rather than the bone is manually cut, it

is automatically performed by the robot, under the supervision of the surgeon. This allows

to effectively cut the bone in such a way to appropriately machine the desired hole for the

implant. Preoperative x-ray images provide key 3D points used for planning a path that

the robot will then follow during the cutting procedure.

Since bones are easily well imaged with computed X-ray tomography (CT) or X-ray flu-

oroscopy modalities, the employed visual sensors are based on these modalities. During

the surgical procedure, the patient’s bones are attached rigidly to the robot’s base with

specially designed fixation tools. The image frame pose is estimated either by touching

different points on the surface of the patient’s bones or by touching preimplanted fiducial

markers. The surgeon manually brings and position the robot surgical instrument at the

bone surface to operate on. Then, the robot automatically moves the instrument to cut the

desired shape, while in the same the robot computer controls the trajectory and the forces

applied on the bones. Since security must be rigorously addressed in surgical robotics,
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different checkpoints are predefined in order to allow the surgical procedure to be restarted

if it was prematurely stopped or paused for whether reasons.

For better security of bone machining, the presented robotic system configuration can be

enhanced with the constrained hand guiding configuration. The robot is constrained by

the computer so that the cutter remains within a volume to be machined [42].

One of the first prototype of orthopaedic surgery robotics was developed in the late 1980’s,

named ROBODOC system [77], and its first clinical use was in 1992 [78]. A similar robot

is shown in Fig. 2.7. Nowadays, hundreds of orthopaedic robots are present in different

hospital centers, and over thousands of surgical operations have been performed with such

systems. However, before a medical robot system is clinically used, battery of tests have

to be performed to validate the system and thus, ensure total security of the patient and

the clinician staff during the surgical operation. Of course, the system must demonstrate

enhancements in the surgical procedure performance as precision, dexterity, etc, to justify

its use rather than the surgical operation is manually performed.

X-ray images have also been considered for image-based visual servoing. A robotic

system for tracking stereotactic rode fiducials within CT images is presented in [24]. The

image consists in a cross-section plane wherein the rods appear as spots. Those rods are

radiopaque in order to ease their visualization in the X-ray (CT) images. The objective is

to automatically position the robot in such a way the spots are kept at desired positions

in the image. To do so, an image-based visual servoing was used, where the spots image

coordinates constitute the feedback visual features. From each new acquired image the

spots are extracted to update the actual visual features, which then are compared to that

of the desired configuration. The according inferred error is used to compute the control

law which, at its turn, is ordered to the robot in form of control velocity. Since the jaco-

bian matrix relating the changes of the visual features to the probe velocity is required,

that related to the spots image coordinates is presented in [24]. To do so, the rodes are

represented with 3D straight lines whose intersection with the image plane is analytically

formulated. The system has been tested for small displacements from configuration where

the desired image related to desired spot’s coordinates is captured. The issue investigated

in [24], the modeling aspect more precisely, in fact can be ranged within the scope of this

thesis. Indeed, in [24], the image used in the servoing loop provides a cross-section sight

of the environment with which the robot is interacting. Similarly, this thesis deals with

cross-section images in the servoing loop, except that these images are provided by a 2D

ultrasound transducer. A big difference is that only simple geometrical primitives, namely

straight lines, are considered in [24], while this thesis deals with whatever-shaped volume

objects. We present in this document a general modeling method, that, indeed, can be
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(a) (b)

Figure 2.8: MRI-based needle insertion robot (a) High field MRI scanner (Photo:
http://www.bvhealthsystem.org) - (b) MRI needle placement robot [30] (Photo:
www2.me.wpi.edu/AIM-lab/index.php/Research).

applied to the simple case of straight lines, as described in Section 3.7.3.

2.4 MRI-guided robotics

MR imaging systems, as X-ray ones, provide in-depth images of observed elements. How-

ever, MRI systems provide images non-invasively and thus are considered not harmful for

patient body. Moreover, they provide well contrasted images of soft tissues. This advan-

tages stimulated different investigations in order to exploit this modality for automatically

guiding robotized procedures. In [30], for example, a pneumatically-actuated robotic sys-

tem guided by MRI for needle insertion in prostate interventions is presented. A 2 DOFs

robot arm is used to automatically position a passive stage, on which a manually-inserted

needle is held [see Fig. 2.8(b)]. Inside the room of a MRI scanner [e. g., see Fig. 2.8(a)],

the patient is lying in a semi-lithotomy position on a bed. Both the robot arm holder,

a needle insertion stage, and the robot controller are also inside the scanner room, while

the surgeon is in a separated room to monitor the procedure through a human machine

interface. The main issue while dealing with a MRI scanner consists in the difficulty for the

choice of compatible devices. Due to the high magnetic field in the MRI scanners, ferro-

magnetic or conductive materials are precluded. Such materials can for instance either be

dangerously projected, cause artifacts and distortion in the MRI image, or create heating

near the patient’s body. Most of the standard available devices are however made from

either materials, and therefore are not compatible with the MR modality.
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It is proposed in [30] the use of pneumatic actuators, that have been tailored since the non

total MRI-compatibility at their original state. The manipulator is located near the bed

in the scanner room, for the interaction with the patients body, where its end-effector pose

is detected thanks to attached fiducial markers extracted from the observed MRI image.

In order to avoid electrical signals passing through the scanner room and thus keeping the

image quality, the robot controller is placed in a shielded enclosure near the robot manipu-

lator, and the communication between the control room and the controller is through a fiber

optic Ethernet connection. A PID control law is used for the pneumatic actuators servoing.

During the procedure, the surgeon indicates both a target and a skin entry point. Ac-

cordingly, the robot automatically brings the needle tip up to the entry point with a cor-

responding orientation. Subsequently, through the slicers of the human-machine software

interface, the surgeon monitors the manual insertion of the needle, which then slides along

its holder axis to reach the target. The use of the MR images is limited to detect the target

and needle tip locations. The automatic positioning of the robot up to the entry point is

afforded with a position-based visual servoing. Such an approach however is well-known for

its relatively low positioning accuracy, if compared for example to the image-based visual

servoing. The main contribution presented in [30] seems in fact consisting in the design of

a MRI-compatible robotic system.

The propulsion effect that a magnetic field can apply on ferromagnetic materials has

been exploited to perform automatic positioning and tracking of untethered ferromagnetic

object, using its MRI images in a visual servoing loop [28]. The MR field is used both to

measure the position of the object and to propel the latter to the desired location. Prior

that the procedure takes place, a path through which the object has to move is planned

off-line. It is represented by successive waypoints to be followed by the object. During

the procedure that is performed under a MR field, the actual position is measured and

compared to the desired one of the planned path, and the difference is sent to a controller

that uses it to compute the magnetic propulsion field to be applied on the object. That

propulsion is expected to move the object from the actual position to that desired. Ex-

perimental results are reported, such that the system was tested using both a phantom

and a live swine under general anesthesia. The feedback was updated at a rate of 24 Hz

for the phantom case. The in-vivo objective was to continuously track and position the

object in such a way it travels within and along the swine’s carotid artery by following the

pre-planned path. The object consisted in a 1.5 mm diameter sphere made of chrome and

steel. The proposed visual servoing method consists however in a position-based one. As

mentioned just above, it is well-known for its relatively low positioning accuracy.
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The limitation that MRI systems currently suffer from consists (to our knowledge) in

the low streaming rate at which the images are provided. This considerably hinders the

exploitation of such images for real-time robotic guidance applications. Image-based visual

servoing, for example, requires that the update along with the processing of the image

has to be performed within the rate at which the robot operates. The 2D ultrasound

modality, nevertheless, beyond of being non-invasive, provides the images at a relatively

high streaming rate. This makes such a modality a relevant candidate for real-time robotic

automatic-guidance applications where in-depth images are required.

2.5 Ultrasound-based guidance

Ultrasound imaging represents an important modality of medical practice, and is being

the subject of different investigations for enhanced use. Ten years ago, one out of four

imaging-based medical procedures was performed with this modality and the proportion is

increasing for different applications in the foreseeable future [84].

We report in this section investigations that deal with automatic guidance from the ul-

trasound imaging modality. In particular, we survey in more details works dealing with

the use of 2D ultrasound images for automatically guiding robotic applications, as it is the

scope of our work presented in this document. The remainder of this section is organized

as follows. First, in Section 2.5.1, we present an example of an investigation about the

use of the ultrasound modality to simulate and then to plan the insertion of needle in soft

tissue. Then, we present in Section 2.5.2 works that exploit 3D ultrasound images to guide

surgical instruments, where the objective was either positioning or tracking. Afterwards,

the works that deal with guidance using 2D ultrasound are surveyed. We classify them into

two main categories depending on whether the 2D ultrasound image is only used to extract

and thus to estimate 3D poses of features used in position-based visual servoing, or the 2D

ultrasound image is directly used in the control law. The former, namely 2D ultrasound-

guided position-based visual servoing, is presented in section 2.5.3, while the latter, namely

2D ultrasound-guided image-based visual servoing, is presented in Section 2.5.4.

2.5.1 Ultrasound-based simulations

In [23], a simulator of stiff needle insertion for 2D ultrasound-guided prostate brachyther-

apy is presented. The objective is to simulate the interaction effect between the needle and
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the tissue composed of the prostate and its surrounding region. For that, the forces, applied

by the stiff needle on the tissue, and the tissue are modelled by making use of the infor-

mation provided by the ultrasound image. A non-homogeneous phantom, composed from

two layers and a hollow cylindrical object, has been made up to mimic a real configuration.

The external and internal layers are designed to mimic respectively the prostate and its

surrounding soft tissue, while the cylinder is designed to simulate the rectum. To mimic

prostate rotation around the pubic bone, the internal layer is composed of a cylinder, with

a hemisphere at each end, connected to the base of another cylinder. The elasticity of each

of the two layers is represented with Young’s moduli and Poisson ratios. While the Poisson

ratios are pre-assigned, the objective is to estimate the Young’s moduli of each layer. The

forces are fitted with a piece-wise linear model of three parameters, that are identified using

Nelder-Mead search algorithm [3]. When the needle interacts with the tissue, the displace-

ments of this latter are measured from the images provided by the ultrasound probe, using

time delay estimator with prior estimates (TDPE) [87, 88], without any prior markers in-

side the tissue. These measurements together with the probe positions and the measured

forces are used to estimate the Young’s moduli and the force model parameters. The soft

tissue displacements are then simulated by making up a mesh of 4453 linear tetrahedral

elements and 991 nodes, using the linear finite element method [89] with linear strain.

2.5.2 3D ultrasound-guided robotics

In the ultrasound modality, in fact, we distinguish two main modalities, that are 3D ultra-

sound and 2D ultrasound modalities. Works related to the former modality are presented

in this section, while those related to the latter are subsequently considered. In the fol-

lowing, we present works where 3D ultrasound images have been exploited for automatic

positioning of surgical instruments or for tracking moving target.

3D ultrasound-based positioning of surgical instrument

Subsequently in [75] and [62], a 3D ultrasound-guided robot arm-actuated system for au-

tomatic positioning of surgical instrument is presented (see Fig. 2.9). The second work

follows-up and improves the system streaming speed of the first work, where 25 Hz rate is

obtained instead of 1 Hz streaming rate at which the first prototype operated. The pre-

sented system consists of a surgical instrument sleeve actuated by a robot arm, a motionless

3D ultrasound transducer, and a host computer for 3D ultrasound monitoring with the cor-

responding image processing and for robot controlling. The objective was to automatically

position the instrument tip at a target 3D position indicated in the 3D ultrasound image
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(a) (b)

Figure 2.9: 3D ultrasound-guided robot. (a) Experimental setup for robot tests - (b)
Marker attached to the instrument tip. (Photos: (a) taken from [62], and (b) from
http://biorobotics.bu.edu/CurrentProjects.html).

volume, from which the current instrument tip 3D position is estimated. A marker is at-

tached to the tip of the instrument in order to detect its 3D pose with respect to a cartesian

frame attached to the 3D ultrasound image volume. This marker consists of three ridges

of same size surrounding a sheath that fits over the instrument sleeve [see Fig. 2.9(b)]. An

echogenic material is used to coat the marker in order to improve the visibility of this latter,

and thus to facilitate its detection. The ridges are coiled on the sleeve in such a way they

form successive sinusoids lagged by 2π/3 rad. From the 3D ultrasound volume, a length-

wise cross-section 2D image of the instrument shaft along with the marker is sought to then

be extracted. In such 2D image, the ridges appear as successive crests whose respective

distances from a reference point lying on the shaft are used to determine the instrument

sleeve 3D pose. For image detection of the crest, the extracted image is rotated in such a

way the instrument appears horizontal, and then a sub-image centered on the instrument

is extracted to be super-sampled by a factor of 2 using linear interpolation. The error

between the estimated instrument position and the target one is fed back, through the host

computer, to a position-based servo scheme based on a proportional-derivative (PD) law,

with which the robot arm is servoed to position the instrument tip to the specified target.

Experiments have been carried out using a stick immersed in a water-filled tank. The stick

passes through a spherical bearing to mimic the physical constraints of minimally invasive

surgical procedures, where the instrument passes through an incision port and consequently

its movements are constrained accordingly [see Fig. 2.9(a)]. With a motion range of about

20 mm of the instrument, it is reported that the system performed with less than 2 mm of

positioning error.
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Figure 2.10: An estimator model [86] for synchronization with beating hear mo-
tions using 3D ultrasound is tested with the above photographed experimental setup.
(Photo: taken from [86]).

Synchronization with beating heart motions

In [86], an estimator model for synchronization to beating heart motions using 3D ultra-

sound imaging is presented. The objective is to predict mitral valve motions, and then

use that estimation to feed-forward the controller of a robot actuating an instrument,

whose motions are to be synchronized with the heart beatings. This could allow the sur-

geon to operate on the beating heart as on a motionless organ. Moreover, such a system

could overcome, for example, the requirements of using a cardiopulmonary bypass, and

thus would spare patients its adverse effects. It was assumed that the mitral valve peri-

odically translates along one axis, while its rotational motions have been neglected. The

translational motions are then represented with a time varying Fourier series model that

allows for rate and signal morphology evolving over time [63]. For the identification of the

model parameters, three estimators have been tested: an Extended Kalman filter (EKF),

an autoregressive model with least squares (AR), and an auto regressive model with fading

memory estimator. Their performances are assessed with regards to prediction accuracy

of time-changing motions. From conducted simulations, it was noted that the EKF out-

performed the two other estimators, by more mitigating the estimation error especially

for motions with rate changing. Experiments have been conducted on an artificial target

immersed in a water-filled tank (see Fig. 2.10). The target was continuously actuated in

such a way to mimic the heart mitral valve beating motions, at 60 beating per minute av-

erage rate for constant motions. A position-based proportional-derivative (PD) controller

is employed for robot servoing. The system was submitted to both constant and changing

rate motions. As concluded from the simulations, it was noted from the experiments that
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the EKF provided well predictions of the beating heart motions compared to the others

estimation approaches, with an obtained prediction error of less than 2 mm. This error is

of about 30% less than that obtained with the two other estimators. In other but separate

works, [36] and [7], low tracking errors have been obtained but, however, that was achieved

using extremly invasive systems. In the former work, fiducial markers attached to the heart

are tracked by employing a high speed eye-to-hand camera of 500 Hz streaming rate; the

chest is being opened in such a way the fiducial points can be viewed by that external cam-

era. The information conveyed by this latter are used to visually servo a robot arm that

accordingly has to compensate for heart motions. As for the latter work, sonomicrometry

sensors operating at 257 Hz streaming rate have been sutured to a porcine heart. Currently,

3D ultrasound modality suffers from low imaging quality along with time delayed streaming

of the order of 60 ms, which could account for the relatively lower obtained performances

compared to those two works (i. e., [36] and [7]).

2.5.3 2D ultrasound-guided position-based visual servoing

As has been already highlighted in this document, the 2D ultrasound imaging systems

provide images at a sufficient rate to envisage real-time automatic robotic guidance. In

the following, we present a survey of works that investigated the use this imaging modal-

ity in guiding automatic medical procedures. In particular, this section is dedicated to

works where the image is used only in position-based visual servoing schemes. We classify

these works according to the targeted medical procedure. We distinguish: kidney stones

treatment; brachytherapy treatment; and tumor biopsy and ablation procedure.

Kidney stones treatment

An ultrasound-based image-guided system for kidney stone lithotripsy therapy is presented

in [48]. The lithotripsy therapy aims to erode the kidney stones, while preventing collateral

damages of organs and soft tissue of the vicinity. The stones are fragmented thanks to high

intensity focused ultrasound (HIFU). The HIFU transducer extracorporeally emits high

intensive ultrasound waves that strike the stones. The crushed stones are then naturally

evacuated by the patient through urination.

For the success and effectiveness of the procedure, that can lead to shortened time of pa-

tient treatment and to spare the organs of the vicinity from being harmed, it is important

to keep the stone under the pulse of the HIFU throughout the procedure. However, the

kidney is subject to displacements caused by patient respiration, heartbeat, etc, and con-

sequently the kidney stone may get out of the beam focus.
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The objective of the proposed system is to keep track of the kidney stone under the HIFU

transducer, throughout the lithotripsy procedure, by visual servoing using ultrasound im-

ages. The system is mainly composed of two 2D ultrasound transducers, a HIFU transducer,

a stage cartesian robot whose end effector holds the HIFU transducer rigidly linked to the

two ultrasound transducers, and a host computer. This latter monitors the visual servoing

and the data flow through the different corresponding steps. The end-effector can apply

translational motions along its three orthogonal axes in the 3D space. The two ultrasound

probes, whose respective beam planes are orthogonal to each other, provide two ultrasound

B-scan images of the stone in the kidney. By image processing on both the two images,

the stone is identified and its position in the 3D space is determined. The inferred location

represents the target 3D position on which the HIFU focal has to be. The error, between

the desired position and the current position of the HIFU transducer, is fed back to the

host computer that derives the control law. The command is sent to the cartesian robot

that moves accordingly along its three axes in order to keep the kidney stone under its

focus (i. e., thus the focus of the HIFU).

Ultrasound-guided brachytherapy treatment

A robot manipulator guided by 2D ultrasound for percutaneous needle insertion is pre-

sented in [6]. The objective is to automatically position the needle tip at a prostate desired

location in order to inject the radioactive therapy seeds. The target is manually selected

from a preoperative image volume. It is chosen in such a way (which is the goal of the

brachytherapy) the seeds have as important as possible effect on the lesion while at the

same time not harming the surrounding tissues. The robotic system is mainly composed of

two robotic parts corresponding respectively to a macro and a micro robotic system, and of

a 2D ultrasound probe for the imaging. The macro robot allows to bring and position the

needle tip at the skin entry point, while subsequently the micro robot performs fine motions

to insert and then position the needle tip at the desired location. By visualizing the volume

image of the prostate, displayed on a human-machine interface, the surgeon indicates to

the robot the target location where the seeds have to be dropped (see Fig. 2.11). Before

that, the volume is first made up from successive cross-section images of the prostate.

While the robot’s end effector is rotating the 2D ultrasound probe, the latter scans the

region containing the prostate by acquiring successive 2D ultrasound images at 0.7 degree

intervals. The needle target position is expressed with respect to the robot frame, thanks

to a previous registration of the volume image. A position-based proportional-integral-

derivative (PID) controller is then fed back with the error between the needle tip current

position, measured from the robot encoders, and the desired one. The command is sent to
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Figure 2.11: Ultrasound volume visualization through a graphical interface. Three
sights (bottom) of an ultrasound volume are respectively provided by three slicer
planes (top). (Photo: taken from [6]).

the robot, that moves accordingly to position the needle tip at the target location. The

proposed technique however is position-based, where the image is only used to determine

the target location. Compared therefore to image-based servoing techniques, this method

can be considered as an open-loop servoing method. As such, it has the drawback of not

compensating displacements of the target that can occur during the servoing. Such dis-

placements can be caused, as instance, by patient’s body motion resulting from breathing,

or by the prostate tissue shifting due to the forces it undergoes from the needle during the

insertion. This lack of observed images in the servoing scheme could account for the errors

obtained in the conducted experiments. The needle deflection is also not addressed. The

deflection is mainly due to the forces endured by the needle during the insertion.

Ultrasound-guided procedures for tumor biopsy and ablation

A 2D ultrasound-guided computer-assisted robotic system for needle positioning in biopsy

procedure is presented in [58]. The objective is to assist the surgeon in orienting the nee-

dle for the insertion. The system is mainly composed of a robot arm, a needle holder

mounted on the robot’s end-effector, a 2D ultrasound probe, and a host computer. The

needle can linearly slide on its holder. Firstly, the eye-to-hand 2D ultrasound probe is

manually positioned and oriented in order to have an appropriate view of the region to be

targeted. It is then kept motionless at that configuration throughout the procedure. The
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observed images are continuously displayed through a human machine interface on which

the surgeon indicates the target position to be reached by the needle tip. Subsequently, the

surgeon also indicates the patient’s skin entry point, through which the needle will enter

to reach the target. A 3D straight line trajectory is planned to then be performed by the

needle tip, starting from the skin entry point to reach the target point. That trajectory

is determined from the 3D coordinates of those selected two points (the entry and target

point) after being expressed in an appropriate frame. The robot automatically brings the

needle tip to the patient’s skin entry point, in such a manner the direction of the needle

intersects the target point (i.e., the needle is collinear with that straight line). The active

robotic assistance ends at this stage, where the surgeon then manually inserts the needle

by sliding it down to reach the target, while in the same time observing the corresponding

image displayed in the interface screen. Experiments have been conducted in ideal con-

ditions, where the target consists of a wooden stick immersed in water-filled tank. The

ultrasound image is only used to determine the two target points, but is not involved in the

servoing scheme. Errors of a millimeter order had been reported. Since the experiments

are conducted in water, the needle does not undergo forces, which is however not the case

in clinical conditions, due as instance to the interaction with soft tissue. Such forces can

cause deflection of the needle, which had also been highlighted in that work.

Combining 2D ultrasound images to other imaging modalities could enhance the qual-

ity of the obtained images. In [29], an X-ray-assisted ultrasound-based imaging system for

breast biopsy is presented. The principle consists in combining stereotactic X-ray mam-

mography (SM) with ultrasound imaging in order to detect as well as possible the lesions

location, and then be able of harvesting relevant samples for the biopsy. The X-ray modal-

ity provides images with high sensitivity for most lesions, but is not as safe and fast as

2D ultrasound. The presented procedure begins by first keeping motionless the patient

tissue for diagnosis, by using a special apparatus. A 2D ultrasound probe scans that region

of interest with constant velocity by acquiring successive 2D ultrasound images at similar

distance intervals. A corresponding 3D volume is made up from those acquired images,

and interactively displayed through a human-machine interface. A clinician can then in-

spect the volume, by continuously visualizing its cross-section 2D ultrasound images. This

is performed by sliding a cross-sectional plane. Any detected lesion can be indicated to

the host computer by mouse hand clicking (a prior registration of the 3D volume and the

tissue is assumed to be already performed). Then, both the 2D ultrasound probe and

the needle guide are positioned in such a way they are aligned on the indicated lesion to

biopsy. Subsequently, the needle is automatically inserted trough the tissue to target the

lesion, while at the same time being monitored by the clinician that observes the corre-

sponding 2D ultrasound image. Another image volume of the region of interest is taken in
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order to verify if the needle has well and truly targeted the lesion, by means of a similar

acquisition-construction-visualization process detailed above. Combining the SM modality

to the ultrasound one, the system precision is claimed to be increased.

An ultrasound-guided robotically-assisted system for ablative treatment is presented in

[11]. The objective is to assist the surgeon for such a medical procedure, by firstly affording

a relevant view of the lesion within the soft tissue to facilitate its detection with enhanced

precision. Then, it would consist in robotizing the needle insertion for accurate targeting,

rather than doing it manually. The setup is composed of a freehand-actuated conventional

2D ultrasound probe, a needle for the insertion actuated by a 5 DOFs robot arm, and a host

computer for the monitoring of the application. The 2D ultrasound probe is handled by a

clinician and swept to take a 3D scan of the region of interest, by continually acquiring suc-

cessive 2D ultrasound images. Thanks to a marker attached to the probe, the path followed

by this latter along with the recorded images is intra-operatively registered to reconstruct

a corresponding 3D ultrasound volume. This volume is then interactively explored and

visualized by the clinician for inspection of the region of interest, and thus detection of

any possible tumors. The image point position of a detected lesion accompanied with a

patient’s skin entry point is manually indicated by the clinician, and then transmitted to

the host computer. An algorithm was developed for aligning the direction of the needle,

in such a way it has to perform a 3D straight line to reach the target tumor location from

the skin entry point. The robot then automatically brings the tip of the needle up to the

entry point, while in the same time performing the alignment, and finally the needle is

inserted to reach the target location. Experiments have been carried out both on a calf

liver embedded with an olive for tumor mimicking and on a set of 8 mm of diameter pins

immersed in water-filled tank. According to the pin experiments, it is reported that the

system performed with an accuracy of about 2.45 mm with 100% of success rate.

Similarly, but with improvements with respect to the manner the successive 2D ultrasound

images are acquired then registered, another work is presented in [10]. It is proposed to hold

the 2D ultrasound probe by a second robot arm, rather than doing it by free-hand. A scan

performed robotically is expected to result in a more better 3D volume image quality, in

alignment of the successive slices and in consistency of distances between successive slices,

than if it would has been done free-hand. To compare the scan performance whether it is

robotically or free-hand performed, experiments have been conducted using a mechanical

phantom composed of four pins. An electromagnetic tracker has been attached to each

of the ultrasound probe and the needle guide robot tip, for extraction of their respective

3D poses with respect to a base frame. This latter is attached to a tracker located on

the operating table. It is claimed that the use of such sensors rather than, for instance,
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the robot encoders is more advantageous is the sense that it permits quick configuration

of the experimental setup when using more or less robots, and that it simplifies modular

replacement of the end-effector. Three robotic scans and three free-hand scans have been

conducted on the phantom. It has been concluded that the robotic scan approach outper-

formed that of free-hand, where besides of obtaining a 3D image of better quality with the

former, a rate of 7 success out of 7 trials has been obtained with the robotic scan for a rate

of 3 success out of 4 trials with the free-hand scan.

Using 2D ultrasound imaging modality to position instrument tip at desired target loca-

tion has been considered in [74], where a 2D ultrasound-guided robotically-actuated system

is presented. The system consists of two personal computers, a 2D ultrasound probe, an

electromagnetic tracking device, and a robot arm. One computer monitors ultrasound im-

age acquisition and processing, whereas the latter computer insures robot control. This

control computer conveys the different data, consisting of the target and current control

features with corresponding variables of the control servoing scheme, through a serial link

running at 155.200 bps. Image acquisition is performed at a rate of 30 frames per second.

The electromagnetic tracking device consists of a fixed base transmitter and two remote

tracking receivers. Each receiver provides its corresponding 3D space pose with respect to

the transmitter base, by transmitting its six degrees of freedom to the computer through

a serial line connection. One receiver is mounted on the ultrasound scan head, while the

second was initially used for calibration and then is attached to the robot for registration

and tracking. The target to be reached by the robot tip consists in the center of an object

of interest. It is detected using the 2D ultrasound probe. Firstly, a scan of the region con-

taining the target object is performed by acquiring successive 2D ultrasound images. Then,

each acquired image is segmented to extract the corresponding object cross-section. From

the set of all those segmented cross-sections, the center of the target object is estimated.

The center 3D coordinates represent the target 3D location at which the robot tip has to be

positioned. For image segmentation, each 2D ultrasound image is first segmented according

to an empirically chosen threshold, then subsampled by 1/4 factor to reduce the computa-

tional time of the next step, wherein the image is convolved by a 2D Gaussian kernel of 10

radius and of 5 pixels deviation, and finally an automatic identification of the image section

of interest is applied by searching pixels of high intensity. The target is assumed roughly

spherical. The robot is servoed in position by a proportional derivative (PD) control law,

with an error limit-based rule is added in order to prevent possible velocity excess relative

to important displacements orders.

Experiments have been carried out using a tank containing a salt water layer at its bottom

and an oil layer at its top. A grape, of approximately 20 mm diameter, served as a roughly
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Figure 2.12: A biopsy robot. (Photo: taken from [64]).

spherical target. It was put between these two layers of respectively oil and water. Thanks

to gravity and buoyancy forces and the immiscibility between the two liquids, the grape

floated within the plane delineating the water surface from the oil one, and can freely slide

along this plane. To detect the target location, a scan centered on the grape is performed by

taking successive cross-section ultrasound images as described above. In conditions where

the grape is maintained fixed, the robot tip touched the target with a rate of 53 out of 60

trials.

For needle placement in prostate biopsy procedure, a 2D ultrasound-guided robotic

system is presented in [64] (see Fig. 2.12). The objective is to perform needle positioning of

enhanced accuracy. The system consists of a biopsy needle gun, a robot holder platform, a

host computer, and a 2D ultrasound probe. The functions of the computer consist mainly in

the monitoring of the procedure. This ranges from ultrasound image acquisition, processing

along with registration, screen-displaying for visualization, needle motion planning, and

robot motion control. The robot can be moved and thus positioned appropriately near

the patient’s perineal wall, prior to an intervention, thanks to 4 wheels on which it can

translate. It can subsequently be maintained motionless with enhanced stability, after

the operator had depressed a foot pedal, which causes the robot to be slightly raised

and be supported by 4 rubber-padded legs in place of the wheels. The robot can be

further adjusted, by tuning the height and tilt of its operating table. This will allow to

position the ultrasound probe horizontally with respect to patient’s rectum, in order to

obtain as good as possible quality of the ultrasound images, and also to prevent the probe
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transducer ramming into the rectal wall during the procedure which could lead to possible

damages. The robot table’s base is kept in the adjusted pose throughout the procedure, by

means of locks. Subsequently, the needle is manually positioned at the skin entry point by

adjusting 2 pairs of linear slides and a pair of lead screws. Following, successive transverse

ultrasound images of the prostate are acquired at 1 mm distance interval of robot motion,

and recorded. They are used to make up a 3D model of the prostate. This is performed

semi-automatically, where firstly the urologist have to delineate the prostate’s boundary

in each of several selected images, among those acquired, by indicating boundary points

with hand-clicks. A NURBS (non-uniform rational B-splines) modeling algorithm then

processes separately each slice with its assigned set of indicated points, in order to extract

the corresponding boundary. The algorithm, finally, fits the successive created edges with

a surface simulating that of the prostate. A designed graphical interface allows for the

display of the 2D ultrasound images along with the constructed 3D surface of the prostate.

The urologist can thus interactively indicate on the interface the biopsy target and needle

entry points, by visualizing observed images. These two points are thereby expressed in

3D space with respect to robot frame. The computer then calculates the 3D straight

line path, that the needle has to perform to reach the biopsy point from the entry point.

This path with the indicated points and the 3D surface are interactively simulated and

displayed on the interface. This latter provides, also, a functionality that allows to position

the ultrasound probe where an indicated image has been previously acquired and recorded,

and thus to verify if the observed image do corresponds to that recorded. This aims to check

whether or not the prostate has deformed or shifted. After the robotic system being tested

in phantom and cadaveric trials, clinical experiments have been conducted. The patient,

under general anesthesia, is lying in lithotomy position on the operating bed. Inside the

patient’s prostate, copper seeds are dropped. They serve as fiducial targets in order to

be able of prospectively assessing the performance of the procedure. Upon a 3D path is

planned, the needle is slid down manually along its holder to reach the seed target location.

The urologist will then only have to trigger the biopsy fire gun, causing sequential actuation

of needle’s inner core and outer sheath, and thus a tissue sample is cut off and housed in

a slot at the needle’s distal end. To verify needle positioning accuracy, the prostate is at

the end of the positioning imaged with C-arm fluoroscopy. Over 8 different patients, 17

needle placement procedures have been conducted, where some adjustments were given

to the latter trials at the aim of obtaining better results than that of the first trials. To

explain the outcome of the first trials, it was hypothesized that the needle bent and strayed

from its desired path, due to forces it undergoes while traversing the prostate tissue. An

absolute positioning error ranging from 2.3 to 6.5 mm has been obtained. For the second

set of the experiments, a thicker needle is employed and is supported by a custom-designed

device. This aims at minimizing possible bending of the needle. It was noticed that the

positioning accuracy enhanced, where the absolute positioning error dropped to 2.5 mm.
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Most of the works, presented so far, that investigated the use of ultrasound imaging,

and the 2D ultrasound imaging more particularly, in automatically guiding robotic tasks

have however not directly used the observed image in the servoing loop. They instead em-

ployed position-based visual servoing, where the image is only used to obtain 3D positions

of concerned features. It is well-known that the position-based visual servoing methods

suffer from the relatively low accuracy in term of positioning errors. This is due to the

fact that the control is performed on estimated locations (usually in the robot working

frame). As such, the accuracy of the positioning consequently relies heavily on that of

the estimation and that of the robot. In contrast, a control that is performed directly on

the observed image, namely image-based visual servoing, would result in more accuracy.

The reason is that an image provides homogeneous sensing of the actual features, whose

measures the servoing is applied on; the accuracy in this case is of course affected by the

image resolution. In the following section, we present works that used the 2D ultrasound

images (or part of the information conveyed by the image) directly in the visual servoing

scheme.

2.5.4 2D ultrasound-guided image-based visual servoing

The main challenge when dealing with 2D ultrasound images in robot servoing consists in

the ability to control the out-of-plane motions. Indeed, as pointed out in Chapter 1, a 2D

ultrasound image provides information only in its observation plane and none outside of

this latter. This challenge corresponds mainly to a physical and mathematical modeling

problem. More particularly, the difficulty consists in the ability to relate the differential

changes of the visual features to displacements of the robotic system. Such relation, that

is well-known by the term Interaction Matrix, is in fact crucial to be able to build an

image-based visual servoing scheme [41]. A couple of works considered the interaction with

geometrically known surgical instruments. These latter are geometrically represented and

their 3D model related. From such models, the interaction matrix is then derived. A more

complex modeling problem consists in the case where considering not only manufactured

objects (as surgical instruments for example) but also soft tissue objects. The first works

in this latter context considered however only the control of probe in-plane motions. Re-

cently, a couple of works dealt with out-of-plane motions control. This latter is mainly the

subject of this thesis. In contrast to the existing literature works, we model the exact form

of the interaction matrix, and then address the problem of controlling both in-plane and

out-of-plane motions.
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(a) (b)

Figure 2.13: 2D ultrasound-based instrument guidance. (a) Sketch of the forceps
(depicted in green) intersecting the probe observation plane (delineated with blue
lines) in two points M1 and M2, whose coordinates are used in the servoing scheme
- (b) Robot actuating the forceps instrument. (Photos: (a) taken from [79], and (b)
from [81]).

Control of the interaction with geometrically-known surgical instruments

A 2D ultrasound-based servoing technique for automatic positioning of a surgical instru-

ment for a beating heart intercardiac surgery procedure is presented in [81, 80, 79]. The in-

strument consists of surgical laparoscopic forceps actuated by a robot arm [see Fig. 2.13(b)].

An eye-to-hand 2D ultrasound probe is employed for the observation, and thus for provid-

ing both the surgeon and the robotic system with real-time images, in order to insure

procedure monitoring. It observes both the forceps’s pair of pincers and the heart. The

objective is to automatically position the forceps instrument in such a way it intersects

the ultrasound image plane at desired image positions, that were anteriorly indicated on

the image by an operator. The 2D ultrasound cross-section image provides two image

points that result from the intersection of the ultrasound planar beam with the forceps

[see Fig. 2.13(a)]. These points are fed back to a visual servo scheme, that computes the

commands to move the robot accordingly, in order that the observed points converge to the

target ones. Previous to that, the points with the corresponding target ones are extracted

to be transmitted in four independent features inputs to the servo scheme. Two configu-

rations of the feedback visual features vector are proposed, depending on the choice of the

elements forming this vector. In the first configuration, the feedback visual features vector

corresponds to the four image coordinates of the two points. In the second configuration,

the segment in the image formed by the two image points relates the feedback vector. Two

elements of the vector correspond to the two image coordinates of a point lying in that

segment, while the remaining two other elements correspond respectively to the segment’s
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length and orientation with respect to one of the image axes. In-vivo experiments have

been conducted on a pig heart, where the system performed a task in a reported duration of

about 1 min. The proposed technique deals with images of instruments of known geometry,

where the forceps’s pair of pincers have been respectively modeled with two 3-D straight

lines.

In the context described above, where a motionless eye-to-hand 2D ultrasound probe is em-

ployed to guide automatic positioning of instrument carried by a robot arm, a Nonlinear

Model Predictive Control scheme is proposed in [69]. The objective is to perform auto-

matic positioning of the instrument tip while at the same time to respect some constraints,

namely to keep the instrument in the probe observation plane and to take into account

the robot mechanical joints limits. The first constraint if not satisfied would yield the

instrument getting out of the observation plane, thus leading the feature points vanishing

from the image. Since such features are required in the visual control scheme, the robot

guidance would fail. As for the second constraint, if not satisfied the robot would get out of

its workspace or would reach singularities. The robot thus would be mechanically trapped,

and consequently would not be able to move according to the ordered servoing commands;

i. e., leading to task failure.

So far, in the present chapter, positioning with respect to observed soft tissues has not

yet been introduced. Dealing however with soft tissue ultrasound images in the servoing

scheme allows direct interaction and positioning with the observed soft tissue, as can be

seen in the following.

Control of the interaction with soft tissues: In-plane motions control

A robotically-assisted system for medical diagnostic ultrasound is presented in [1]. The

system consists of a master hand controller, a slave robot manipulator that carries a 2D

ultrasound transducer, and a monitoring host computer (see Fig. 2.14). The objective is

to automatically assist the ultrasound clinician when performing the diagnostic. While the

ultrasound transducer is remotely moved by the clinician through the master hand, the

robotic system can automatically compensate for the unwanted motions in such a way the

transducer keeps a certain view configuration with respect to the patient body. This is af-

forded by a servo scheme paradigm wherein the operator’s motion commands and a visual

servoing controller share the control of the robot holder motion. The primary envisaged

use for the system is carotid artery examination. The task then consists in automatically

keeping the center of one, or more, artery in the middle of the ultrasound image, while at

the same time the transducer is being teleoperated over the patient’s neck by the remote
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Figure 2.14: Robotic system for medical diagnostic ultrasound [1]. (Photo: S. E. Sal-
cudean’s research group web page http://www.ece.ubc.ca).

clinician.

The artery is thus kept in the middle of the image thanks to the visual servoing scheme,

which automatically controls 3 DOFs of the robot holder in the probe observation plane.

It controls the two translations along the image’s two axes and the rotation around the

axis orthogonal to the image plane, respectively. The remaining DOFs are being operated

by the clinician through the master hand. The visual servoing is fed back with the center

coordinates of each of the artery in the ultrasound image. Before this, image processing is

applied on each of the acquired 2D ultrasound image to detect and track the boundary of

each artery. The image coordinates of points lying on a boundary are used to compute the

corresponding center coordinates in the image. Five detection and tracking techniques have

been tested and compared. These techniques consists in the Cross Correlation algorithm

[67], the Sequential Similarity Detection (SSD) algorithm [13], the Star algorithm [33], the

Star-Kalman algorithm inspired from [5], and the Discrete Snake Model algorithm modified

from [20]. They have been tested on successive 2D ultrasound images, captured at a rate

of 30 frames/sec from an ultrasound phantom. In this latter, three plastic tubes are posi-

tioned along three different axes. During the acquisition, in-plane motions are performed by

moving back-and-forth the ultrasound transducer along one axis of the image plane, with

constant absolute velocity. According to the obtained results, the Star-Kalman and the

SSD algorithms outperformed the other techniques, where the former algorithm showed to

be more advantageous with less computational time. That conclusion is, however, inferred

from trials where the image variations are due to motions of the transducer only along its

image axis. Therefore, only plane motions have been performed, and consequently motions

in the transducer’s out-of-plane have not been considered. Indeed, out-of-plane motions
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(e. g., motions along the axis orthogonal to the image plane) lead to deformations in the ul-

trasound image itself (e. g., boundary shrinking/stretching) rather than it is simply shifted,

as in the presented case. Thus, the techniques that better performed for motions within

the image plane might, perhaps, present drawbacks or completely not apply in out-of-plane

motions case, and vice versa.

The system was tested experimentally, where two features that represent the visual feedback

correspond to the center coordinates of two pipes of the phantom. The system operated at

a rate up to 30 Hz. Two main applications of the system have been considered. The first

concerns a 3-D ultrasound imaging system, that can be used to make up a 3D image of a

scanned region of interest (the artery in this case) from successive 2D centered ultrasound

images acquired during the scan’s sweep. That sweep is monitored by the visual servoing

controller in such a way the artery remains centered in the image. Inputting those captured

images whether to a Stradx tool [35] or to a Star-Kalman based reconstruction, a 3D image

is outputted. The latter reconstruction algorithm showed to be more advantageous with

shortened computational time, since only the coordinates of the contour points extracted

from each acquired image are stored, rather than the full image when using the Stradx

tool. As for the second application of the robotic system, it concerns tele-ultrasound exam.

A clinician is located at a remote place, and can from there supervise the procedure which

takes place in a different location. The clinician can visualize the procedure development

thanks to the display, on different screens, of images about the operation room. These

images are respectively provided by two observing cameras and the ultrasound transducer,

both located in the operating room where the patient is under diagnostic assisted by the

robot. By handling the master device, the technician’s commands are sent to the carrying

robot. Data transmission between the two sites is performed through an Internet connec-

tion.

A 2D ultrasound-guided robot for percutaneous needle placement for cholecystostomy

treatment is presented in [38]. The robot possesses 2 active DOFs used for automatic

needle insertion (see Fig. 2.15). The intraoperative 2D ultrasound images, of the gallblad-

der along with the needle, are directly used in a visual servo scheme that computes the

control commands. The robot will thus position the needle accordingly, while in the same

time compensating for possible target shifting. The latter can occur due, as instance, to

patient’s heart beating, breathing, or pain that could rise due to local anesthesia. Prior

to insertion, the needle is mechanically constrained to lay in the same plane of that of the

ultrasound beam. That configuration is kept throughout the procedure. This is achieved

using 5 passive DOFs that the robot also possesses. Those DOFs furthermore allow to

position the needle at the skin entry point right prior the insertion. The gallbladder is
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Figure 2.15: 2 DOFs robot for 2D ultrasound-based needle insertion. (Photo: taken
from [38]).

detected in the image using a motion optimized active contour model, while the needle di-

rection is extracted using the Hough transform [39]. The system performance was assessed

through phantom experiments, video simulations, and animal experiments. The robotic

system operated at a rate of about 3 Hz, at which the needle path planning is updated. It

performed with gallbladder recognition error of less than 1.5 mm under ordinary breathing

conditions, and with needle positioning error of about 2 mm in animal trials.

Control of the interaction with soft tissues: Both in-plane and out-of-plane
motions control

An ultrasound visual servoing technique using the 2D ultrasound modality for soft tissue

motion robotized tracking and stabilization is presented in [46]. It makes use of speckle

information, contained in the B-scan images, in separately controlling the probe in-plane

and out-of-plane motions in order to maintain the probe observation plane on a target

B-scan ultrasound image. Although ultrasound speckle was considered in different works

as noise to reduce, it is in fact not a random noise but coherent reflections of small cells

contained in soft tissue. The B-scan observation plane is in reality of millimeter order thick

and, as consequence, successive acquired B-scan images overlap in space thus resulting in

correlation of speckle between each of them (see Fig. 2.16). Speckle information have been

used to estimate multi-dimensional flow of 2D ultrasound images [12], and its correlation

used for sensorless estimation of the 3D pose of freehand 2D ultrasound probes, as in [34].

In the latter work, the speckle correlation is approximated by an exponential function based

on image intensity, in order to estimate the displacement between two plane of successive
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(a) (b)

Figure 2.16: Speckle correlation between two successive B-scan image planes acquired
by a 2D ultrasound probe (displayed in blue) [46]. (a) Two successive B-scan images,
whose respective planes are spaced by a distance d, and where two corresponding
patches I1 and I2 are shown on their respective grids (displayed in green) - (b) Cor-
relation curves between the two B-scan planes considered for 25 patches. The curves
are function of the distance d between the two planes. (These two figures have been
kindly provided by Alexandre Krupa).

acquired B-scan images [see Fig. 2.16(b)].

That principle is exploited in [46] to estimate the B-scan probe out-of-plane motions, that

would bring the probe to its target plane from its current one. The objective is in fact to

estimate the target image plane with respect to the observed one. The out-of-plane mo-

tions are related to translations along the axis orthogonal to the probe observation plane

(image) and rotations around the two image’s axes. To estimate those movements, dif-

ferent patches are attached to the ultrasound image, which are discriminated according

to their respective allocated pixel coordinates. For each patch of the observed (current)

image, its distance from its corresponding patch belonging in the target image is computed

according to the decorrelation technique introduced above using their respective intensity

information. Note that the target image has been previously saved as a pixel intensity

array. Prior that the exponential function is applied, the intensity of the B-scan image is

decompressed to be expressed on a linear scale [72]. This is performed since the outputted

B-scan image’s intensity is compressed according to a logarithmic scale whereas the original

raw radio-frequency signal (RF) provided by the transducer is expressed on a linear scale.

The estimated distances are used to geometrically represent the target image pose with

respect to the observed one, by defining for each distance a 3D position with respect to
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a frame attached to the observed image. The patches of the target image are then fitted

with a plane, defined by its normal vector and its distance from the observed image’s one.

This plane is nothing but an estimation of the target image’s one.

The four elements of the target plane, that are the three components of its normal vec-

tor and its distance from the current image’s plane, are fed back to a 3D visual servoing

scheme that then computes the velocity command [51] for the out-of-plane motions of the

ultrasound probe. The in-plane motions are however separately controlled by a different

2D visual servoing scheme. The latter is fed back with a visual feature vector of three com-

ponents. This vector relates the rigid in-plane motion from the plane of the observed image

to that of the target. Two of its elements correspond to two translations respectively along

each of the image’s two axes, while the latter element corresponds to a rotation around the

image’s orthogonal axis (elevation axis). These three elements represent the differences of

respectively the displacement and the rotation from the observed image to the target one.

They are extracted using the image tracking technique [37]. It consists in minimizing an

intensity function which is based on a motion model.

The approach has been tested in both simulations and experiments. The simulations con-

sist in a scenario where a virtual 2D ultrasound probe interacts with a realistic ultrasound

volume, made up from a set of parallel real 2D ultrasound images. The latter have been,

at a previous time, successively captured at an equivalent distance interval during motions

of a 2D ultrasound probe along its orthogonal axis. The motions have been performed

with constant velocity. The experiments have been conducted using two different setups.

In the first one, a 2D ultrasound probe was carried by a 2 DOFs robot, that provides two

translations respectively along the horizontal probe axis and along the axis orthogonal to

the probe. The second setup consists of a 6 DOFs medical robot carrying a 2D ultrasound

probe. In both the simulations and the experiments, the robotic task was focused in track-

ing a target ultrasound B-scan image, since the proposed approach is devoted for tracking

by allowing only slight displacements from the target image. This limitation however has

been alleviated, where it is proposed to register up to a certain width the continually ac-

quired images. This would allow to recover the path followed by the probe, by stacking the

different displacements between each successive images. The approach is devoted solely for

B-scan images, and requires a calibration step through which parameters involved in the

correlation exponential function are estimated. In fact, those parameters vary depending

on the imaged soft tissue. Note that the approach heavily relies on the estimated target

plane, on which the probe’s plane has to be automatically positioned. Consequently, any

estimation errors will be, undoubtedly, reflected in positioning errors of the ultrasound

probe leading to drifts from the actual target.
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In the Lagadic group, IRISA/INRIA Rennes, wherein this PhD work has been con-

ducted, a former preliminary work [4] dealt with the control of both in-plane and out-of-

plane motions of a 2D ultrasound probe interacting with egg-shaped objects. The objective

was to automatically position the probe with respect to such an object. It was attempted

for use in a context where a robot arm actuates the probe, which continually provides 2D

cross-section images of the observed object. These images are fed back to a visual servoing

scheme, that subsequently computes the command velocity. The robot will then have to

position the probe transducer, by moving according to the ordered velocity, in such a way

that at the convergence the observed cross-section image corresponds to desired one. The

probe observation plane intersects the object of interest, which results in a cross-section ul-

trasound image. Assuming the soft tissue being egg-shaped, the contour of the cross-section

is fitted with a third order polynomial, whose coefficients are used as the feed-back visual

features. The method has been tested is simulation, where the scenario consists of a mathe-

matically modeled virtual 2D ultrasound probe and an egg-shaped object. Their respective

poses (position and orientation) are assumed known with respect to a base frame. Those

mathematical models of the object and the probe are used to simulate their interaction,

and thus providing the contour of the cross-section image. The contour is characterized

with a set of its points coordinates. The proposed approach, however, is dedicated to soft

tissue with known geometry, namely egg shaped objects. It relies, moreover, on visual

features that have no physical signification and are not robust to image noise. Extracting

these features from the image can, sometimes, become challenging, and is prone to failures.

This consequently can threaten the system stability. In robotics, in general, and in medical

robotics, more particularly, the robustness is an important trait that has to be addressed,

especially when dealing with the ultrasound modality, that inherently provides very noisy

images. The work we present in this dissertation exploits instead visual information that

are robust to image noise. Such information can moreover be readily extracted after the

image would have been segmented. These features we select to feedback the visual servoing

scheme consists in combination of image moments; the latter are presented in Chapter 3.

Moreover, we develop the exact form of the interaction matrix related to these features.

The formulae we develop is general in the sense that it can be applied to different shapes,

say to whatever considered closed volumes. We in fact developed new theoretical founda-

tions that yield us able to derive such a matrix. The corresponding modeling is presented

also in Chapter 3. Another main contribution brought though this thesis is that we pro-

pose an efficient estimation method that endow the robotic system with the capability of

interacting with objects without any prior knowledge of their shape, 3D parameters, nor

location in the 3D space. This is presented in Chapter 4. Only the image, along with robot

odometry, is used to compute the control law, as presented in Chapter 5.
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2.6 Conclusion

We have provided through this chapter an overview about image-based medical robotic

systems, and more particularly about ultrasound-guided ones. We started by giving a

short introduction to robotics control and medical robotics. Different paradigms reflecting

the manner a medical robot is commanded have been presented. We recall that this the-

sis is concerned with the self-guided paradigm, where the robot completely autonomously

interacts with its environment thanks to closed-loop servoing techniques developed and

presented in this document. The intervention of the operator only consists in indicating

to the system the objectives of a required task, right prior that the robot is launched to

perform the procedure.

It was highlighted that usually medical robotic systems use mainly visual sensing for mon-

itoring the interaction with their respective environment. Examples of most investigated

imaging modalities for guiding medical robotic systems have been introduced with some

examples for illustration. These modalities range from, but are not limited to, optical,

MRI, X-ray or CT, and ultrasound. They provide with valuable sensing allowing for inter-

action monitoring. Each of them provides, indeed, with particular information about its

environment, that could be greatly relevant for certain range of medical applications. Op-

tical imaging systems, as instance, provide images of open-space fields, and therefore find

their use in minimally invasive surgery. They are however restrained to some applications

like endoscopic surgery robotics, and recently in microsurgery robotics. This is due to the

fact that they can not provide internal anatomical views, unless they are inserted inside

the patient’s body. This latter resolution is however not appropriate for many kinds of

applications, because of the possible trauma and hemorrhage that could result, and since

some body’s regions are not readily accessible and viewed. Yet, internal images are in most

of the cases required in medical robotics since medical robots are usually interacting with

body’s parts that are not naked-eye viewed. In contrast to optical imaging, MRI, CT,

and ultrasound provide internal anatomical images without any dissection. X-ray, or CT,

showed however to be invasive and harmful for the patient body. As for the MRI modality,

even if it is considered noninvasive, the images are not provided at a sufficient rate to en-

visage real-time robotic applications. Concerning the ultrasound modality, it is considered

thanks to its noninvasiveness as not harmful to the patient body, and more particularly 2D

ultrasound modality can provide images with a relatively high streaming rate.

We introduced in this chapter works related to automatic guidance using ultrasound im-

ages, and classified them according to different classes. It is perhaps useful to summarize

them. We distinguished: ultrasound-based simulation; 3D ultrasound-guided robotics;

2D ultrasound-based position-based visual servoing; and 2D ultrasound-based image-based
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visual servoing. Also, within the last class we distinguished the following categories: posi-

tioning of surgical instruments; positioning with respect to observed soft tissue where only

probe in-plane motions are controlled; and positioning with respect to observed soft tissue

where both probe in-plane and out-of-plane motions are controlled. This thesis falls within

the latter category.



Chapter 3

Modeling

Building a visual servoing scheme requires the modeling of the interaction matrix that

relates the time variation of the feedback visual features to the motions of the robot.

Such interaction matrix is in fact crucial for computing the control law. In case of optical

systems, like a perspective camera carried by a robot arm for example, the interaction

matrix is generally already available thanks to the amount of works that have considered

such a sensor (e. g., see [41] and [17, 18]). It is however not the case for robotic systems

using 2D ultrasound imaging modality as source of visual information. This thesis concerns

automatic guidance of a general robot arm from observed 2D ultrasound images. These

images are provided by a 2D ultrasound probe carried at the robot end-effector. We need

therefore to model the interaction matrix for the case of 2D ultrasound in order to allow the

robot automatic interaction with its environment. One of the challenging issue, however,

concerns the fact that a 2D ultrasound probe interacts with its environment by such a

manner that was, so far, difficult to model. This is addressed in the present chapter.

Firstly, we used the concept of image moments to construct the feedback visual features.

This concept seems completely relevant when dealing with the ultrasound modality, as

discussed in Section 3.1. Then, we propose new theoretical foundations that allow us to

model the analytical form of the image point velocity as function of the robot velocity.

This fundamental modeling is subsequently used to obtain the exact analytical form of the

interaction matrix that relates the image moments time variations as function of the probe

velocity. The modeling method we propose can be applied for general-shaped objects. We

theoretically test and thus validate this general result on some simple shapes like spheres,

cylinders, and 3-D straight line-shaped wires.
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3.1 Image moments: a brief state-of-the-art

Image moments are mathematical entities whose inferred values can describe the configu-

ration of sections in the image; by “configuration”we mean also the section’s shape, though

implicitly . Such configurations are mainly correlated to the section’s geometry. They

could be as instance the location, orientation, contrast, or size of a section in the image.

After their original version being introduced in the field of mathematics, moments, or im-

age moments as currently referred when dealing with images, were finally considered for

pattern recognition field. Based on the theory of algebraic invariants, functions of mo-

ments that are insensitive to particular section’s changes, such as translation and rotation

in the image, and size are presented in [40]. Such functions are indeed of great interest

for pattern recognition applications. The fact that image moments can describe section’s

configuration, they can therefore be used to discriminate between the different sections.

Each section could be assigned with a particular value, more particularly numerical value.

However, if a considered section is subject to configuration changes such those mentioned

above (translation and rotation of the section in the image), its assigned value likely would

vary. In the case such changes occur, the considered section can no longer be assigned

with a certain value, and consequently can not be discriminated and thus recognized. But

image moments that are invariants to such changes would keep their initial value, and

consequently they can be used as pointer for a considered image section, still under the

mentioned changes. This is illustrated in Fig. 3.1. Such image moments are called moment

invariants [40]. We will see in chapter 5 that such invariance properties are of great interest

for the selection of the feedback visual features, since these latter we propose are based on

image moments.

Consider a section lying in a plane Π, that is defined by an orthogonal frame (u, v) (see

Fig. 3.2). The two-dimensional moments of a density distribution function ρ(x, y) and of

(i+ j)th order related to this section are defined in terms of the surface integral by [40]:

mij =

∫ +∞

−∞

∫ +∞

−∞
xi yj ρ(x, y) dx dy (3.1)

where (x, y) represent the 2-D coordinates of a point P lying in the section. We can

therefore note that moments are strongly correlated to the shape of the section, as can

be deduced from the term product xi yj . In the case Π represents a plane of a 2D image,

then we will refer to 2D image moments. The couple (x, y) will then represent the pixel

coordinates of point P. The function ρ(x, y) could be related to the pixel intensity of the
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(a) (b)

Figure 3.1: Illustration of moment invariants with two different images of a same pair
of pliers. (a) Initial image whose boarders are delineated with a rectangle - (b) Final
image of the pliers after configuration changes in the position, rotation, and scale.
Ordinary image moments values of respectively the images (a) and (b) are different,
whereas those of the invariant moments to position, rotation, and scale are the same.
The latter values can thus be assigned to the pliers for prospective identification.

image, its color, or else.

Successive research works have then followed by applying image moment invariants for

pattern recognition applications. We can cite as example, the use of moment invariants

for automatic recognition of aircraft shapes and types from images, as in [25] [8]. They

have also been used for pose estimation of planar objects [59]. Along with the widespread

of moments invariants for wide range of applications, theoretical studies with objectives

of making these functions more powerful have also been reported. Moment invariants to

image contrast changes that at the same time keep their initial insensitivity to image trans-

lation, rotation, and scale are presented in [50]. Objects which present symmetries might

be difficult to identify with moments, since the latter could tend to vanish (i. e., to be null)

as more as the symmetry appears in the image while the object configuration changes. To

deal with such limitations, moment invariants to image translation, rotation, and scale,

but dedicated for detecting objects that present N -fold rotation symmetry are presented

in [32]. Another formulation of image moments quite inspired from the existing version is

presented in [19]. It consists in defining a new version of image moments as function of only

image coordinates of the points lying on the boundary of the considered section, instead of

those of the whole points lying within the section image (such version’s moments do not

correspond to those of the old version when expressed on the contour using the Green’s
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Figure 3.2: Section lying on a plane Π.

theorem). Such formulation is aimed at decreasing the computational time of image mo-

ments by considering fewer number of points involved in the computation than if the whole

points of the section are considered. This version’s moments have also been made invariant

to image translation, rotation, and scale changes. Adjusting the original formulation of

moment invariants, introduced in [40], and generalizing them to the case of n-dimensional

moment invariants through a generalized fundamental theorem is presented in [52]. There

are also other interesting works about image moments devoted for the fields of pattern

recognition and computer vision, but we settle for those cited above and in Section. 3.2.

A survey about image moments is available in [66]. The objective of the present section

concerns the introduction of image moments and the illustration of their usefulness, since

the visual techniques we propose through this thesis exploit these information. Dealing

with image moments for pattern recognition or computer vision is not the objective of the

present thesis and is beyond its scope.

One of the trait of image moments is that they can generically represent an image sec-

tion, without prior knowledge about this latter. Image moments can be readily computed

from a segmented image. These features are relatively robust to image noise, compared for

example to features composed of coordinates of points. Another but typical trait to image

moments is that they do not require matching of points in the image but only a global

segmentation. We will see that this trait is of tremendous interest for visual servoing based

on 2D ultrasound. Indeed, this trait matches one of the key solutions that could enable

addressing the modeling issue of 2D ultrasound. This will be recalled at an appropriate

step of the modeling technique, in Section 3.5.2 more precisely. Moment invariants, more

particularly, provide with information about the configuration of the section, with respect

to the image, in a decoupled way. This latter property makes image moments relatively

amenable in order to build independent visual features and thus to develop partially, or



3.2. DISCUSSION WITH REGARDS TO IMAGE MOMENTS 53

perhaps totally, decoupled visual servoing schemes in a natural way. These features are

intuitive with geometrical meaning, where their low order completely and directly relay

information about the size, the center of gravity, and the orientation of section in the im-

age. Therefore, a set of features based on image moments can be directly related to a pose

of a 3-D scene in the space (the case of planar scene being pointed out and reported in [50]).

All these traits make image moments a potential entity for deriving relevant visual fea-

tures, that can be used as feedback in visual servoing schemes. Such features can endow

the robotic system with the capability of automatically reaching configurations from which

the robot can provide desired images of the scene, and thus positioning with respect to the

latter. Such systems do not deal with coordinates, or the like, but directly with shapes of

objects. However, the key solution related to the development of visual servoing schemes

is the jacobian matrix that relates the differential variations of the selected set of visual

features to the differential changes of the configuration of the robotic system [27] [41]. Such

jacobian is well known by the term interaction matrix when the velocity space considered

is SE3. It is, indeed, in most of the cases, challenging to model and obtain such matrix,

especially when this concerns its analytical form.

We provide in what follows a brief state of the art about works that investigated the mod-

eling of such matrix, in case of optical systems, in systems using camera as source of visual

information more particularly. We emphasize that the modeling in case of optical systems

quite differs from that of 2D ultrasound, as has been shown in the previous chapter. In

this thesis we model and thus provide the exact analytical form of the interaction matrix

that relates the differential changes of the image moments to the differential changes in

the configuration of a general 6 DOFs robot arm that carries a 2D ultrasound probe at its

end-effector.

3.2 Discussion with regards to image moments

Similarly to different other pattern recognition and computer vision features, image mo-

ments present also some inherent drawbacks. Moment invariants might suffer, in some

configurations, from information suppression, loss, and redundancy [2], and from occlu-

sion. The suppression effect is related to the case where the information of the section’s

central area are rejected. The information loss is related to the case where the information

relayed by the image higher order harmonics are filtered. As for redundancy, it occurs

when a selected set of moments-based features represents different sections.

The suppression effect can be noticed from the relationship (3.1). Since in this thesis we
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deal with moment invariants, we can directly consider for clarity that the section is centered

in the image. We can first remark that the image moments function is strongly correlated

to the section shape, and this is ensured through the image pixel coordinates x and y. More

the value of x is high more is that of xi. The same applies for y. We can subsequently

remark that more the point is far from the center more higher is the value x or y. The

farthest points correspond, in a general sense, to those lying on the section’s boundary. The

relationship (3.1) mainly contains products of the power of x with that of y. Therefore, the

points lying more farther from the section center have higher values and thus have more

effect than those closer to the center. Consequently, the farther points have more weight on

image moments’s inferred value than those closer. This effect is more felt when moments of

higher order are employed. Indeed, higher is the order larger is the difference between the

values xi yj of respectively the farther points and those closer. The suppression effect can

be embodied in a concrete sense. If, for example, the image intensity function is introduced

in the definition of image moments relationship, and if, as instance, the central area have

large intensity information, this latter would partly, or almost totally, suppressed due to

the effect of the farthest area, as we just described; this information would be swallowed

up by that conveyed by the farthest regions. If, however, the section has no valuable in-

tensity information in its center-closer area, there would be no information suppression

that could be caused by the above discussed effect of moment invariants. Nevertheless,

this drawback presented above is precluded in our case (in the servoing system we propose,

more precisely). Indeed, only the shape of the section in the image is exploited in the

control law, i. e., the image is first segmented and binarized. Thanks to the formulation

we use in this thesis in the definition of image moments, these latter are no longer affected

by information suppression. More precisely, we exploit solely the geometric shape of the

section in the image. We do not consider, for example, image contrast information in the

definition of moments. The geometry of the section is mainly represented by the boundary

forms of the latter. There is therefore no information in the central part of the section

that could relay valuable information with regards to the section shape. Owing to what

has been discussed above, the section geometry information are consequently not subject

to suppression effect since the valuable information are present in the farther points not in

the closer to the section center. We exploit, to summarize, only the boundary of the section.

High-order moments are also well-known to be vulnerable to image noise, as can be clearly

noticed from the fact that a moment’s order corresponds to the power at which the coordi-

nates are elevated. However, the visual information we present in this dissertation employ

only up to the third order moments.

As for information loss, it is related to section’s parts whose boundary presents curvatures

with high frequency. This is illustrated by Fig. 3.3, on which we can distinguish the part
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Section in the image

High−harmonic region

Figure 3.3: Image section subject to the effect of information loss inherent to image
moments (typical example, grossly sketched). The section’s part, roughly enclosed
by a dashed rectangle, presents high-harmonic curvatures.

that possesses high harmonics. Such part is vulnerable to the information loss effect. That

is, the information relayed by such part would be filtered by moment invariants functions

and thus lost. However, usual considered objects could unlikely possess parts with a certain

level of high-harmonics susceptible to yield them vulnerable to such effect. Moreover, we

employ only up to the third order moments, and thus we clearly do not deal with high

harmonics and therefore we do not consider them in the control law. Note that the in-

formation loss is somewhat related, say similar, although inversely, to the characteristic of

vulnerability to image noise.

Finally, the occlusion effect represents the case when a part, or whole, of the concerned

section disappears from the image. The image moments represent mainly the shape of the

observed section in the image. When an occlusion occurs, it is clear that the section would

be warped in the image, since at least part of it would vanish from the image. In that

case, the image moments values would consequently change since they represent another

shape different from the original one. Therefore, the image moments initial values, repre-

senting the section in its whole form, could no longer represent that section. Nevertheless,

we assume that the whole section can be imaged and no part of it would disappear. This

assumption shows to be consistent since a 2D ultrasound probe can provide in-depth infor-

mation, and thus the concerned section could be imaged even though there are other soft

tissues lying between it and the probe transducer. Concerning the redundancy effect, we

prefer to discuss it in Chapter 5, considering that doing so is more appropriate.

The above cited drawbacks could, in some cases, become favorable [2]; although these

drawbacks are precluded in our case, as has been described. If the central part of the
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image section possesses highly-noisy information, the suppression effect would reject the

carried noise. Similarly, the effect of information loss will filter and thus reject the noise

carried by high-harmonics parts.

3.3 Image moments-based visual servoing with op-

tical systems: state of the art

One important and crucial step in the modeling of the interaction matrix is already ac-

quired when dealing with optical imaging robotic systems, whatever the kind of the visual

features used as feedback information in the servoing scheme. Indeed, the jacobian matrix

that relates the differential changes of the image points coordinates with respect to the

variation of the configuration of the robotic system is, in most of the cases, say in all,

available. After obtaining a second jacobian that this time relates the differential changes

of the visual features to the differential changes of those image points coordinates, it would

be easy to derive the global interaction matrix that relates the visual features to the robot

configuration. If, as an example, the considered visual features are coordinates of the points

in the image, the second jacobian matrix is nothing but the identity matrix.

This can be formulated and thus illustrated by the following relationships. Let vectors s

and x be respectively the set of the visual features and the set of points’s image coordinates,

and let vector q be the configuration of a robotic system, whatever the imaging modal-

ity used as source of visual information. The jacobian matrix Lx relates the differential

changes ẋ of x to the differential changes q̇ of q by: ẋ = Lx q̇. Such matrix is indeed

available for the case of optical systems. The differential changes ṡ of s can be written as:

ṡ = ∂s
∂x

ẋ

= ∂s
∂x

Lx q̇ = Ls q̇

(3.2)

The entity Ls = ∂s
∂x

Lx is the global jacobian matrix that relates s to q, where ∂s
∂x

represents

the second jacobian matrix that relates s to x. This latter matrix is the one equal to identity

if the visual features are the coordinates of the points in the image (i. e., s = x). There-

fore, in case using optical systems, modeling the interaction matrix generally comes to only

obtain the matrix ∂s
∂x

, since the jacobian matrix Lx is in most of the cases already available.

A first work toward modeling the interaction matrix relating the image moments time

variation in the case of perspective camera was attempted in [9]. Coarse approximations
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have however been assumed for that. A visual features vector composed of the area (size),

the gravity center, and the orientation of the section in the image was considered to auto-

matically control only 4 DOFs of a robot arm. Another work [83] used neural network to

estimate the interaction matrix. Finally, an exact form of such matrix was obtained, pro-

vided that the observed object 3-D model with respect the camera is well-known [15, 16].

Six visual features corresponding respectively to the area, the coordinates of the center of

gravity, the orientation, and two other third order moments of the section in the image were

selected to control the 6 DOFs of the robot. The corresponding visual servoing scheme has

been validated from both simulations and experiments using planar objects. A combina-

tion of image moments yielding the visual servoing partially decoupled is presented in [76].

Six visual features have been proposed to control the 6 DOFs of a robot arm holding the

camera. The method was first developed for the case a planar object is parallel to the

image plane of a perspective camera and, then, generalized to the case where the planar

object is not parallel. The commands generated and then sent by such decoupled visual

servoing scheme allow the robot performing appropriate 3-D trajectories. The proposed

visual servoing scheme is devoted to images wherein the section is represented either by

continuous contours or by discrete points. It has been validated from both simulations

and experiments where, once again, the observed objects are planar. Another advantage

of obtaining a partially decoupled (or totally decoupled at the best) servoing schemes is

that the computational time required to compute the pseudo inverse (or the inverse) of the

interaction matrix can be shortened; even though this advantage could be considered at

a relatively fewer interest. This can be ensured thanks to the properties related to sparse

matrices, as the developed one in [76]. Note that dealing with the interaction matrix in

terms of decoupling is equivalent as dealing with the decoupling of the control scheme, since

this latter uses mainly the interaction matrix to compute the commands to the robot.

As has been discussed in Chapter 1 (in Section Contributions, more precisely), the

modeling in case of optical systems quite differs from that of 2D ultrasound; the latter

consists the field this thesis is addressing. The interaction matrix developed for optical

systems, which has been introduced hereinbefore, does not apply in the present case. Even

worse, the elemental jacobian matrix that relates the image points variation to the sensor

velocity is not available in this case; we recall that we refer to the matrix Lx introduced

by (3.2) (in case of optical systems, the jacobian is however generally available). Yet, such

jacobian is crucial and required in order to develop the interaction matrix and thus to

derive the visual servoing scheme. Through the works presented in this dissertation, we

have finally been able to model such jacobian and then to obtain the interaction matrix

that relates the image moments variations to the configuration of a general robot arm (and

thus to the robotized sensor velocity) holding the 2D ultrasound probe, and thereby to

derive a corresponding visual servoing scheme. The interaction matrix form we provide is
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Figure 3.4: Representation of an ultrasound image. The image’s boundary is rep-
resented by the outer rectangle, where (X, Y ) represent the 2D orthogonal frame
attached to the image.

analytical. This chapter provide theoretical foundations, which, based on it visual servoing

methods can be derived. This is thoroughly presented in what follows.

3.4 Modeling objectives

The scenario consists of a 2D ultrasound probe transducer actuated by a general 6 DOFs

robot arm. This robot and thus the transducer are interacting with a soft tissue object.

In a continuous streaming, 2D ultrasound images of the observed object are provided by

the 2D ultrasound transducer. The robotic task consists in automatically positioning the

transducer with respect to the object, using the observed ultrasound images. These latter

in fact have to automatically guide the robot and thus monitor its motions in such a way

the transducer, carried by the robot, automatically reach and stabilize at a desired con-

figuration with respect to the object. Automatically achieving such task necessitates the

development of a visual servoing technique which, at its turn, requires appropriate visual

features to feed back the robot system and thus correct its motions. We recall that we

propose to exploit image moments information, along with its derivative form that are the

famous moment invariants. This has already been described in Section 3.1.

The control system paradigm with which we are concerned consists in servoing the

robot with velocity commands. It could be considered as a relatively high-level control

compared, for example, to torque control. The system we propose can, nevertheless, be

connected to the robot low-level in order to envisage torque control. The robot is assumed,
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of course, that it already possesses its own low-level control system enabling it to move

according to the ordered command velocity. The visual servoing scheme, thus, computes

velocity commands which accordingly the robot will move. The modeling objective be-

comes, therefore, to firstly provide the jacobian matrix Lx, involved in (3.2), that relates

the image points time variation to the sensor velocity and thus to the robot velocity. Then,

we use Lx to model the interaction matrix Ls that relates the image moments time varia-

tion to the sensor velocity.

More precisely, let the (i+ j)th order image moment mij , previously introduced by (3.1),

now relate solely the shape of a section S in the image. This entity is thus defined by this

double integration:

mij =

∫ ∫

S
f(x, y) dx dy (3.3)

with

f(x, y) = xi yj (3.4)

where (x, y) are the image coordinates of point P = (x, y) belonging to section S (see

Fig. 3.4). Note that since we consider only the shape of the section in the image in the

definition of image moments, the function ρ(x, y) involved in (3.1) is now ρ(x, y) = 1. Note

that we assume that the ultrasound beam is a perfect plane, and that the whole actual

cross-section lies in the imaged.

Consider a 6 DOFs robot arm that carries at its end-effector a 2D ultrasound probe trans-

ducer (see Fig. 3.5). A 3-D cartesian frame {Rs} is attached the probe sensor. This body

frame is defined by the three orthogonal axes X, Y , and Z. (X, Y ) are defined in such

a way they lie in the image plane, while Z axis is normal to the latter (see Fig. 3.5, 3.6,

and 3.7). Let 6 dimension vector v represent the velocity of the transducer (probe) in

the 3-D space. More precisely, it represents the body frame velocity of {Rs} expressed

in {Rs}. It is denoted by v = (v,ω), where v = (vx, vy, vz) and ω = (ωx, ωy, ωz)

represent respectively the translational and the rotational velocity of the probe. The scalar

components (vx, vy, vz) are respectively along axes X, Y , and Z of the probe, while the

scalar components (ωx, ωy, ωz) are respectively around X, Y , and Z. This is represented

on both Fig. 3.5 and 3.7. Note that dealing with either the probe velocity or the robot one

is equivalent, provided that the kinematic transformation (i. e., the homogeneous transfor-

mation matrix) from the robot end-effector to probe attached frame is known. Obtaining
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Figure 3.5: A 2D ultrasound probe carried by a robot arm. The probe is interacting
with an object, where a cross-section resulting from the intersection of the probe
observation plane with the object is shown. The frame (X, Y, Z) attached to the
probe is also depicted. The vectors X and Y lies in the probe observation plane,
whereas Z is orthogonal to it.

such matrix is referred to as hand-eye calibration. If such matrix is not enough accurate,

then the corresponding errors would be considered as perturbations to the visual servoing

scheme.

The modeling objective is finally to write the time variation ṁij of image moment mij ,

defined by (3.3) and (3.4), as function of the probe velocity in a linear form. This objective

can be formulated as follows:

ṁij = Lmij
v (3.5)

where Lmij
is the interaction matrix related to mij denoted by:

Lmij
=
[

mvx mvy mvz mωx mωy mωz

]

(3.6)
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Figure 3.6: Interaction between a 2D ultrasound probe and an object. 3D cartesian
frames {Rs} and {Ro} are attached respectively to the probe and to the object (left).
A cross-section S results from this intersection, where a point P that belongs to it
is shown. The ultrasound planar beam that observes this cross-section reflects it on
a 2D ultrasound image (right). Both S and P are shown on that image, where the
image coordinates (x, y) of P in the 2D image frame (X, Y ) are also depicted. Note
that the two axes X and Y constituting the image frame (left) clearly correspond to
those forming the probe frame {Rs} (right).

such that the six components of Lmij
represent the scalars whose analytical form is what

we want to obtain.

The time variation ṁij of image moment mij can be expressed as function of the image

point velocity (ẋ, ẏ), in form of a double integral over section S as follows [16]:

ṁij =

∫ ∫

S

[

∂f

∂x
ẋ+

∂f

∂y
ẏ + f(x, y)

(

∂ẋ

∂x
+
∂ẏ

∂y

)]

dx dy (3.7)

that we prefer to write in the following form that can be readily used afterwards:

ṁij =

∫ ∫

S

[

∂

∂x
(ẋ f(x, y)) +

∂

∂y
(ẏ f(x, y))

]

dx dy (3.8)
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The above relationship requires the analytical form of the image point velocity (ẋ, ẏ) as

function of probe velocity v, in order it can be expressed as function of this latter, and thus

to obtain the interaction matrix Lmij
. Therefore, we firstly need to model the analytical

form of the jacobian matrix Lx, defined by (3.2). It relates the image point velocity (ẋ, ẏ),

of point P = (x, y), to the probe velocity v. We present below new theoretical foundations

to obtain Lx.

3.5 Image point velocity modeling

When a 2D ultrasound probe sweeps a region of a soft tissue, the variation of the section

in the image strongly depends on the shape of that object. Therefore, the image velocity

of points lying in the image section also heavily relies on the object shape. In contrast,

this is not the case when dealing with optical imaging systems. When, for example, an

eye-in-hand camera is observing an object while performing motions, the image points dis-

placements and thus the image points velocity grossly are not affected by the object shape.

The already existing interaction matrix that relates the image points velocity to the camera

one does not hold in our case and, thus, can not be used.

To make the illustration of this difference more fair and rigorous, consider two different

robotic systems consisting respectively of a 2D ultrasound probe carried by a robot arm, as

in our case, and of a perspective camera also carried by another robot arm. Each system

is observing and thus interacting with its corresponding object. For the 2D ultrasound

probe, the intersection of the transducer observation planar beam with the object results

in a cross-section which then is reflected in the ultrasound image (see Fig. 3.5). In case

of the camera, however, the object surface encountering the image rays is projected and

thus reflected in the camera image (see Fig. 1.4 of Chapter 1). Let P be a point lying in

the cross-section of the object observed by the 2D ultrasound probe, and let U be another

point lying on the second object surface observed under the field of view of the camera.

It is clear that when the camera moves, point U remains at the same position. This fact

is correct provided of course that the object is motionless, and that U is kept within the

camera field of view. We can consequently consider U as physically the same point. It is

quite not the case for point P. Indeed, when the 2D ultrasound probe is moved and thus

positioned at another cross-section, the points in the image are those who belong to this

new cross-section which, physically and thus its 3D location, does not correspond to the

initial one (see Fig. 3.8). Consequently, the 3-D location of the new point P is different from



3.5. IMAGE POINT VELOCITY MODELING 63

Z

vz

ωy

X

Y

section S

ωz

US Image

P
y

vx ωx

vy

x

Figure 3.7: Representation of the probe velocity velocity vector on the ultrasound
image

that previously captured at the initial probe position, even if these two points represent a

same image point. That is, the two points P(t0 + ∆t), obtained at time t0 + ∆t after the

probe was moved, and P(t0), obtained at the initial time t0, are not physically the same

(referring to this difference, between the two points, by the term “not the same physical

entities” could also be employed). New technique to how to model the image point velocity

as function of the probe one need consequently to be developed. Note that the statement

we provide above is valid when the probe out-of-plane motions occur. If only the in-plane

motions occur, it is clear that point P can be physically the same. However, we made a

statement for a general case, where all the probe motions are involved, and not for the

specific case of in-plane motions. Note also that the modeling we present in this chapter

is valid whether only probe in-plane motions, only out-of-plane motions, or both motions

are considered.

This manner, discussed above, that according to, a 2D ultrasound probe interacts with its

environment yielded consequently the modeling of this interaction quite challenging. This

was made worse, because of the strong dependence of the image points variations on the

shape of the observed object.

Consider object (organ) O with which the probe is interacting. Let {Ro} be a 3-D cartesian

frame attached to this object (see Fig. 3.6). Let sRo be the rotation matrix representing

the orientation of {Ro} with respect to probe frame {Rs}, and sto = (tx, ty, tz) be the

translation vector defining the origin of {Ro} with respect to {Rs}. Consider now point P

which, we recall, lies on cross-section S (see Fig. 3.5 and Fig. 3.6). This point lies in the
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3D-space, where its coordinates with respect to object frame {Ro} are denoted by vector

position oP = (ox, oy, oz). The coordinates of P in probe frame {Rs} are denoted by

vector position sP, which represents nothing but the image coordinates of P. It is thus

given by sP = (x, y, 0), (see Fig. 3.6 right). Its first two elements x and y represent

respectively the abscissa and the ordinate of this point in the ultrasound image. Note that

its third element is equal to zero since this point lies within the probe observation plane

and thus has no elevation in Z direction. The image coordinates of point P can thus be ex-

pressed as function to its 3-D coordinates in the object frame as follows (see Appendix A.4):

sP = sRo
oP + sto (3.9)

We recall that our modeling first objective is to write the image point velocity (ẋ, ẏ) as

function of probe velocity v. This image velocity is enclosed in the vector sṖ, that is equal

to sṖ = (ẋ, ẏ, 0). That is the reason why we derive with respect to time t vector sP given

by the relationship (3.9). This yields:

sṖ = sṘo
oP + sRo

oṖ + sṫo (3.10)

where sṘo,
sṫo, and oṖ represent the time variation of respectively rotation matrix sRo,

translation vector sto, and vector position oP. The above relationship requires however at

least a brief interpretation before we should continue. The entity sṖ represents the velocity

of point P in the image, while oṖ represents its velocity in the 3-D space. Point P, as was

introduced, is a moving “particle” that slides through the observed object according to the

displacements of the probe planar beam (see Fig. 3.8). It is in fact not a concrete point,

but a virtual one. If the 2D ultrasound probe is stabilized on a cross-section of the object,

point P can therefore be attached to a corresponding physical point. Otherwise, it could

be related to object’s physical points only instantaneously. Virtual point P thus moves

with oṖ velocity with respect to the observed object. As illustration, if a camera system

is considered then the term oṖ would be null referring, as we have discussed above, to the

fact that point P would be motionless in the 3-D space, provided of course that the object

is motionless. It is quite different in the case of 2D ultrasound. In our case, indeed, P is

moving in the 3D-space and consequently oṖ 6= 0. Note that, for notational convenience,

the term “0” corresponds to the 3 × 1 null matrix 03×1. It will be frequently encountered

in the rest of this dissertation.
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Figure 3.8: Three points P1, P and P2 lying in the ultrasound cross-section. They
represent therefore the image points. They have been captured at a first time t0
and at another time t0 + ∆t after the probe had been moved from its initial location
(pose). We can note that each point is not physically the same as its corresponding
point lying in the other cross-section section (image), although they represent a same
image point.

Till now, the probe velocity v has not yet appeared in the relationship (3.10). Since the

objective is to write sṖ as function of v, we will now make this latter appear. Let us

therefore consider the following fundamental kinematic relationship:

{

sṘo = − [ω]×
sRo

sṫo = −v + [sto]× ω

(3.11)

where [a]× denotes the skew symmetric matrix associated to vector a (see Appendix A.2).

This above relationship relates time variation sṘo of rotation matrix sRo and time varia-

tion sṫo of translation vector sto as function of probe velocity v = (v,ω). Thus replacing

this relationship in (3.10), we have:

sṖ = − [ω]×
sRo

oP − v + [sto]× ω + sRo
oṖ (3.12)
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Recalling the vector cross-product properties (see Appendix A.2), we then have:

sṖ = −v − [ω]×
sRo

oP − [ω]×
sto + sRo

oṖ (3.13)

that can be written:

sṖ = −v − [ω]× (sRo
oP + sto) + sRo

oṖ (3.14)

Recalling the expression of sP given by (3.9), we finally obtain:

sṖ = −v − [ω]×
sP + sRo

oṖ (3.15)

that we prefer to write in the following appropriate form:

sṖ = −v + [sP]× ω + sRo
oṖ (3.16)

which represents the expression of image velocity sṖ = (ẋ, ẏ, 0) of point P as function of

probe velocity v = (v,ω), its image coordinates sP = (x, y, 0), rotation matrix sRo, and

its velocity oṖ in the 3-D space.

We want in fact to obtain the image point velocity as function of the velocity of only the

probe. It is however not the case for the relationship (3.16), where the velocity oṖ is also

involved. Entity oṖ therefore needs to be replaced. Point P results from the intersection

of the probe observation plane with the object. Its velocity oṖ represents the velocity of

its displacements in the 3D space according to the displacements of the ultrasound planar

beam. Point P always remains in the probe planar beam emitted by the probe even when

this latter moves. Therefore oṖ is obviously related to the probe motions, and thus is

inevitably constrained by probe velocity v. Indeed, this is shown in what follows where we

establish two constraints that point P can fulfill. Those two constraints then are used to
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Figure 3.9: Contour points - (a) A point P that lies on the cross-section’s contour C
is depicted along with the observed object in the 3-D space. Both its two locations
when the 2D ultrasound probe had been positioned at two different poses are shown.
The normal vector ∇F to the object surface at P is also shown - (b) A 2D ultrasound
image provided by the probe transducer.

replace oṖ as function of v in the relationship (3.16). A first key solution to obtain them

consists in dealing with the surface of the observed object.

Let OS be the set of points that lie on the object surface. Let also C be the contour

of cross-section S (see Fig. 3.9). It is therefore nothing but the contour in the image of S.

Term P now denotes a point that lies only on contour C (P ∈ C), and not in the interior

of S as it was so far considered. Therefore, P lies on the object surface.

3.5.1 First constraint

The object surface can be defined by a scalar relationship of the form:

F (oP) = F (ox, oy, oz) = 0 (3.17)

where F is a scalar function that represents the shape of object O. The above relationship

states that any point that lies on the object surface, as the case for P, satisfies F = 0. We
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Figure 3.10: Point P sliding on the object surface when the probe plane is moving.
Its 3-D position oPt1 when the probe is at an initial position at time t1, and its 3-D
position oPt2 when the probe is at another position at time t2 are depicted. We can
see that oPt1 6=o Pt2 . The path that P had followed is also depicted. Such path lies
on the object surface.

recall that oP = (ox, oy, oz) represent the 3-D coordinates of P in object frame {Ro}.

When the 2D ultrasound probe moves and thus sweeps the observed object, point P

also moves accordingly in the 3-D space in such a way it always remains within the probe

planar beam. This is due to the fact that P results from the intersection of that planar

beam with the object. Virtual point P, as now defined, always lies on contour C of the

image, and therefore it remains on object surface OS, even with the displacements of the

2D ultrasound probe (i. e., ∀ probe positions, P ∈ OS), provided of course that the probe

plane does not get out of the object. Consequently, P always satisfies the relation (3.17)

throughout its motions. That is, when P has moved from an initial location oPt1 , captured

at time t1, to another different location oPt2 , captured at time t2, (oPt1 6= oPt2), function

F is still equal to zero, i. e., F (oPt1) = F (oPt2) = 0, due to the fact that P is still on

the object surface (see Fig. 3.10). Consequently, since F (oP) remains constant, its time

derivative is equal to zero. This can be formulated by:

Ḟ (ox, oy, oz) = 0 , ∀P ∈ OS (3.18)
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Assuming object O is rigid, we can write:

Ḟ ( ox, oy, oz) = ∂F
∂ox

oẋ+ ∂F
∂oy

oẏ + ∂F
∂oz

oż

= o∇F⊤ oṖ
(3.19)

where o∇F = ( ∂F
∂ox ,

∂F
∂oy ,

∂F
∂oz ) is the gradient vector of F . It is expressed in object frame

{Ro}. It represents the normal vector to the object surface at point P (see Fig. 3.9). Since

Ḟ (oP) = 0, we finally obtain:

o∇F⊤ oṖ = 0 (3.20)

which represents the first constraint on velocity of point P in the 3-D space. This constraint

states that velocity vector oṖ in the 3-D space of point P is orthogonal to normal vector ∇F.

Consider plane π to which ∇F is orthogonal. The relationship (3.20) states, in fact, that

vector oṖ lies on π (see Fig. 3.11(a)). There is however an infinity of possible orientations

with which a vector can lie on a defined plane. This is, therefore, also the case for vector oṖ

(see Fig. 3.11(b)). Yet, point P represents a “particle” whose velocity, namely oṖ, should

clearly have an orientation in the 3-D space and thus on π (since oṖ lies on π). This is

described in the following, where we show that oṖ can satisfy a second constraint related

to its orientation on π.

3.5.2 Second constraint

Entity oṖ is a velocity that represents the differential displacements of point P, over a dt

differential time span, from a 3-D space position oP(t), at time t, to position oP(t+ dt), at

time t+dt (see Fig. 3.12). Note that in contrast to P that is a virtual point, both oP(t+dt)

and oP(t) are physical points. Indeed, oP represents the 3D coordinates of a point attached

to the surface of the object, while P represents a particle that is not attached to the object

surface but instead slides on it; at time t point P coincides with oP(t), while at time t+dt it

instead coincides with point oP(t+dt). – Note also that we made above a statement for the

case of general probe motions where both in-plane and out-of-plane motions are involved.

In the case only the in-plane motions are involved, point P can be attached to the object
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Figure 3.11: Orthogonality between vectors o∇F and oṖ deduced from the first con-
straint, given by the relationship (3.20) - (a) Vector oṖ lies within plane π, represented
by its normal o∇F - (b) Vector oṖ can lie on π with an infinity of possible directions
- (c) Evolution of image point P due to an out-of-plane motion.

surface and, thus, can be considered as a physical point. – However, when the out-of-plane

motions are involved, there is an infinity of points on the contour (object surface) with

which P can coincide at time t + dt, since P is a virtual one (i. e., there is an infinity of

possibilities for point a oP(t + dt)). This is represented with Fig. 3.11(c). We illustrate

this in the following. Consider a soft tissue object whose surface is exactly fitted with a

grid that encloses it. – Such grid is made, for example, from a material that yields it well

visualized in the 2D ultrasound image. – The grid consists of lines that homogeneously

travel along the object surface. The cross-section 2D ultrasound image thus shows mainly

discrete points in the image, points that result from the intersection of the grid with the

ultrasound beam. In fact, doing so, the problem is translated into a discrete one, in terms

of the set of considered image points. When the probe moves, along its orthogonal axis,

for example, the intersection points accordingly slide on the grid’s lines. Let us therefore

consider one point to make the illustration more fair. The velocity of the point in the image

is sṖ, while in the 3D space it is oṖ. It is clear that the grid can fit the object with an

infinity of configurations (as two examples of extreme configurations: the grid’s lines might

travel along a sagittal plane of the object or along its coronal plane). Therefore, there is

an infinity of directions with which P might slide on the object surface, since the point

slides on a grid’s line, which can have an infinity of configurations and thus of directions;

of course, the point must remain on the object surface (this is already satisfied thanks to

the first constraint formulated by the relationship (3.20)). Yet, both the infinity of grids

describe the same soft tissue object. Consequently, we can freely define a direction for

the motions of P in the 3D space, and thus the direction of oṖ (on the tangent plane, of

course). Defining a direction comes to set and perform a matching between the two points
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Figure 3.12: Velocity oṖ (in red), in the 3-D space, of a contour point P.

oP(t) and oP(t+ dt). Since however, as described above, the second point oP(t+ dt) can

have an infinity of locations on the contour, a correspondence between these two points

could be performed only through a virtual matching. In other words, a correspondence

rule (protocol) between the points need to be set, with which the virtual matching has to

comply. This is done in the following, where between the infinity of directions that oṖ

might have, we choose one that seems quite tangible. To summarize, this comes to choose

a point P(t + dt) to locate P(t) on the contour C(t + dt). Note that this way to proceed

is valid since the point velocity we model will be used to determine the variation of image

moment, that thanks to its integral effect requires only that the point have to be located on

C(t+ dt). In other words, choosing another location for P(t+ dt) would modify the result

of image point velocity, but would not change the result of image moment time variation.

Velocity oṖ is in fact generated by the probe out-of-plane motions. When the probe plane

sweeps a surface of a considered object, point P moves accordingly in such a way it remains

within the probe plane. Such sweep motions are mainly represented by the probe out-of-

plane motions. If for example only the probe in-plane motions are performed, then velocity
oṖ would be null. The out-of-plane motions lead the probe plane gets out of the initial

plane. Such motions are generated by the velocities vz, ωx, and ωy of the probe. Consider

the Z axis of the probe frame {Rs} (e. g., see Fig. 3.9 and Fig. 3.7 ). It represents in fact

the orthogonal vector to the in-plane motions (vx, vy, ωz). Since, as we highlighted above,

vector oṖ would be null if only the in-plane motions are involved, its tangible direction

seems therefore according to the probe Z axis, which is orthogonal to such motions. Let us

make such statement more illustrated. Consider a cylindrical object which is orthogonal
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oṖ

observed contour C(t)

Zs

∇F

(b)

Figure 3.13: Direction of oṖ within the plane π. Note that both oṖ and oṄ lie within
the plane π, which is not necessarily the case for the vector Z and the contour C.
This latter lies within the ultrasound image plane.

to the probe plane. When the probe moves along its orthogonal axis Z, it is clear that the

most tangible direction that point P moves along is the Z direction (i. e., the direction

of oṖ is Z). Consequently, we select the Z axis as the direction that, according to, the

point oP would move. – Note that by “according to the direction” we do not mean “along

the direction”, as it is more precisely described afterwards. – Such statement represents in

fact a protocol for the virtual matching. Each virtual point would move in the 3-D space

according to the direction of Z, i. e., the point P moves from the position oP(t) according

to the direction Z to reach the position oP(t+ dt). The matching objective is that all the

points lying in contour C(t), at time t, match their respective corresponding points on the

probe plane at time t+ dt, in such a way that the whole of matched points can constitute

contour C(t + dt). In other words, the objective is to model the configuration changes of

contour C in the image as function of the probe velocity. We can recall (Section 3.1) that

the visual features we use, namely the image moments, do not require matching of the

points in the image but only matching of the contour. This is therefore (although already

roughly highlighted) of great interest in our case, where only the contour can be matched

but not the points that are instead virtually matched. Indeed, image moments do not

require to specify which point corresponds to another one on the precedent image, but

instead they only require that the new points (as oP(t+ dt)) lie on the contour C(t+ dt).

That is the reason why, as introduced in this chapter, image moments represent relevant

visual features when dealing with the 2D ultrasound imaging modality.
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Hence, vector oṖ lies according to the direction of Z. However, the latter does not lie

in plane π as it is the case for oṖ. Therefore, the projection of Z on π represents the

vector whose direction is that of oṖ [see Fig. 3.13(a)]. – That is the reason why above we

distinguished between the term “according to” and “in direction of” when referring to the

relation between the vectors Z and oṖ.

Let therefore vector N be normal to the plane formed by ∇F and Z [see Fig. 3.13(b)]. This

vector can be obtained from the following vector cross-product:

oN = oZs × o∇F (3.21)

where oN is the expression of N in object frame {Ro}. Since oN is orthogonal to the

plane formed by Z and ∇F wherein vector oṖ is lying, the two vectors oN and oṖ are

consequently clearly orthogonal. This can be formulated by:

oN⊤ oṖ = 0 (3.22)

which represents the second constraint on the direction of vector velocity oṖ.

3.5.3 Virtual point velocity

After having established two constraints given by the relationships (3.20) and (3.22), image

point velocity (ẋ, ẏ) can finally be related as function of probe velocity v. The previously

obtained relationship of the image point velocity (3.16) is a system of three scalar equa-

tions with five scalar unknowns sṖ = (ẋ, ẏ, 0) and oṖ = (oẋ, oẏ, oż). Thanks to the two

constraints (3.20) and (3.22), which represent two scalar relationships, the whole number

of equations is raised to five scalar relationships, thus equalizing the number of unknowns,

and therefore yielding to a unique solution of this relationships system.

Firstly, going back to the relationship (3.16), it can be written:

sR⊤
o

sṖ = −sR⊤
o v + sR⊤

o [sP]× ω + oṖ (3.23)
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Multiplying it once by o∇F⊤ and then by oN⊤, we obtain after recalling the constraints

(3.20) and (3.22):

{

o∇F⊤ sR⊤
o

sṖ = −o∇F⊤ sR⊤
o v + o∇F⊤ sR⊤

o [sP]× ω

oN⊤ sR⊤
o

sṖ = −oN⊤ sR⊤
o v + oN⊤ sR⊤

o [sP]× ω

(3.24)

Expressions s∇F and sN of respectively vectors ∇F and N in probe frame {Rs} can be

obtained by:

{

s∇F = sRo
o∇F

sN = sRo
oN = sZs × s∇F

(3.25)

Replacing the above relationships in (3.24), we have:

{

s∇F⊤ sṖ = − s∇F⊤
v + s∇F⊤ [sP]× ω

sN⊤ sṖ = − sN⊤
v + sN⊤ [sP]× ω

(3.26)

that represents a system of two scalar equations with two scalar unknowns ẋ and ẏ, which

yields to the unique following solution:

{

ẋ = −vx −Kx vz − y Kx ωx + xKx ωy + y ωz

ẏ = −vy −Ky vz − y Ky ωx + xKy ωy − xωz
(3.27)

with:

{

Kx = fx fz /
(

f2
x + f2

y

)

Ky = fy fz /
(

f2
x + f2

y

) (3.28)
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such that s∇F = ( fx, fy, fz ).

The final obtained relationship (3.27) relates the image velocity of points lying on the image

contour as function of the probe velocity.

The jacobian matrix Lx is finally derived from (3.27) as follows:

Lx =

[

−1 0 −Kx −y Kx xKx y

0 −1 −Ky −y Ky xKy −x

]

(3.29)

We can note that the terms relating probe-in-plane motions (vx, vy, ωz) require only the

image coordinates (x, y) of the considered point lying on the image contour, while the

terms relating out-of-plane motions (vz, ωx, ωy) require also the knowledge of normal vec-

tor s∇F expressed in probe frame {Rs}. Note also that this jacobian is not affected by

the amplitude of s∇F, but only its direction. This can be deduced since its the case for

the two constraints (3.20) and (3.22) used to derive Lx. Indeed, those two relationships

employ only the direction of s∇F to constrain oṖ. An easy way to verify this, is that if the

amplitude of s∇F is varied, coefficients Kx and Ky remain unchanged.

This first result we obtained above is now exploited to develop the relationship of image

moment time variation ṁij as function of probe velocity v, as was introduced and described

by (3.2). This is presented in the following section.

3.6 Image moments time variation modeling

The modeling objective is now to relate time variation ṁij of image moment mij as func-

tion of probe velocity v according to the linear relationship (3.5). To do that, we go back

to relationship (3.8). However, that relationship is function of image velocity of the whole

points lying in image section S. It requires therefore the relationship of that image velocity.

In the previous section, the image velocity we modeled is nevertheless that of points lying

only on the image contour C, and not that of the whole section points. Consequently, the

relationship (3.8) can not be used as is. It requires instead to be formulated as function

of the image velocity (ẋ, ẏ) of only the points lying on section’s contour C. This can be

performed thanks to the Green’s theorem [73].
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The Green’s theorem states indeed a relationship between a line integral around a simple

closed curve and a double integral over a planar region bounded by that curve. This is

therefore equivalent to our case, where the planar region corresponds to image section S
and its bounding curve to contour C. Considering two scalar functions Fx and Fy, the

Green’s theorem is given by:

∮

C
Fx dx+

∮

C
Fy dy =

∫ ∫

S

(

∂Fy

∂x
− ∂Fx

∂y

)

dx dy (3.30)

This formula can thus be used to express (3.8), which is formulated as a double integral

over section S, in a form of a line integral around contour C. Identifying the second term of

(3.8) to the second term of (3.30), we directly deduce Fx = −ẏ f(x, y) and Fy = ẋ f(x, y).

Replacing this result in the first term of the formula (3.30), the image moment time varia-

tion is then expressed as a line integral around C as follows:

ṁij = −
∮

C
[ f(x, y) ẏ ] dx+

∮

C
[ f(x, y) ẋ ] dy (3.31)

which is function of image velocity (ẋ, ẏ) of points lying only on contour C. We can therefore

directly use the previous result of the image velocity of contour points (3.27) in the above

relationship. Before doing that, let us express image moment mij also as a line integral

around C.

The Green’s theorem given by the formula (3.30) in once again employed, but this time on

(3.3). Identifying the second term of the former relationship to the latter one, we can find

that (Fx = − 1
j+1 x

i yj+1, Fy = 0) is one solution. Replacing this result in the first term of

(3.30), we can thus formulate:

mij =
−1

j + 1

∮

C
xi yj+1 dx (3.32)

Similarly, we can also find that (Fx = 0, Fy = 1
i+1 x

i+1 yj) is another solution. Replacing

also this result in the first term of (3.30), we can furthermore formulate mij by:
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mij =
1

i+ 1

∮

C
xi+1 yj dy (3.33)

Finally, replacing the image velocity of contour points (3.27) in (3.31), then identifying

image moments according to (3.32) and (3.33), we obtain the six elements of interaction

matrix Lmij
, presented by (3.6), that relates image moment time variation ṁij as function

of probe velocity v. We obtain:



































mvx = −imi−1,j

mvy = −j mi,j−1

mvz = xmij − ymij

mωx = xmi,j+1 − ymi,j+1

mωy = −xmi+1,j + ymi+1,j

mωz = imi−1,j+1 − j mi+1,j−1

(3.34)

where:
{

xmij =
∮

C x
i yj Ky dx

ymij =
∮

C x
i yj Kx dy

(3.35)

We thus have reached the modeling objective, consisting in relating image moment time

variation ṁij as function of probe velocity v in a linear form (3.5) as presented in Sec-

tion 3.4.

Similarly to the image point velocity (3.27), we note that elements (mvx, mvy, mωz) of the

interaction matrix related to the probe-in-plane motions (vx, vy, ωz) require only informa-

tion from the observed image, namely image moments. As for elements (mvz, mωx, mωz)

related to the out-of-plane motions (vz, ωx, ωy), however they furthermore necessitate the

knowledge of normal vector s∇F to the object surface at each of the contour points. The

normal vector is in fact enclosed in coefficients Kx and Ky, of (3.28), involved in the above

relationship. Note also that the interaction matrix is insensitive to s∇F’s amplitude, since

it is as such for jacobian matrix Lx used to derive it, as shown earlier.
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Figure 3.14: A 2D ultrasound probe interacting with a spherical object. When it
performs a differential displacements vz along its z axis, the initial value of the image
section radius r(t) changes to the value r(t + dt), (depicted in red).

3.7 Interpretation for simple shapes

In this section, the above developed theoretical foundations are applied in order to be

validated on some simple shapes, like spheres and cylinders.

3.7.1 Spherical objects

Consider the case where a 2D ultrasound probe interacts with a spherical object. Let R

be the radius of this sphere. Object frame {Ro} is attached to the sphere center. Vector

position sto thus defines in this case the coordinates of the sphere center in the probe

frame, and rotation matrix sRo describes the orientation of {Ro} with respect to probe

frame {Rs} (see Fig. 3.14). We first want to derive the corresponding analytical form of

interaction matrix Lmij
by applying the general relationship (3.34) we obtained above.

Before, we need to derive also the analytical form of coefficients Kx and Ky involved in

the relationship (3.27) of the image point velocity as function of probe velocity v, since

these two coefficients are required in the interaction matrix formula (3.34). So, we use the

general relationship of Kx and Ky given by (3.28), by applying it to this case.
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Image point velocity

In this case, the relationship (3.17) is satisfied by any point P lying on the sphere surface.

It is therefore given by:

F (ox,o y,o z) = (ox/R)2 + (oy/R)2 + (oz/R)2 − 1 = 0 (3.36)

where we recall that oP = (ox, oy, oz) is a vector position defining the 3-D coordinates of

point P in object (sphere) frame {Ro}. It can be expressed as function of image coordinates
sP = (x, y, 0) of P as given by (3.9):

oP = sR⊤
o (sP − sto) (3.37)

Normal vector o∇F to the sphere surface at P is the gradient vector of scalar function F ,

and thus is given by o∇F = (∂F
∂x ,

∂F
∂y ,

∂F
∂z ). We obviously obtain o∇F = 2

R2

o
P. Replacing

oP with the above relationship, yields:

o∇F =
2

R2
sR⊤

o (sP − sto) (3.38)

that we express in {Rs} by multiplying with rotation matrix sRo:

s∇F =
2

R2
sRo

sR⊤
o (sP − sto) (3.39)

Since sRo
sR⊤

o = I, we obtain after recalling that sP = (x, y, 0) and that sto = (tx, ty, tz)

(Section 3.5, pp. 63):

s∇F = 2
R2 (sP − sto)

= 2
R2 (x− tx, y − ty, − tz)

⊤ (3.40)

Replacing this result in the relationship (3.28) of the coefficients Kx and Ky, yields:

{

Kx = −tz (x− tx)/
(

(x− tx)2 + (y − ty)
2
)

Ky = −tz (y − ty)/
(

(x− tx)2 + (y − ty)
2
) (3.41)
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The above relationship can in fact be expressed in a more simple and appropriate form.

We first formulate (3.36) as follows:

F (ox, oy, oz) = oP⊤ oP −R2 = 0 (3.42)

Substituting oP according to (3.37) and recalling that sRo
sR⊤

o = I, the equation (3.42)

becomes:

(sP − sto)
⊤ (sP − sto) −R2 = 0 (3.43)

then replacing sP and sto with their respective expressions yields:

(x− tx)2 + (y − ty)
2 + t2z −R2 = 0 (3.44)

The above relationship states that the intersection of a planar beam with a sphere is a

disk (or a circle if the spherical object is hollow) of radius r =
√

R2 − t2z and of center

coordinates (tx, ty) in the image.

Let a be the area of section S in the image. In this case it represents the area of the disk

region (or of the region surrounded by the circle if the object is hollow). It is therefore given

by a = π r2 = π (R2 − t2z). Substituting (x − tx)2 + (y − ty)
2 according to (3.44) in (3.41)

and taking into account the expression of the area a, we finally obtain the expressions of

Kx and Ky in the case of a spherical object as follows:

{

Kx = −π tz (x− tx)/a

Ky = −π tz (y − ty)/a
(3.45)

We can note that the image point velocity, from its parameters Kx and Ky obtained above,

does not require rotation matrix sRo between the object and the probe frames. This can

be explained by the fact that a sphere does not possess any orientation in the 3-D space.
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Interaction Matrix

The three elements (mvz
, mωx

, mωy
), of the interaction matrix Lmij , that relate image

moment time variation ṁij as function of the probe out-of-plane motions (vz, ωx, ωy) are

formulated by (3.34) for a general case. We want to obtain their specific and simple form

in the case of a spherical object. We use the simple form of the coefficients Kx and Ky

given by (3.45), derived for the sphere case. These two coefficients are involved in those

three elements of the interaction matrix. The three other elements (mvx
, mvy

, mωz
), of the

interaction matrix, that relate the in-plane motions are already given by (3.34) in a simple

and appropriate form, since they are function of only the image moments. Replacing (3.45)

in (3.35), we have:

{

xmij = πtz [(j + 1)mij − j ty mi,j−1] /a
ymij = πtz [−(i+ 1)mij + i txmi−1,j ] /a

(3.46)

and then obtain the term involved in the three elements (mvz
, mωx

, mωy
) of Lmij

, as follows:

xmij − ymij =
π tz
a

[(i+ j + 2)mij − itxmi−1,j − jty mi,j−1] (3.47)

As introduced, image moments can describe the configuration of a section in the image.

Since this case concerns an interaction with a spherical object, the observed section in

the image is a disk or circle. Consequently, the configuration in the image of such section

can be described just with three parameters that obviously are: the area a and the image

coordinates (xg, yg) of the gravity center of the section. These three parameters can be

expressed in terms of image moments as follows (e. g., [40]):











a = m00

xg = m10/m00

yg = m01/m00

(3.48)

The interaction matrices that relate the time variation of a, xg and yg can be obtained by

applying the relationship of image moment time variation ṁij given by (3.34), and then

using the result (3.47) we obtained for the case of a spherical object. We denote, even in a

general case, these three matrices by La, Lxg
, and Lyg

referring respectively to a, xg, and
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yg. They are obtained as follows:

La = [ 0 0 avz aωx aωy 0 ]

Lxg
= [ −1 0 xgvz

xgωx
xgωy

yg ]

Lyg
= [ 0 −1 ygvz

ygωx
ygωy

−xg ]

(3.49)

with:































































avz = 2π tz
aωx = π tz ( 3 yg − ty)

aωy = −π tz ( 3xg − tx)

xgvz
= π tz/a (xg − tx)

xgωx
= π tz/a [ 4n11 − yg (tx + 3xg) ]

xgωy
= π tz/a [ −4n20 + xg (tx + 3xg) ]

ygvz
= π tz/a ( yg − ty)

ygωx
= π tz/a [ 4n02 − yg (ty + 3 yg) ]

ygωy
= π tz/a [ −4n11 + xg (ty + 3 yg) ]

(3.50)

where:

nij = mij/a (3.51)

The elements of these interaction matrices that are related to the out-of-plane motions

can be expressed in more simple form. We can indeed first notice that since (tx, ty) rep-

resent the center of the disk (or circle), as concluded from the relationship (3.44), they

are therefore nothing but the gravity center (xg, yg) of the section in the image, i. e.,

(tx = xg, ty = yg). We show in Appendix B.2 that the entities n20, n11, and n02, involved

in (3.50), also can be expressed in a more simple form.

Finally, we obtain a more simple form of La, Lxg
and Lyg

in case of a spherical object, by

replacing (B.30), (B.25), and (B.20) in (3.50), and recalling that (tx = xg, ty = yg), as

follows:
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La = 2π tz [ 0 0 1 yg −xg 0 ]

Lxg
= [ −1 0 0 0 −tz yg ]

Lyg
= [ 0 −1 0 tz 0 −xg ]

(3.52)

These matrices depend only of the gravity center image coordinates (xg, yg), and elevation

tz of the sphere center with respect to the probe frame.

Verification

In case the probe performs a motion along its axis Z, we can calculate time variation ȧ

of area a with another method different from the general one of this thesis. This allows

us to check the identicalness of the two methods respective results, and thus to verify the

correctness and the validity of the developed theoretical foundations of this thesis when

applied to this case. The probe velocity is, in this case, v = (0, 0 , vz, 0, 0, 0), since only

a translational motion along Z is performed. The element of the interaction matrix (3.52)

involved in such motions is avz
, obtained equal to 2π tz. Assuming such probe motions,

this coefficient is calculated below with another method. Note however that the result that

we obtain would be still valid for the case where all the probe motions are applied.

Let h be the elevation of the probe frame from the sphere origin (see Fig. 3.14). It is

therefore nothing but h = −tz, where we recall that sto = (tx, ty, tz) is the vector position

defining the coordinates of the origin of frame {Ro} in probe frame {Rs}. Since vector Z of

{Rs} is orthogonal to the probe observation plane, sphere radius R thus can be expressed

as function of elevation h and radius r of the section in the image (see again Fig. 3.14) as

follows:

R2 = r2 + h2 (3.53)

that we derivate with respect to time t, as follows:

RṘ = r ṙ + h ḣ (3.54)

The sphere radius is constant and thus its time derivative Ṙ is null, i. e., Ṙ = 0. Since h

represents the elevation it is clear that ḣ = vz. We thus have from (3.54) after recalling

that h = −tz:

rṙ = −h vz = tz vz (3.55)
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Since the image cross-section is a disk (or a circle), area a of the region it covers is given

by a = π r2. Time derivating a yields:

ȧ = 2π r ṙ (3.56)

Finally replacing r ṙ with its expression (3.55), we obtain

ȧ = 2π tz vz (3.57)

and thus:

avz
= 2π tz (3.58)

This result is identical to that previously obtained (3.52) with the general modeling ap-

proach. This consequently theoretically validates the general modeling technique of this

thesis, when applied to the case of spherical object, concerning the element involved in the

probe motion along its Z axis.

3.7.2 Cylindrical objects

Consider now the case where a 2D ultrasound probe interacts with a cylindrical object

(see Fig. 3.15). When the probe performs translational motions along its Z axis, that is

v = (0, 0 , vz, 0, 0, 0), image section area a clearly does not vary. This means that, even

in a general case, the coefficient avz
that relates time variation ȧ of a to probe velocity

(ȧ = avz
vz) is null (avz

= 0). We want to verify that, by using the general result (3.34) we

obtained, and applying it on this case, we can indeed retrieve that expected result, that is

avz
= 0. This is shown in what follows.

The coefficient avz
corresponds to the element mvz

of the formula (3.34), for i = j = 0

since a = m00. It is thus expressed as follows:

avz
= mvz

= xm00 − ym00 (3.59)

using (3.35) yields:

avz
=

∮

C
Ky dx−

∮

C
Kx dy (3.60)

then substituting Kx and Ky with their respective expressions given by (3.28), we have:
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Figure 3.15: A 2D US probe interacting with a cylinder-shaped object. The probe
performed an out-of-plane motion with velocity vz during ∆t time span.

avz
=

∮

C

fy fz

f2
x + f2

y

dx−
∮

C

fx fz

f2
x + f2

y

dy (3.61)

where we recall that s∇F = (fx, fy, fz) represents the normal to the object surface (the

cylindrical surface in this case) at point P.

The previous relationship (3.17) represents a constraint satisfied by any point lying on

the surface of a general object. When the object is cylinder-shaped, as in this case, it is

formulated as follows:

F (ox,o y, oz) = (ox/a1)
2 + (oy/a2)

2 − 1 = 0 (3.62)

where a1 and a2 represent the half length values of the cylindrical object main axes (see

Fig. 3.15). We recall that vector position oP = (ox, oy, oz) represents the 3-D coordinates

of point P in the object frame, and sP = (x, y, 0) its image coordinates. From the above

relationship, we can set the following change of coordinates:

{

ox = a1Cθ
oy = a2 Sθ

; 0 6 θ < 2π (3.63)
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with Cθ = cos(θ) and Sθ = sin(θ), such that θ represents the angle in the image.

Normal vector o∇F expressed in {Ro} can be derived from function F , given by (3.62), as
o∇F = ( ∂F

∂ox ,
∂F
∂oy ,

∂F
∂oz , ). We thus have:

o∇F =







2 ox/a2
1

2 oy/a2
2

0






(3.64)

substituting ox and oy with their respective expressions (3.63) as function of angle θ, yields:

o∇F = 2







Cθ/a1

Sθ/a2

0






(3.65)

that can be expressed in probe frame {Rs} by multiplying with rotation matrix sRo:

s∇F = 2 sRo







Cθ/a1

Sθ/a2

0






(3.66)

Coefficient avz
, which is formulated in (3.61) as a line integral around image contour C, can

be expressed as an integral over angle θ as follows:

avz
=

∫ 2π

0

fz

f2
x + f2

y

(fy
dx

dθ
− fx

dy

dθ
) dθ (3.67)

From (3.63) and using the relationship (3.9), image coordinates sP = (x, y, 0) can be

expressed as function of angle θ. After denoting rkl the elements of the rotation matrix

such that rkl = sRo(k, l), the derivative of x and y with respect to θ are:



















dx/dθ = − a1(r11 − r13/r33 r31)Sθ

+ a2(r12 − r13/r33 r32)Cθ

dy/dθ = − a1(r21 − r23/r33 r31)Sθ

+ a2(r22 − r23/r33 r32)Cθ

(3.68)

replacing this in (3.67), we have:

avz
=

∫ 2π

0

(ǫ1Cθ
2 + ǫ2Cθ Sθ + ǫ3 Sθ

2)(ǫ4Cθ + ǫ5 Sθ)

ǫ6Cθ2 + ǫ7Cθ Sθ + ǫ8 Sθ2
dθ (3.69)

where ǫk|k=1..8
are 3D parameters such that ǫk = ǫk(

sRo, a1, a2). We then obtain:
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avz
=

[

σ0
∑

ri
ψi(ri) ln(tan(θ/2) − ri) +

∑

σk
σk tan(θ/2)/[tan(θ/2)2 + 1]

]2 π

0

(3.70)

where σk are also 3-D parameters, such that σk = σk(
sRo, a1, a2). The entity ψi is a scalar

function of the scalar ri, where ri|i represent the roots of the polynomial ǫ6 r
4 − 2 ǫ7 r

3 +

2 (−ǫ6 + 2ǫ8)r
2 + 2 ǫ7 r + ǫ6. Consequently, ri is function of only a1, a2 and sRo, i. e.,

ri = ri(
sRo, a1, a2). Therefore, in contrast to the entities ψi, ri, and σk, only tan(θ) is

function of the angle θ.

Finally, since tan(0) = tan(π) = 0, we easily obtain from (3.70) that avz
= 0. This result

we obtained by applying the general relationship (3.34) on the case of a cylindrical object

exactly corresponds to that expected above.

3.7.3 Interaction with a 3D straight line

The modeling technique we proposed in this thesis can also be applied to the case where a

2D ultrasound probe interacts with 3D straight line-shaped wire (see Fig. 3.16), although

such a geometrical primitive does not correspond to a closed volume. The intersection of

the probe plane with the wire results in a point P in the image, instead of a section in

the image. Since we deal with only one image point the concept of image moments seems

not relevant to this case. We consider therefore only the modeling of the image velocity
sṖ = (ẋ, ẏ, 0) of P.

Let 3-D vector u represent the orientation of that 3-D straight line, denoted D. We take

back the relationship (3.16) in order to model the image point velocity. Its is clear that

point P slides on D. Consequently, vector 3-D velocity oṖ of P and vector u of D are

collinear. It is well known that the vector cross-product of two collinear vectors is null, and

thus we have:

ou × oṖ = 0 (3.71)

where ou is the expression of u in the object frame. The above constraint can be expressed

in probe frame {Rs} instead of {Ro} by multiplying with sRo. We thus have:



3.7. INTERPRETATION FOR SIMPLE SHAPES 88

Ultrasound planar beam

2D ultrasound image

2D ultrasound probe
transducer

P

Y

X x

y

X
{Rs}

Z

Y

D

o
Ṗ
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Figure 3.16: A 2D ultrasound probe interacting with a 3D straight line-shaped wire
(left). The observed point P in the image is sketched on the right. It velocity oṖ in
the 3-D space is shown in red. Note that its orientation is arbitrarily set. It could
either as depicted or in the inverse direction, depending on the probe motions.

( sRo
ou ) × ( sRo

oṖ ) = 0

⇔ su × ( sRo
oṖ ) = 0

⇔ [su]×
sRo

oṖ = 0

(3.72)

Going back to the relationship (3.16) and multiplying it by [su]×, we have:

[su]×
sṖ = − [su]× v + [su]× [sP]× ω + [su]×

sRo
oṖ (3.73)

taking then into account the constraint (3.72), yields:

[su]×
sṖ = − [su]× v + [su]× [sP]× ω (3.74)

since [su]× is a skew symmetric matrix, its rank is equal to two (rank([su]×) = 2), which

represents the number of independent equations at the left of the above system. Therefore

the number of independent equations is equal to the number of unknowns sṖ = (ẋ, ẏ, 0),

which finally leads to the unique following solution (ẋ, ẏ):
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(

ẋ

ẏ

)

=

[

−1 0 ux

uz

0 −1 uy

uz

]

v +

[

ux

uz
y − ux

uz
x y

uy

uz
y − uy

uz
x − x

]

ω (3.75)

This result we obtain is identical to that given in [44].

3.8 Conclusion

In this chapter we have modeled the exact analytical form (3.34) of the interaction matrix

that relates the image moments time variation to the velocity of a 2D ultrasound probe

carried by a general 6 DOFs robot arm. To do that, we have developed new theoretical

foundations that analytically states the image points velocity as function of the probe ve-

locity, as given by (3.27). We recall that the image velocity was modeled for the points

lying only on the image contour, that we denoted C, and not for all the points lying on

the whole image section, that we denoted S. Thanks to the Green’s theorem, the image

moments time variation was formulated as function of only the image contour points, whose

developed image velocity relationship was used to analytical derive that of image moments

time variation. The obtained relationships represent the interaction matrix Lmij
. We

noted that three elements of the interaction matrix that relate the probe-in-plane motions

require information only from the observed image, that are image moments. In contrast,

the remaining three elements that relate the probe-out-of-plane motions also require the

knowledge of normal vector ∇F to the object surface at each of the contour points. Finally,

the modeling method we proposed is valid for general shaped objects.

We tested this general result in the case where a 2D ultrasound probe is interacting with a

spherical object, a cylindrical object, or a 3-D straight line-shaped wire. We have obtained

a simplified form (3.52) of the interaction matrix for the case of the spherical object.

Moreover, we have theoretically validated the correctness of an element that relate the area

time variation to probe velocity. This was achieved by calculating that element with another

modeling approach, suitable for that case. Applying the general method on cylindrical

objects, we have found that an element, of the interaction matrix, that relates the image

area time variation to the probe velocity, is null. This theoretical result also validates the

modeling approach of this thesis.





Chapter 4

Normal vector on-line estimation

In the previous chapter we have modeled the analytical form of the interaction matrix

(3.34) that relates the image moments time variation to the probe velocity. It was noted

that the normal vector to the surface of the observed object, at each point lying on the

contour of the image section, appears in this matrix. This normal vector could be derived if

a pre-operative 3-D model of the object is available. That would also necessitate a difficult

step to localize the object frame with respect to the sensor frame (the probe frame in this

case). In this chapter, we propose efficient methods to estimate on-line the normal vec-

tor, and thus bypass and overcome those limitations imposed by any pre-operative model.

These methods can valuably endow the robotic system with the capability of automati-

cally interacting with objects without any prior knowledge of their shape, 3-D parameters,

nor their 3-D location (pose). They are discriminated according to the geometrical primi-

tives considered to estimate the normal vector. We propose to separately use straight line,

curved line, and quadric surface primitives.

Let point P lie in the 2D ultrasound image. More particularly, let this point belong to con-

tour C of image section S. Consequently, this point lies on the surface of observed object

O. The objective is in fact to obtain the vector normal to the object surface at point P

(see Fig. 4.1). We already denoted this vector by ∇F in the previous chapter.

4.1 On-line estimation methods based on lines

Let vector di be tangent to the object surface at considered point P, such that it belongs

to the probe beam (image), as can be seen on Fig. 4.1. Let vector dt be also tangent to the

object surface at P but, in contrast to di, it does not lie in the probe observation plane.

Therefore, performing the vector cross-product on these two vectors clearly gives vector
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Figure 4.1: Normal vector to the object surface, along with two tangent vectors di

and dt, at point P.

∇F (see Fig. 4.1). This is formulated as follows:

s∇F = sdi × sdt (4.1)

where s∇F, sdi, and sdt are the expressions in probe frame {Rs} of vectors ∇F, di, and

dt, respectively. Note that we are interested only in the direction of s∇F, not its ampli-

tude. Indeed, the interaction matrix is not affected by the amplitude of s∇F but only its

direction, as already shown in Chapter 3. This said, we can set s∇F to a unitary vector.

Since vector sdi lies in the probe observation plane and is, moreover, expressed in the

probe frame, it can be extracted from the observed 2D ultrasound image. It is however

not the case for vector sdt. Indeed, this vector does not lie in the probe observation plane,

and therefore can not be extracted from solely the observed image. We need therefore

to estimate sdt in order to obtain s∇F. Such an estimation seems efficient since we do

not have to estimate in whole the normal vector but only a part of it, which is vector
sdt, since its second part, vector sdi, is already available. In this section, we present two

methods to estimate sdt. The principle consists in making use of the successive acquired

2D ultrasound images to estimate 3-D lines that are tangent to the surface of the observed

object. The estimation is performed for each point of the image contour. It is subsequently

used to extract an estimate of vector sdt, tangent at each of those points. As presented in

what follows, the first method is based on the estimation of 3-D straight lines, while the
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Figure 4.2: Straight line tangent to the object surface at point P.

second method, even if it has the same concept as the first one, is based on estimating 3-D

curved lines. Note that the methods are described for estimating sdt at one point P, but

the same principle is applied for all the other image contour points; since the interaction

matrix requires s∇F at each of the contour points.

4.1.1 Straight line-based estimation method

Let 3-D straight line D be tangent to the object surface at point P (see Fig. 4.2). It is

assumed not lying within the probe observation plane. Since both D and dt are tangent

to the object surface and do not lie within the image plane, we can set that the direction

of D in nothing but vector dt we want to estimate, as shown in Fig. 4.2. We thus propose

in this section to estimate D, from which we then infer sdt.

Consider that the probe is performing out-of-plane motions while at same time acquiring

successive 2D ultrasound images of the considered object. From each of the acquired im-

ages, contour C is extracted. Such contour is subsampled in a set of L points (P1, · · · ,PL)

lying on it. We denote such set by Cp. – In practice, we use around L =400 image points to

characterize the contour. – Within the image, these points are arranged such that the first

point P1 intersects the X axis of image frame centered on section S. The remaining points

are successively located by traveling around C in counterclockwise direction, as depicted in

Fig. 4.3. We can consider Cp as a vector whose elements are those contour points. Point

P corresponds to element Pi of Cp. Let point P(t) lie on image contour C(t) at time t,



4.1. ON-LINE ESTIMATION METHODS BASED ON LINES 94

Y

X

PL

P2Pi

P1

Contour C

S

X

2D cartesian frame centered on S

Section’s center

Figure 4.3: Arrangement of image contour points in a set Cp = [P1,P2, · · · ,PL].
The first point P1 intersects the X axis of the frame centered on image section S.
The image 2D cartesian frame is indicated with its (X, Y ) axes (bottom left).

and P(t+ dt) lie on subsequent contour C(t+ dt), extracted after the probe had performed

a differential out-of-plane motion during a duration dt (see Fig. 4.4). Elements P(t) and

P(t + dt) have the same index in their respective sets Cp(t) and CP(t + dt) (i. e., P(t)

corresponds to a point Pi of set Cp(t), and P(t + dt) to a point Pi of Cp(t + dt), where

subscript i is their common index). Note that we assume that number L of points extracted

from each of the successive images is constant all along the estimation. A straight line that

passes through these two points P(t) and P(t+dt) is therefore tangent to the surface of the

observed object. Such straight line thus corresponds to D that we want to estimate (see

Fig. 4.4). Theoretically, two points are enough to estimate D. This however is not the case

in practice due to different factors. Indeed, due to measurement perturbations, as instance,

the recorded points could be either too close to each other or, inversely, misaligned. Either

configuration would lead to a wrong estimation of D. That is the reason why we use in the

estimation more points; respectively extracted from the successive images.

Considering successively extracted points from the succeeding acquired images, where these

points have a same index in their respective set CP, the estimation principle then consists

in fitting them with straight line D. The latest extracted point corresponds to P, at which

D should be tangent to the object surface. To do so, the estimation is also performed by

assigning different weights to the extracted points, such that the current (new) point P is
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D

dt

C(t)

P(t)
P(t + dt)

P1 at t

C(t + dt)

X[t+dt]

X[t]

P1 at t + dt

di

Figure 4.4: Image contour 3D evolution with a corresponding tangent straight line
D. In the 3-D space, the contour lies on the surface of the observed object. Contour
C(t) is extracted from the ultrasound image at time t, while C(t + dt) is extracted
at time t + dt after the probe had performed an out-of-plane motion. Contour’s first
point P1 at time t and that at time t + dt are indicated. They correspond to the
intersection of X axis of the centered image frame with the contour, respectively at
time t and at time t + dt. The X axis of time t is denoted X[t], while that of time
t + dt is denoted X[t+dt].

assigned with the highest weight; the values of the different assigned weights are arranged

in a decreasing fashion. In fact, each new extracted point, along with its assigned highest

weight, updates the estimation of D in such a way this latter adjusts its orientation to

become tangent to the object surface at P (see Fig. 4.5). In other words, consider the two

successive points P[k−1] and P[k] respectively acquired at the precedent sample time k − 1

and the current one k (note that k refers to time t in the discrete domain). At time k− 1,

D is considered already estimated to be tangent to the surface at P[k−1]. The objective

is to re-estimate D in such a way it becomes tangent at P[k]. The latter, along with its

assigned highest weight, leads D adjusting its orientation to become tangent to the surface

at P[k].

Let {Ri} be a 3-D cartesian frame in which D is estimated (see Fig. 4.2). It corresponds

to initial probe frame {Rs(t0)}. Let point h lie on D (see Fig. 4.2). Its expression in {Ri}
is ih. A point P that lies on D satisfies the following relationship:

(

ih − iP
)

× idt = 0 (4.2)
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where iP = (ix, iy, iz) and idt = (dx, dy, dz) are the expressions of respectively P

and dt in frame {Ri}. 3-D coordinates vector iP is obtained from image coordinates
sP = (x, y, 0) using the robot odometry, according to the classical relationship (A.9) by
iP = sR⊤

i ( sP − sti). Rotation matrix sRi and translation vector sti are obtained from

the robot odometry. They define respectively the orientation and the origin of {Ri} with

respect to {Rs}. The above relationship can be formulated in its minimal form as follows:

{

ix = η1
iz + η0

iy = τ1
iz + τ0

(4.3)

where η1 = dx/dz and τ1 = dy/dz are 3-D parameters representing the orientation of D.

The elements η0 and τ0 are also 3D parameters, but are moreover related to the location

of D since they are function of both idt and iP0. Vector idt can be expressed as:

idt = dz







dx/dz

dy/dz

1






= dz







η1

τ1
1






(4.4)

The direction of a vector cross-product, as that of the relationship (4.1), is affected solely

by the direction of the vectors and not their amplitude. Therefore, we only need to estimate

the direction of dt. This comes to estimate parameters η1 and τ1 since they represent its

orientation, as can be seen from the above relationship. The model used for the estimation

is the relationship (4.3), where coordinates (ix, iy, iz) are the input information while

Θ = (η1, τ1, η0, τ0) is the vector to estimate.

The system (4.3) can be formulated as follows:

Y = Φ⊤Θ (4.5)

where

Y = (ix, iy) and Φ⊤ =

(

iz 0 1 0

0 iz 0 1

)

(4.6)

We propose to use a stabilized recursive least-squares algorithm [43]. The principle consists

in finding an estimate Θ̂ of vector Θ that minimizes the following quadric sum J(Θ̂[k]) of

the residual errors:



4.1. ON-LINE ESTIMATION METHODS BASED ON LINES 97

Probe observation plane
Sphere surface

P
Y

X

(a)

Probe observation plane

Probe motion

Observed spherical object

D at time t1 < t2

Z

Z

Z

P

P

P

D at time t2 < t3

D at time t3

(b)

Figure 4.5: Evolution of estimated 3-D straight line for the case a 2D ultrasound
probe is interacting with a spherical object. (a) Upper sight showing point P lying
on the sphere surface, both being observed by the probe planar beam - (b) Transverse
sight: the probe is performing an out-of-plane motion by moving along its Z axis,
while at the same time straight line D continually adjusts its orientation to remain
tangent to the sphere surface at P.
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J(Θ̂[k]) =
k
∑

i=t0

β(i−t0) (Y[i] − Φ⊤
[i] Θ̂[i])

⊤ (Y[i] − Φ⊤
[i] Θ̂[i]) (4.7)

where Θ̂[i] is the estimate and (Y[i], Φ[i]) are the measures at sample time i. The scalar

β ∈]0, 1] is a forgetting factor assigned to the estimation errors Y[i] − Φ⊤
[i] Θ̂[i]. It is

employed to give highest weights to the newly recorded measures. Vector Θ̂[k] minimizing

J is expressed in a recursive form as function of the current measures (Y[k], Φ[k]) and the

precedent estimate Θ̂[k−1], as follows [43]:

Θ̂[k] = Θ̂[k−1] + F[k] Φ[k]

(

Y[k] − Φ⊤
[k] Θ̂[k−1]

)

(4.8)

where F[k] represents the covariance matrix at time k. It is given by the following relation-

ship, also recursive:

F−1
[k] = β F−1

[k−1] + Φ[k] Φ
⊤
[k] + (1 − β) β0 I4 (4.9)

where I4 is the 4 × 4 identity matrix. Its dimension refers to the four parameters of Θ

to estimate. The term (1 − β) β0 I4 corresponds to a stabilization element. It is added in

order to prevent the matrix F−1
[t] becoming ill-conditioned. The latter might occur when

there is not enough excitation in the input information (Y, Φ). This is mainly caused by

lack of probe out-of-plane motions. The algorithm is initialized by setting F[t0] = f0 I4,

with f0 ∈]0, 1/β0], and Θ[t0] = Θ0, where Θ0 might be arbitrarily selected. However, in

order to obtain initial estimate Θ0 that is expected closer to the actual parameters Θ and

thus yielding the estimation more faster, we use another different algorithm to estimate Θ0

as presented in Section 4.3.

Then, estimate id̂t of tangent vector idt can be derived after obtaining estimate Θ̂ =

(η̂1, τ̂1, η̂0, τ̂0) and replacing the first two parameters (η̂1, τ̂1) in (4.4). We can obtain it

as an unitary vector as follows:

id̂t = (η̂1, τ̂1, 1)/‖(η̂1, τ̂1, 1)‖ (4.10)
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Its expression sd̂t in the probe frame can be obtained using the rotation matrix sRi. As

already said, this matrix is obtained using the robot odometry. Thus, the estimate sd̂t of
sdt is obtained as follows:

sd̂t = sRi
id̂t (4.11)

Finally, replacing this result in the relationship (4.1), normal vector s∇F is estimated.

Recall that the estimation method we presented in this section is described to estimate

the normal vector for only one point P lying on image contour C. It is in fact applied for

all the points extracted from the contour.

4.1.2 Curved line-based estimation method

Although the above presented method of using 3-D straight lines to estimate the tangent

vector presents some advantages as the shortened processing time, since only four param-

eters are estimated, it however heavily relies on the assigned weights as means to adjust

the orientation of the straight line, in such a way this latter becomes tangent to the object

surface. To improve this, we present in this section an estimation method based on 3-D

curved lines instead of straight ones (see Fig. 4.6). This has the advantage to deal more

effectively with the curvature of the observed object, if curvature there is. Tangent vector

dt to the object surface can then be simply obtained as the tangent to the estimated curve.

Let K denote the tangent curve to estimate. Its analytical model, stating the constraint

that any point P lying on it must satisfy, can be formulated as follows:

{

ix = η2
iz2 + η1

iz + η0
iy = τ2

iz2 + τ1
iz + τ0

(4.12)

where iP = (ix, iy, iz) is the expression of point P in frame {Ri}. Elements ηp|p=0,2
and

τq|q=0,2
are 3-D parameters representing the shape of K.

Since K is considered tangent to the object surface at P, its tangent vector at that point

is nothing but vector dt we want to estimate. We can formulate such vector by:
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Figure 4.6: Curved line K tangent to the object surface at point P.

idt =







∂ ix/∂ iz

∂ iy/∂ iz

∂ iz/∂ iz






=







∂ ix/∂ iz

∂ iy/∂ iz

1






(4.13)

Applying this on the relationship (4.12), the tangent vector is expressed as follows:

idt =







2 η2
iz + η1

2 τ2
iz + τ1
1






(4.14)

Coordinate iz of P is considered available, after the point would have been extracted

from the image and then expressed in frame {Ri} thanks to the robot odometry. We

therefore need to obtain an estimate of the parameters (η2, τ2, η1, τ1) which then would

yield that of dt. The model on which the estimation is based is that given by (4.12),

which expresses the constraint satisfied by any point lying on K. The input information

feeding the estimation are coordinates (ix, iy, iz), while the parameters vector to estimate

is Θ = (η2, τ2, η1, τ1, η0, τ0). The curve model (4.12) can then be re-formulated in an

expression as that of (4.5), but with:

Y =

[

ix
iy

]

and Φ⊤ =

[

iz2 0 iz 0 1 0

0 iz2 0 iz 0 1

]

(4.15)
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Figure 4.7: Contour 3-D evolution with its tangent curve.

We propose to use again the stabilized least-squares recursive algorithm [43] to perform

the estimation. It has already been introduced in Section 4.1.1, where estimate Θ̂[k] of Θ

at current sample time k is given by the recursive expression (4.8), but covariance matrix

F[k] at time k is now given by the following recursive expression:

F−1
[k] = β F−1

[k−1] + Φ[k] Φ
⊤
[k] + (1 − β) β0 I6 (4.16)

where the 6×6 identity matrix I6 is employed, instead of I4 used in (4.9), since in this case

the size of parameters vector Θ becomes equal to six.

The estimation principle is similar to that of the straight line case. Each new extracted

point updates the algorithm with its coordinates involved in the input variables Y and Φ.

In this case, in fact, curve K has to fit points extracted from the successive acquired images

(see Fig. 4.7). These points have a same index in their corresponding set CP, similarly

as for the straight line estimation. A forgetting factor β is used to infer different weights

assigned to these extracted points in such a way to take more into account the recently

extracted points. This has the advantage to perform a local estimation, and thus yielding

the estimation more accurate and robust, since K is restrained to fit only a local surface

(see Fig. 4.8). Indeed, more β is smaller, for example, less previous points are taken into

account in the estimation. The effect is like that of an estimation performed over a win-

dow of data information, thus allowing the curve more adapting to the object surface and
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K at time t2

K at time t1 < t2

P

Figure 4.8: Transverse sight showing the evolution of the estimated 3-D curved line K
at point P, for the case a 2D ultrasound probe is interacting with a spherical object.
The objective is to estimate K in such a way this latter would be tangent to the
object surface at P. The upper sight is similar to that depicted on Fig. 4.5(a).

sparing it the effect of far points, that could compromise the estimation. Indeed, only one

curve might not be sufficient to fit both those far points and recent ones.

Estimate Θ̂ = (η̂2, τ̂2, η̂1, τ̂1, η̂0, τ̂0) of Θ being obtained, that of idt can then be derived

by replacing the result in (4.14), that we set as a unitary vector by:

id̂t =







2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1






/

∥

∥

∥

∥

∥

∥

∥

2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1

∥

∥

∥

∥

∥

∥

∥

(4.17)

whose expression in {Rs} is derived by sd̂t = sRi
id̂t. Finally, the estimate of normal

vector ∇F is obtained by substituting sdt with its estimate sd̂t in (4.1).

4.2 Quadric surface-based estimation method

In this section, we propose to estimate the local surface of the considered object and then

use it to derive an estimate of ∇F.

The estimation consists in fitting a quadric surface to a cloud of points of the object con-

sidered local surface, i. e., fitting a quadric to local surface of the object (see Fig. 4.9). The

points are obtained from the successive contours C extracted from succeeding acquired 2D



4.2. QUADRIC SURFACE-BASED ESTIMATION METHOD 103

Y

Zi

Xi Yi

{Ri}

US observation plane (image)

S

C(t)

∇F

P
P{1}

Q

Segments

Z
X
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Figure 4.9: Quadric surface Q that, ideally, should exactly fit the local surface sur-
rounding point P. The current observed segment is also shown, where its starting
point P{1} and ending one P{N} are indicated on it. The segment is centered on P.

ultrasound images.

Let Q be a quadric surface (see Fig. 4.9). Any point iP = (ix, iy,i z) lying on Q satisfies

the following constraint:

̥(ix, iy, iz) = γ20
ix2 + γ02

iy2 + γ11
ix iy

+ γ10
ix+ γ01

iy + γ00
iz − 1 = 0

(4.18)

where γpq|
p,q=0,2

are 3-D parameters representing the shape of quadric surface Q.

The objective is to estimate parameters γpq using the cloud of points lying on the local

surface surrounding point P (see Fig. 4.9). Let P{j}|j=1,N
be points lying on contour C,

such that P{j} is adjacent to P{j+1} and that P = P{(N+1)/2} (see Fig. 4.9). The set of

points P{j}|j=1,N
in fact defines a segment that is centered on P. Note that these points,

and thus the corresponding segment, are nothing but part of set Cp, previously defined

in Section 4.1.1 (see Fig. 4.3). Similarly to the principle used in the cases of the straight

and the curved line, each two successive points P{j}[k] and P{j}[k−1], extracted respectively

from the image acquired at time k and that acquired at precedent sample time k− 1, have

the same index in their corresponding vector Cp. Within their respective segment, their

position is indicated with subscript j. The estimation we propose uses the successively
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acquired segments to estimate quadric Q that best fits the cloud of points extracted from

those segments. The parameters vector to estimate is Θ = (γ20, γ02, γ11, γ10, γ01, γ00).

Point P{j}[k] is assumed lying on Q, then satisfies the constraint (4.18), which can be

re-formulated as follows:

Yj = Φ⊤
j Θ (4.19)

with :

Yj = 1 and Φ⊤
j =

[

ix2
j ,

iy2
j ,

ixj×iyj ,
ixj ,

iyj ,
izj
]⊤

(4.20)

where P{j} = (ixj ,
iyj ,

izj) is the expression of point P{j} in frame {Ri}. Applying

the formulation (4.20) on all points P{j}|j=1,N
of the contour segment, then stacking the

obtained constraint relationships, yields:













Y1

Y2

...

YN













=













Φ⊤
1

Φ⊤
2

...

Φ⊤
N













Θ (4.21)

that can be formulated Y = Φ⊤ Θ as (4.5), but with:

Y =













1

1
...

1













and Φ⊤ =













Φ⊤
1

Φ⊤
2

...

Φ⊤
N













(4.22)

where Y and Φ⊤ are of dimension N and N×6, respectively. We recall that N corresponds

to the width of a contour segment (i. e., number of points lying on the contour segment).

The relationship (4.5) according to (4.22) states the constraint satisfied by the contour

segment centered on P. When the 2D ultrasound probe performs out-of-plane motions

while at the same time acquiring successive 2D ultrasound images, successive segments are

extracted. Those segments represent the cloud of points lying on the object local surface

surrounding P. We propose to use again the stabilized least-squares recursive algorithm,
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that gives the estimate Θ̂ of Θ by the recursive relationship (4.8), and its involved covari-

ance matrix by (4.16). Each current (observed) segment updates the estimation algorithm.

The assigned forgetting factor β enables to take more into account the recently acquired

segments and thus prevent the “old” segments compromising the estimation. To illustrate

this, if for example the 2D ultrasound probe performed a complete scan of the observed

object by sweeping it and at the same time acquiring its images successively, then a 3D

volume of the object is made up, it is unlikely that one quadric might be sufficient to fit

the whole surface of that constructed volume. That is the reason why an estimated local

surface is expected to relatively fit well the object surface in the neighborhood of a consid-

ered point, at which vector ∇F is expected to be normal.

∇F can be analytically expressed from the quadric surface relationship, using the following

classical formula:

i∇F =







∂̥/∂ix

∂̥/∂iy

∂̥/∂iz






(4.23)

where i∇F is the expression of ∇F in {Ri}. Thus applying (4.23) on (4.18) yields:

i∇F =







2 γ20
ix+ γ11

iy + γ10

2 γ02
iy + γ11

ix+ γ01

γ00






(4.24)

Replacing estimated parameters Θ̂ in the above relationship, estimate i∇F̂ of i∇F is ob-

tained. Then, using rotation matrix sRi that defines the orientation of {Ri} with respect to

frame {Rs}, the desired estimate s∇F̂ of normal vector s∇F is finally obtained as follows:

s∇F̂ = sRi
i∇F̂ (4.25)

4.3 Sliding least squares estimation algorithm

We presented above three methods to estimate the normal vector. Both of these methods

employ a recursive algorithm to perform the estimation online. Such algorithm requires an
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initial vector parameters Θ0 to start the recursive estimation. If these initial parameters are

far from the actual ones, the recursive algorithm would take relatively large duration before

estimate Θ̂ becomes closer to actual one Θ. This would undoubtedly be reflected on the

visual servoing performances, where the commands are sent at a real-time streaming rate

to the robot. Indeed, the control command depends on the normal vector, as we will see in

Chapter 5. If this vector is not well estimated, for a large time duration, thus the command

would be yielded erroneous. That is the reason why it is necessary to obtain a relatively

good estimate in the first few iterations of the servoing, or before the servoing is launched.

To do so, we propose to first perform an estimation directly on a window (set) of recorded

measurements. We propose for that to use a Sliding Least Squares (SLS) algorithm [22].

We apply it only at the beginning for first iterations. Right after, the recursive algorithm

will then take place during all the estimation. The SLS algorithm, in fact, behaves similarly

to the Non-Recursive least squares one. Its particularity is that it tends to take into ac-

count in the estimation only the part of the measurement that conveys wealthy information.

Consider different measurements Y[i] and Φ⊤
[i] recorded and saved on a window of NLS size

(i = k − NLS + 1 up to i = k). Their weighted correlations are calculated as follows (see

[22]):

Γ =
k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i] Φ
⊤
[i]

)

(4.26)

w =
k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i]Y[i]

)

(4.27)

where we recall that β is a forgetting factor assigned to the different measurements, in

such a way to take more into account the fresh ones. We set the scalar m[i] as the max

norm of the matrix Φ[i] Φ
⊤
[i], that is m[i] = ‖Φ[i] Φ

⊤
[i] ‖max. It is employed for normalization

between the different measurements. The estimation objective is to obtain an estimate

Θ̂ that best fits the model relationship (4.5), for whole of those registered measurements.

If the algorithm would have consisted in a weighted non-recursive method, the estimate

would be obtained as Θ̂ = Γ−1 w. However, when the measurements do not convey

enough wealthy information, matrix Γ tends to be ill-conditioned. The SLS algorithm

instead deals with such eventuality. Its principle consists in processing the valuable parts

of the information differently from the other part, that is suspected at the origin of the

ill-conditioning. This latter part is detected using the eigenvalues. The discrimination

is performed according to a threshold ǫ0; an eigenvalue, or its normalized value, smaller

than the threshold is considered as related to the singularity. More precisely, consider the
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Sliding algorithm Recursive algorithm
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t0

Θ[t0]

t0 + NLS

Figure 4.10: Estimation contrivance consisting in applying firstly the sliding algorithm
for only the first NLS iterations, and then the recursive algorithm solely throughout
the estimation.

eigenvalue decomposition of matrix Γ, since the latter is symmetric according to (4.26), as

follows:

Γ = QΛQ⊤ (4.28)

where diagonal matrix Λ contains eigenvalues λi|i=1,n
. These latter are positive (λi|i

> 0),

and are arranged in non-increasing fashion, that is, λi > λi+1. They should be normalized

by λ1. The n× n matrix Q is orthogonal (Q−1 = Q⊤), and is given as:

Q = [q1 q2 · · ·qn] (4.29)

where qi|i is an n× 1 eigenvector associated to value λi. According to the SLS algorithm,

estimate Θ̂[k] at sample time k is thus given by:

Θ̂[k] =











Γ−1 w if λn > ǫ0
(

∑l
i=1

1
λi

qi q
⊤
i

)

w +
(

∑NLS

i=l+1 qi q⊤
i

)

Θ̂[k−1] if λl > ǫ0 and λl+1 6 ǫ0

Θ̂[k−1] if λ1 6 ǫ0
(4.30)

Note that when λn > ǫ0 all the other eigenvalues are also larger than ǫ0, and when λ1 6 ǫ0
all the remaining eigenvalues are also not larger than ǫ0.

We recall that our goal is to obtain an initial estimate Θ̂ that is closer to the actual one

Θ. For that, we apply the SLS algorithm for only the first NLS iterations to obtain an

estimate Θ̂[t0+NLS−1], that is expected closer to Θ. This estimate is then employed as the

initial parameters vector Θ0 for launching the recursive algorithm; this latter then is ap-

plied solely throughout the estimation. This is depicted on Fig. 4.10.
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4.4 Simulation results

The methods we developed above are tested in simulations and their performances as-

sessed. These simulations are classified in two distinct sets. In the first simulation trials,

each method is applied to estimate its corresponding geometric primitives. These first trials

allow to test that the stated primitives can be estimated using the developed methods, and

thus to verify the validity of these latter. As for the second set’s trials, they are conducted

on a simulated ellipsoidal object. This latter is provided from a 3-D mathematical model

we designed. Therefore, the surface normal vector can be mathematically derived and its

numerical value inferred. Such value serves in fact as ground truth datum. Comparing

that obtained value with the estimated ones (separately obtained with each of the three

estimation methods), the validity of these methods in estimating the normal vector to the

surface of the object, namely the ellipsoid, is verified.

The three estimation methods have been implemented in the C++ programming language.

Some of the corresponding arithmetic and matrix operations, as addition and multiplication

for example, are coded using the ViSP C++ library [53]. The simulations are performed

using a PC computer running LINUX operating system.

4.4.1 Interaction with straight lines

We apply the straight line-based method in estimating simulated 3-D straight lines. To

do so, the interaction of a virtual 2D ultrasound probe with three 3-D straight lines is

simulated. This interaction is mathematically modeled, from which the intersection of the

virtual probe image plane with those lines is derived. This intersection thus results in three

image points, whose coordinates are obtained from the mathematical model. We assume

the knowledge of the full mathematical model (direction and a belonging 3-D point) of each

of those straight lines. We finally compare the actual 3-D parameters of the straight lines

with those estimated.

The simulation is conducted by moving with constant velocity the virtual 2D ultrasound

probe. This latter continuously acquires 2D cross-section images of those lines, while at

the same time the estimation method is applied separately using each of the three image

points. The image point 2D coordinates update the estimation algorithm, as described in

Section 4.1.1, after they would have been expressed in the fame {Ri} using the pose (posi-

tion and orientation) of this latter with respect to probe frame {Rs} (such pose is afforded

by the mathematical model). The sampling time is set to 40 ms, and the probe constant

velocity to v = (−0.07, − 0.04, − 0.03, 0, 0, 0) (m/s and rad/s). The estimation pa-

rameters involved in the recursive relationship (4.8) and (4.9) are set to β = 0.8, f0 = 1e5,
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Figure 4.11: Estimation of three 3-D straight lines - (a) Interaction of a virtual 2D
ultrasound probe with three 3-D straight lines. The probe has applied a motion with
constant velocity and the resulting trajectory (cm, cm, cm) is plotted in magenta.
The segments swept by the 2D ultrasound probe plane during that motion are also
shown, where line #1 is depicted in red, line #2 in green, and line #3 in blue. Probe
frame’s X, Y, and Z axes at the initial pose are shown in red, green, and blue color
respectively. Whereas, at the final pose the Z axis is depicted in black color - (b),
(c), and (d) show the obtained 3-D parameters estimation errors of respectively line
#1, line #2, and line #3 versus iteration number.
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and β0 = 1
20·f0

. These parameters have been empirically tuned. The initial value Θ0 of Θ

is arbitrarily set to Θ0 = [ 3, 5, − 0.4, 1]⊤. In this simulation we do not employ the SLS

algorithm to obtain Θ0, but we use solely the recursive algorithm in order to first analyze

its behavior especially with regards to convergence time. The corresponding simulation

results are shown on Fig. 4.11. We can verify that both the three straight lines have been

well estimated, as can be seen respectively on Fig. 4.11(b), 4.11(c), and 4.11(d). The errors

between the 3-D parameters actual values Θ and those estimated Θ̂ converge to zero, for

each line. We can notice that the convergence time related to line #3 is relatively higher

than that obtained for the two other lines. This can be explained due to the orientation

of this line that tends to be parallel to the probe observation plane, as can be seen on

Fig. 4.11(a) (blue line). Indeed, according to the formulation (4.4), the third element dz

of the orientation vector is assumed not null, since otherwise parameters η1 and τ1 would

equal to infinity (∞). This occurs when the straight line is parallel to the probe observation

plane. Finally, as conclusion the obtained results validate the straight-line based method

in estimating direction dt of 3-D straight lines.

4.4.2 Interaction with curved lines

We apply the curved line-based method, presented in Section 4.1.2, on simulated 3-D

curved line. Similarly to the previous section, the interaction of a virtual 2D ultra-

sound probe with a 3-D curve is simulated with a mathematical model we designed,

where the curve relationship is of the form given by (4.12). The model provides the im-

age points 2D coordinates resulting from the intersection of the probe image plane with

the curve. The estimation is performed while the probe is moved with constant velocity

v = (−0.07, −0.04, −0.03, 0, 0, 0)(m/s and rad/s). The estimation algorithm is fed and

thus updated with the image 2D coordinates of intersection point continually extracted

from the cross-section image, as described by (4.15). Before these coordinates are used,

they are expressed in frame {Ri} using the pose (position and orientation) of the probe’s

attached frame {Rs}. The parameters of the recursive algorithm are empirically set to

β = 0.8, f0 = 1e5, and β0 = 1
20·f0

, as before. We recall that the algorithm is given by the

relationships (4.8) and (4.16). The initial estimate is set to Θ0 = (1, 1, 1, 1, 1, 1), while

actual curve is of parameters Θ = (2, 1.5, 0.3, 0.5, 0.4, 0.2).

The corresponding simulation results are shown on Fig. 4.12. The estimated curve con-

verges to the actual one, as can be seen on Fig. 4.12(a) where both curves are plotted.

Indeed, the curves superimpose on each other. – At each iteration the estimated parame-

ters vector Θ̂ is used to compute the 3-D coordinates of a point of the estimated curve. The

whole of points obtained as such, all along the probe motion and the estimation, constitute
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the estimated curve that is plotted on Fig. 4.12(a). – Note, however, that even though

the estimated curve “physically” corresponds to the actual one, the estimated parameters

Θ̂ do not correspond to actual one Θ. This may explained by the fact that the mathe-

matical relation (4.12) between the points 3-D coordinates (ix, iy, iz) of a curve and its

corresponding parameters (η2, τ2, η1, τ1, η0, τ0) is not a one to one mapping. Never-

theless, this does not hinder our objective since the algorithm is able to well estimate the

parameters that represent the actual curve, which is our goal. Indeed, from those estimated

parameters the derived vector dt would clearly be tangent to actual curve K, as shown on

Fig. 4.12(b) where we can see that the errors vector between actual tangent vector dt and

estimated one d̂t converges to zero. Accordingly, the obtained result shows the validity of

the curve-based method in estimating tangent vector dt to 3-D curves, of shape represented

by relationships of the form (4.12).

4.4.3 Interaction with quadric surfaces

The quadric surface-based estimation method, presented in Section 4.2, is now tested in

simulation. The scenario consists in a 2D virtual probe interacting with a simulated 3-D

surface. The interaction is again represented with a mathematical model we designed. To

simulate the surface, we employed a relationship of the form given by (4.18). The inter-

action model provides the image coordinates of the points lying on contour C of image

cross-section S. These coordinates, after being expressed in initial probe frame {Ri}, are

then used to compute the input variable Φ according to (4.22); the input Y being already

provided off-line before the estimation is launched. The two inputs continually feed and

thus update the estimation algorithm, which estimate Θ according to the relationships

(4.8) and (4.16). However, before this recursive algorithm is launched, a SLS algorithm

of pre-defined window length is applied in order to firstly obtain estimates Θ̂, that are

expected to be relatively closer to the actual parameters Θ. The recursive algorithm will

then take place, instead of the sliding one. Note that this contrivance, which has already

been introduced at the end of Section 4.3, will be most often applied for performing the

estimation with either the straight line-, curved line-, or quadric surface-based estimation

methods, as can be encountered in the remaining of the dissertation. Note also that in

contrast to the two previous simulations where the recursive algorithm was used solely, the

SLS is employed in this case since we noticed that it was quite difficult to estimate the

surface using only the recursive algorithm.

The estimation is performed while the virtual probe moves with constant velocity along its

orthogonal axis Z; the probe plane being horizontal to the plane (X0, Y0) of the base frame

{R0}. The algorithm parameters are empirically set to β = 1.0, f0 =1e2, β0 = 1
20×f0

, ǫ0 =
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Figure 4.12: Estimating 3-D curves with which a 2D virtual probe is interacting. (a)
The estimation is performed while the probe performs motion with constant velocity,
where its resulting path is plotted in magenta (cm, cm, cm). The X, Y, Z axes of
the probe attached frame {Rs} at the initial time are respectively depicted in red,
green, and blue. At the final time they are whereas plotted respectively with red,
green, and black (we recall that the X, Y axes are those representing the probe image
plane). The actual curve is plotted with red, while the estimated one with green.
Those curves superimpose on each other. (b) Tangent vector estimation errors vector
e = (ex, ey, ez) = dt − d̂t versus iteration number.
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(a) (b)

Figure 4.13: Interaction with a quadric surface plotted on (a) - (b) The obtained
errors on estimating that surface using the quadric surface-based estimation method.

1e-20, N = 21, and NLS = 21. We recall that N represents the number of points defining

a segment. The initial estimated parameters are arbitrarily set to Θ0 = (0, 0, 0, 0, 0, 0).

The quadric surface actual parameters are Θ = (0.09, 0.07, 0.04, 0.02, 0.01, 0.05). We first

test solely the SLS algorithm, presented in Section 4.3. The corresponding simulation re-

sults are shown on Fig. 4.13. We can see that the actual surface, shown on Fig. 4.13(a), has

been well estimated as can be concluded from the estimation errors shown on Fig. 4.13(b).

The latter figure indeed shows the error between elevation z of the actual surface and that

of the estimated one, for each swept coordinates (x, y). Those errors are obtained of order

ranging from 1e-5 to 1e-8 cm, and those related to the estimated parameters Θ̂ are of order

ranging from 1e-8 to 1e-12 (expressed in their corresponding units).

We noticed that the recursive algorithm, if applied alone, had not performed well. In that

case the obtained estimation errors between the actual surface elevations and those of the

estimated one are of an order ranging from 1e-1 to 1e0 m. The estimation errors related to

Θ are not satisfying too. But by applying the SLS algorithm for only one window at the

beginning of the estimation then launching the recursive algorithm, the obtained errors on

the surface estimation are considerably dropped. Indeed, their order is obtained ranging

from 1e-7 to 1e-9 cm. As for the estimation errors on the parameters Θ, their order ranges

from 1e-8 to 1e-13.

We presented above results obtained from the first set of trials. Those simulations

have been performed to estimate 3-D primitives ranging from straight lines, curved lines,

and quadric surface. The obtained results are satisfactory, as pointed out above. Those



4.4. SIMULATION RESULTS 114

simulations aimed at verifying that tangent vector dt can actually be estimated with the

presented methods, when simple primitives are considered. In what follows, we consider

more complex geometric primitives. The three estimation method are applied to estimate

normal vector ∇F to the surface of a simulated object, namely an ellipsoid, and their

corresponding performances are also assessed. These trials represent the second set of sim-

ulations we highlighted earlier. They are conducted in two main different conditions. The

first one consists in the case of perfect context, where no noise is considered. The second

condition, whereas, consists in the case where measurement noise is present. They are

presented in what follows.

4.4.4 Ellipsoid objects: perfect and noisy cases

The interaction of a virtual 2D ultrasound probe with an ellipsoidal object is simulated by

means of a 3-D mathematical model we designed. This model allows to extract contour C of

cross-section S lying in the probe observation plane, as shown for example on Fig. 4.14(a),

4.14(b), and 4.14(c). In fact, the extraction consists in obtaining the 2D image coordinates

of points lying on the contour. The simulations presented in the remaining of this chapter

are conducted using 400 extracted points to characterize the image contour, at each itera-

tion.

The probe is moved with constant velocity as shown on Fig. 4.14, while the image contour

points coordinates are extracted at each iteration. During the motion, normal vector s∇F

to the ellipsoid is estimated, separately using the three estimation methods. The estimate
s∇F̂ is compared to the actual one s∇F, and the corresponding error is inferred. This

allows us to verify if the normal vector has been well estimated. The actual normal vector

is computed using again the mathematical model. Indeed, this latter encloses the ellipsoid

3-D model that is expressed as follows:

F = (ox/a1)
2 + (oy/a2)

2 + (oz/a3)
2 − 1 = 0 (4.31)

where a1, a2 and a3 are 3-D parameters that represent the ellipsoid shape (i. e., the ellipsoid

half length values), whereas (ox,o y,o z) are the 3-D coordinates of point oP, that lies on

the ellipsoid surface. These coordinates are expressed in frame {Ro} attached to the center

of the ellipsoidal object. Using the above relationship, the actual normal vector can be

calculated by applying (4.23) as follows:
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Figure 4.14: Simulation of a 2D ultrasound probe that interacts with an ellipsoidal
object. It is afforded by the mathematical model. The probe performs a motion with
constant velocity - (a) The frame {Rs} of its initial and final poses is indicated. At
the initial time the frame’s (X, Y, Z) axes are depicted respectively with the (red,
green, blue) lines. Whereas at the final pose, the probe Z axis is depicted with a black
line. The probe path is plotted in magenta. The intersection of the probe observation
plane with the ellipsoid results in a cross-section, whose contour at the initial and
final probe poses is respectively depicted with green and red - (b) Another image of
the interaction taken from a different sight angle - (c) The contour image at the initial
and final poses is respectively indicated with green and red color - (d) Evolution of
the probe 3-D coordinates (cm, cm, cm) during the motion versus iterations, while
the θu orientations (deg, deg, deg) are shown in (e).
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o∇F =







2 ox/a2
1

2 oy/a2
2

2 oz/a2
3






(4.32)

which can be expressed in {Rs} by s∇F = sRo
o∇F. The point 3-D coordinates are

calculated from its image coordinates (x, y), using the relationship (3.37) presented in

Chapter 3. The involved rotation matrix sRo and the translation vector st0 are provided by

the interaction mathematical model. This latter also provides the image coordinates (x, y).

The estimation error ef consists in the square root of the vectorial error ef = s∇F− s∇F̂.

For each point, it is thus given by:

ef = ‖ef‖2 =
√

ef
⊤ ef =

√

e2fx + e2fy + e2fz (4.33)

where ef = (efx, efy, efz). Below, we first present results obtained in the ideal case, where

no perturbation is introduced. We then consider the case of measurement noises.

Straight lines-based estimation

We apply the straight line-based method to estimate the normal to the surface of the el-

lipsoidal object.

We present results of two differently performed estimations. In the first simulation we

employ the contrivance that consists in applying firstly the SLS algorithm for only the first

NLS iterations and then in using the recursive one. As pointed out, this contrivance allows

to obtain after the SLS algorithm being achieved (after the first NLS iterations) an estimate

Θ̂ that is expected to be closer to the actual one Θ. The estimation convergence time would

be, as a result, considerably shortened. Note that this is of great interest in the context

where the image is varying, and thus when the normal vector is also changing, as it is the

case in the simulations we present and in general practical cases. As for the second simula-

tion, the SLS algorithm is applied all along the virtual probe motion. Obtained results are

shown on Fig. 4.15. We can see that the estimation errors are quite dropped to zero with the

two algorithms (respectively performed in the first and the second simulation). However,

we can notice two folds obtained with the recursive algorithm. They are grossly centered

on two points of the image contour. The tangent vector at those two points likely tends

to be parallel to the image plane, which could account for the lesser dropped estimation

errors at those points and their close neighborhood. These results therefore suggest that

the second algorithm outperforms the first one, as can be clearly seen on Fig. 4.15(b) where



4.4. SIMULATION RESULTS 117

(a) (b)

Figure 4.15: Normal vector estimation errors ef obtained using the straight line-
based method. The probe is interacting with an ellipsoidal object - (a) Using the
contrivance that consists in applying the recursive algorithm, right after the SLS
one would have been applied for the first NLS iterations. The estimator parameters
are set to β = 0.95 and f0 =1e8 - (b) Applying the SLS algorithm throughout the
estimation. The estimator parameters are set to β = 0.5 and f0 =1e8.

the obtained estimation errors are nearly null. That conclusion however showed to be not

valid in other contexts. Indeed, in the presence of measurements noise that comparison’s

conclusion is dramatically reversed. In such noise context we noticed that the recursive

algorithm has been able to estimate the normal vector, whereas it is not the case when

using the SLS algorithm. This can be seen on Fig. 4.16, that shows results obtained from

simulations conducted in the presence of measurement noise in the image. This considered

perturbation consists in a 0.3 mm amplitude random white Gaussian noise. Its effects on

the evolution of the image coordinates of one contour point, during the probe motion, is

shown on Fig. 4.17. This noise is added to the original extracted image points coordinates

(x, y) and their derivatives with respect to the angle in the image. We notice peaks at

two points of the image contour, with both algorithms. Those peaks indicate that the

estimation has not been well performed at those two contour points. They seem in fact

as successors, although worse, of the two folds obtained in the ideal case. Nevertheless, it

is unlikely that such two peaks might compromise the system performance. Indeed, the

objective of estimating the normal vector is to use it in order to compute the control law.

We do not use only a couple but at least hundreds of image points, and thus of estimated

normal vectors to compute the control law; we recall that we use 400 points in the simula-
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Figure 4.16: Normal vector estimation errors ef obtained using the straight line-based
method, in the presence of additive measurement noise of 0.3 mm amplitude. Simu-
lation where a virtual 2D ultrasound probe is interacting with an ellipsoidal object
- (a) Using the contrivance that consists in first employing the SLS algorithm, for
only one window, and then applying the recursive method during all the estimation.
The estimator parameters have been tuned to β = 0.95 and f0 =1e8 - (b) Applying
the SLS algorithm, alone, throughout the estimation. The estimator parameters have
been tuned to β = 0.5 and f0 =1e8.

tions we present in the present chapter. Consequently, the obtained two peaks constitute

an error with a weight of only 2/400, which is negligible. They are therefore considered as

modeling errors, and thus can be reduced by the servoing scheme thanks to its closed loop.

Curved lines-based estimation

Similarly as described above, we now apply the curved line-based method to estimate the

normal vector to the ellipsoidal object surface. The virtual probe is moving with constant

velocity, where the resulting interaction with the ellipsoid is shown on Fig. 4.14. During

that motion, the estimation is performed at each of the 400 image contour points. The

estimates are then compared to the actual values of the normal vector, and the estimation

error ef given by (4.33) is inferred. The actual values are computed from the interac-

tion mathematical model, according to the relationship (4.32). Again, the estimation is

performed according to two different approaches. The former approach employs the con-

trivance consisting in applying firstly the SLS algorithm for only the first NLS iterations

and then applying the recursive method for the remaining of the estimation. The second

approach is performed by applying solely the SLS algorithm throughout the estimation.



4.4. SIMULATION RESULTS 119

0 100 200 300 400
2.5

3

3.5

4

4.5

5
Evolution of one contour point

 

 

x
y

Figure 4.17: Image coordinates (x, y) in cm of one point lying on the contour, per-
turbed with an additive measurement noise of 0.3 mm amplitude. The two coordi-
nates x and y are plotted with respect to the iteration number.

Their corresponding results are then compared.

We first consider the ideal case where the system is not subject to perturbations. Cor-

responding simulation results are shown on Fig. 4.18. We can note that the sliding least

squares estimation approach slightly outperformed the recursive one, as can be seen re-

spectively on Fig. 4.18(b) and Fig. 4.18(a).

We now consider the case where a noise perturbs the image. This measurement noise is

again set as random white Gaussian noise of 0.3 mm amplitude. Obtained simulation re-

sults are shown on Fig. 4.19. We can notice that, again, the estimation using the sliding

algorithm slightly outperformed that using the recursive paradigm.

The performances of the straight line- and the curved line-based estimation methods

will be compared to that of the quadric surface-based estimation, as it is presented in Sec-

tion 4.5.

Quadric surface-based estimation

In the same scenario, we also applied the quadric surface-based method to estimate the

normal vector to the ellipsoid surface. Similarly, the estimation is performed according

to two approaches. We first consider the ideal case, and then the case where an additive

measurement noise is considered. To fit the quadric surface, we tune N to N = 21 points
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(a) (b)

Figure 4.18: Normal vector estimation errors ef obtained using the curved line-based
method, in the ideal case. The scenario consists in an interaction of a virtual 2D
ultrasound probe with an ellipsoidal object - (a) Using the contrivance that consists
in applying the recursive method, right after the SLS algorithm would have been
applied for only the first NLS iterations. The estimator parameters have been tuned
to β = 0.9 and f0 = 5×1e3 - (b) Using the SLS algorithm throughout the estimation.
The estimator parameters have been tuned to β = 0.9 and f0 = 5×1e3.

(segment width) and the window size to NLS = 21 iterations. The estimator parameters

β0 and ǫ0 are tuned to β0 = 1
20×f0

and ǫ0 =1e-20. Corresponding obtained results are

shown on Fig. 4.20. We can conclude from these results that the estimation employing

the recursive method has outperformed that employing the SLS algorithm. The recursive

algorithm has grossly well estimated the normal vector, but only in the ideal case. In the

noisy case they are however both not satisfactory. A more detailed discussion is given in

the following section.

4.5 Discussion

The obtained results suggest that the curved line-based method has outperformed the two

other methods. Indeed, the curved line-based method has been able to provide a good

estimate of the normal vector s∇F both in ideal cases, where no perturbation is occurring,

and in cases where measurements noises are present in the image. The straight line-based

method has not performed as the curved-based one in the presence of measurement noise.

As for the quadric-based one, the performances are even less better than that of both the
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(a) (b)

Figure 4.19: Normal vector estimation errors ef obtained using the curved line-based
method, in the presence of an additive measurement noise of 0.3 mm amplitude -
(a) Using the contrivance that consists is applying the recursive method, right after
the SLS algorithm would have been applied for only one window. The estimator
parameters are set β = 0.95 and f0 =1e2 - (b) Using the SLS algorithm throughout
the estimation. The estimator parameters are set to β = 0.95 and f0 =1e2.

two first methods, especially in the presence of measurement noise, where the results are

not satisfactory. This method is furthermore computationally more expensive, since it uses

a segment to update its estimate at each iteration, instead of using only one point as it is

the case for the two first methods.

We presented results that as actual as possible reflect the performances of each of the three

estimation methods. Indeed, the performance depends on the tuned estimation parameters

β, f0, β0, NLS , and ǫ0 (and also N for the quadric surface-based method). The parameters,

as highlighted, have been empirically tuned in order to obtain as best as possible estimation

results, separately for each of the three methods. The tuning has been performed at

each time the simulation condition changed (perfect or noisy) and at each time a different

estimation method is employed. To do so, we have performed many different trials where the

estimator parameters are tuned according to the famous dichotomy manner. We thus have

presented results that we consider have been tuned in order they have allowed each method

to perform as best as possible. During those trials, we noticed that the performance of both

the straight line- and the curved line-based method is only slightly affected by the variations

of those parameters. Note that large variations of the parameters have been considered. As
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(a) (b)

(c) (d)

Figure 4.20: Normal vector estimation errors ef obtained using the quadric surface-
based estimation. The results obtained in the ideal case are shown on (a) and (b),
while those obtained in the presence of perturbation are shown on (c) and (d) -
(a) The estimation is performed by employing the recursive method, right after the
SLS algorithm has been employed for only one window. The remaining estimator
parameters are tuned to β = 0.5 and f0 =1e8 - (b) Employing the SLS algorithm
throughout the estimation. The remaining estimator parameters are tuned to β = 1.0
and f0 =1e2 - (c) Employing the recursive algorithm after the SLS one. The estimator
parameters are tuned to β = 1.0 and f0 =1e2 - (d) Employing the SLS algorithm
alone. The estimator parameters are tuned to β = 1.0 and f0 =1e2.
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for the quadric-based method, we obtained another conclusion. Indeed, the performances of

this method heavily rely on the values of the estimation parameters, and is quite affected by

their variations. It is nevertheless important to note that the sliding estimation algorithm,

we presented in Section 4.3, corresponds to a vectorial algorithm, that is, the input measure

Y is a vector and not a scalar. Yet, the original formulation of this algorithm is stated

for scalar inputs measures [22]. We have in fact tried to adapt the original algorithm

to a vectorial case. It could be therefore possible that some modifications have not been

rigorously taken into account. We performed other trials but using the original scalar sliding

algorithm. To do so, the estimation model (4.3), firstly, has been decomposed in two scalar

equations. Each equation has been considered as an estimation model (with η1 and η0 as

parameters for the former scalar system to estimate, and τ1 and τ0 as parameters for the

latter scalar system). Then, each of the obtained estimates are combined and the estimate

of the normal vector is derived. The same approach is undertaken for the curve system

(4.12). We obtained similar results, with both straight line- and curved line-based method

(using the scalar formulation), to those previously obtained with the vectorial algorithm

respectively, except that in the noisy case we obtained better result with scalar straight

line-based estimation than previously. Nonetheless, the performances of this latter method

are still lower than that of the curved line-based estimation. As for the quadric-based

estimation method, the scalar algorithm, as is, seems not relevant, since this estimation

method inherently uses a segment of points (and thus a vector of measures) to update

the estimate. That is the reason why we presented in Section 4.3 a vectorial version of

the sliding algorithm. The low outcome of the quadric-based estimation method could be

explained by the fact that this method estimates in whole the normal vector and thus the

estimation errors are expected to be larger than those obtained with the two first methods.

Indeed, these latter methods estimate instead only a part sdt of the normal vector, while

the second part is directly extracted from the observed image. Moreover, fitting a surface

to a cloud of points seems more constrained than fitting a line to a set of points.

4.6 Conclusion

We proposed in this chapter three methods to estimate on-line the normal vector to the

surface of an object with which a 2D ultrasound probe is interacting. We recall that

such normal vector appears in the interaction matrix that relates the image moments time

variation to the probe velocity, as developed and presented in the previous chapter. The

estimation is performed without any prior knowledge of the shape, 3-D parameters, nor

location in the 3-D space of the observed object. Doing so, we overcome the limitation and

constraints imposed if the resolution of developing a pre-operative model of the observed

object would be envisaged.
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The three methods we proposed are based on respectively straight line, curved line, and

quadric surface primitives. Their performances have been compared. They have been

tested in different simulation trials, where satisfactory results have been obtained with

the curved-line based estimation method. The straight line-based method showed to be

relatively more sensitive to measurements noise. As for the quadric surface-based method,

besides of being even more sensitive to the noise, it requires rigorous tuning of its estimation

parameters.



Chapter 5

Visual Servoing

In the present chapter, we finally design novel ultrasound-based image moments-based

visual servoing schemes. These latter will allow to automatically position a 2D ultrasound

probe in order to reach and maintain a desired cross-section image. After having modeled

interaction matrix Lmij
that relates image moment time variation ṁij to probe velocity v,

in Chapter 3, and having developed techniques to estimate on-line normal vector s∇F to

the object surface, in Chapter 4, visual servoing schemes can now be designed whether we

have a pre-operative 3-D model of the observed object or not. The section in the image can

be described by a combinations set of image moments mij enclosed in a vector we denote

s, that we use as feedback visual features in the control scheme. The servoing objective,

stated above, thus can be formulated as to automatically move the probe in order that

the vector s becomes identical with the features vector s∗ that describes the desired image

section. Vector s∗ is nothing but vector s computed on the desired image. As already

introduced and discussed in Section 3.1, a set of combinations of image moments can be

used to represent the image section. Thus, vector s∗ represents the desired image section.

Consequently, when s becomes equal to s∗, it means that the observed image well and

truly corresponds to the desired one. So, the servoing objective can be mathematically

formulated as to move the robot in order that visual error e = s− s∗ converges to zero. To

build the servoing scheme, we need to relate vector s as function of probe velocity v. To

do so, we use the modeling results we obtained, i. e., the relationships (3.34) and (3.35),

since s = s(mij). We thus write time variation ṡ of s as function of v in the following linear

form:

ṡ = Ls v (5.1)

where Ls is the interaction matrix related to s. Such matrix, along with the visual features
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s it relates, in any visual servoing schemes, is crucial to design the control law and has

predominant effect on the robot behavior [82, 27, 71, 14]. We use a classical control law

[26], as follows, such that the visual error e is expected to converge to zero exponentially

(to smoothly stop at the desired image). When dim(s) = 6, that control law is:

vc = −λ L̂−1
s (s − s∗) (5.2)

where vc is the probe velocity command sent to the low-level robot controller, λ is a positive

control gain, and L̂−1
s is the inverse of the estimated interaction matrix Ls. Such obtained

control scheme is known to be locally asymptotically stable when a correct estimation L̂s

of Ls is used (that is, as soon as Ls L̂−1
s > 0) [26]. The global convergence can not be

ensured in our case with this control law. This is due to the fact that the object surface

might have local minima (i. e., concave regions) in which the probe could be trapped.

When less than six visual features are enclosed in s (i. e., matrix Ls becomes not square),

the pseudo inverse L̂+
s of the estimated interaction matrix Ls is employed in (5.2), instead

of the inverse L̂−1
s . This pseudo inverse is given by:

L̂+
s = L̂⊤

s

(

L̂s L̂⊤
s

)−1
(5.3)

Matrix (L̂s L̂⊤
s ) should be of full rank.

In case a pre-operative 3-D model of the observed object is used to obtain an approxi-

mate s∇F̃ of the normal vector in the control law, the servoing method is referred to as

model-based visual servoing method. A corresponding visual servoing scheme is presented

on Fig. 5.1. If otherwise, neither prior knowledge of the shape of the object, its 3-D param-

eters, nor its location is used, but instead the normal vector is on-line estimated with one

of the methods developed and presented in Chapter 4, the servoing method is referred to as

model-free visual servoing method. A corresponding visual servoing scheme is presented on

Fig. 5.2. Note that the estimate of the normal vector is denoted s∇F̂, while its approximate

from a pre-operative 3-D model is denoted s∇F̃.

As for the selection of the visual features, if the observed object presents asymmetric

parts we can define six independent visual features. The first three visual features can be

defined to control the probe-in-plane motions, while the last three elements can be defined

to control the probe out-of-plane motions. The whole of these six visual features thus can

define the complete probe motion.
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Figure 5.1: Model-based visual servoing scheme. Note that s∇F̃ is an approximate
of s∇F.

5.1 Visual features selection

When the 2D ultrasound probe performs in-plane motions, section S only shifts and rotates

in the image. Such configurations changes of the image section can be observed respectively

by the coordinates of its gravity center and the orientation of its main angle in the image.

2D image coordinates (xg, yg) of an object gravity center have already been introduced

in Chapter 3 and are expressed in terms of image moments up to the first order by the

relationship (3.48). We select them as the first two elements of s. The third element

consists in the main angle of the section with respect to image X axis (see Fig. 5.3). It is

defined by:

α =
1

2
arctan

(

2µ11

µ20 + µ02

)

(5.4)

where µij is the (i+ j)th order central image moment. It is defined by the following double

integral over image section S:
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Figure 5.2: Model-free visual servoing scheme.

µij =

∫ ∫

S
(x− xg)

i (y − yg)
j dx dy (5.5)

An (i+j)th order central image moment can thus be defined as function of image moments

of up to the (i + j)th order. We provide the expressions of up to the third order central

image moments, as follows:











µ20 = m20 −m10 xg

µ11 = m11 − yg m10 = m11 − xg m01

µ02 = m02 −m01 yg

(5.6)

and



















µ30 = m30 − 3m20 xg + 2m10 x
2
g

µ03 = m03 − 3m02 yg + 2m01 y
2
g

µ21 = m21 − 2m11 xg −m20 yg + 2m01 x
2
g

µ12 = m12 − 2m11 yg −m02 xg + 2m10 y
2
g

(5.7)
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Figure 5.3: Sketch representing image coordinates (xg, yg) of gravity center of ob-
served section S, and main orientation α of the latter.

Consider now the probe out-of-plane motions. In the following, we describe how to ob-

tain three independent visual features that can relate such motions. These features thus

would represent the last three elements of s. In contrast to in-plane motions, when out-

of-plane motions occur the section in the image generally deforms. Its size varies and its

shape changes. Therefore, the objective consists to derive three visual features that are

respectively sensitive to such modifications of the section in the image, while at the same

time they are insensitive to modifications due to probe in-plane motions, in order they are

independent from the first three features of s. Firstly, since the size variation can clearly

be related to the area a of the section in the image, we can select the fourth element of

the visual features vector as
√
a. Note that we applied the square root to a since the three

element (xg, yg,
√
a), thus brought together, have a same unit, that is meter is this case.

Secondly, as for the shape variations, they can be related by image moments from the

second and higher orders. However, as highlighted above, the last three features should

be insensitive to in-plane motions; area a obviously satisfies such condition. As for the

prospective last two visual features, they can be obtained from moment invariants, intro-

duced in Section 3.1. Indeed, image moments can be made invariant to image translation,

rotation, and image scale changes. These traits are consequently of great interest in the

present case. Let us first search for the fifth element of s; the same manner to proceed is

afterwards applied for the sixth element. A visual feature corresponding to a combination

of moments of the second and higher orders that are invariant to scale change is expected

independent from the image area, and thus also from
√
a. This can be explained by the

fact that scale changes are mainly related to those of the image section area. As a result,

a visual feature invariant to scale would grossly be insensitive to area a, and thus inde-

pendent from it. Moreover, when this visual feature is also invariant to translation and

rotation, it would be independent respectively from gravity center coordinates (xg, yg) and
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orientation α. In other words, such feature would be independent also from the in-plane

motions. To summarize, this feature would be therefore independent from the first four

elements (xg, yg, α,
√
a). We select this fifth feature from moment invariants of the second

order. Finally, the sixth visual feature is similarly selected as an invariant image moment

to translation, rotation, and scale, but is obtained from combination of third order image

moments. Indeed, since this sixth feature would be obtained from third order image mo-

ments, wile the fifth feature is from the second order ones, the former feature is expected

independent from the latter one. We thus can choose these last two features from such

moment invariants, already provided in the literature. We employ features provided in

[76]. We denote them respectively by φ1 and φ2. They are expressed in terms of image

moments as follows:

{

φ1 = I1/I2
φ2 = I3/I4

(5.8)

where I1 = µ2
11 −µ20 µ02, I2 = 4µ2

11 +(µ20 −µ02)
2, I3 = (µ30 − 3µ12)

2 +(3µ21 −µ03)
2, and

I4 = (µ30 + µ12)
2 + (µ21 + µ03)

2.

The visual features vector s we propose is thus:

s = (xg, yg, α,
√
a, φ1, φ2) (5.9)

Time variation ṡ of s can now be analytically related to probe velocity v, using interaction

matrix Lmij given by (3.34). We obtain, after arranging the elements related to the probe

in-plane motions (vx, vy, ωz) and those to the out-of-plane motions (vz, ωx, ωy), as follows:

ṡ =





















−1 0 yg xgvz
xgωx

xgωy

0 −1 −xg ygvz
ygωx

ygωy

0 0 −1 αvz αωx αωy

0 0 0 avz

2
√

a
aωx

2
√

a
aωy

2
√

a

0 0 0 φ1vz φ1ωx φ1ωy

0 0 0 φ2vz φ2ωx φ2ωy







































vx

vy

ωz

vz

ωx

ωy



















(5.10)

The detailed form of some elements is not provided because of their tedious form. We

can note that the selection of s given by (5.9) yields the visual servoing scheme partially
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decoupled. Indeed, we can first remark from (5.10) that the last three elements (
√
a, φ1, φ2)

of s are invariant to the in-plane motions. Moreover, the first elements (xg, yg, α) present

a good decoupling property for the in-plane motions, owing to the triangular part they form.

Although the selection (5.9) yields good decoupling properties, as also shown from results

of simulations we conducted, we however noticed from further simulations that element φ1

is relatively less robust to image noise than, for example, the length of the image section

main axis. We denote the latter feature by l1. It is expressed in terms of image moments

as follows [16]:

l1
2 =

2

a

(

µ02 + µ20 +

√

(µ20 − µ02)
2 + 4µ2

11

)

(5.11)

Therefore, the fifth element φ1 could be, in some cases, substituted by l1. Such selection

is of course subject to a trade-off between probe decoupling motions, obtained with the

former feature, and more robustness to image noise with the latter.

The remainder of the chapter presents visual servoing results. It is organized as follows.

In Section 5.2, we test both the model-based and model-free visual servoing methods in

simulations where the probe interacts with an ellipsoidal object. We consider, for that, both

ideal cases where no perturbation is present and the cases where additive measurements

noise perturbs the image. In Section 5.3 and Section 5.4, we present results obtained from

simulations respectively on realistic 3-D ultrasound object and on an asymmetric binary

object. Finally, ex-vivo experimental results obtained with both a spherical object, an ul-

trasound phantom, a lamb kidney, and a gelatin-made soft tissue object relatively complex

are reported in Section 5.5.

5.2 Simulation results with an ellipsoidal object

The scenario consists of a virtual 2D ultrasound probe that interacts with an ellipsoidal

object. The virtual robotic task consists to automatically position the probe in such a way

to reach a target image, starting from one totally different. To do so, the probe is servoed

by the control scheme we developed in this thesis. The command velocity are generated

with the control law (5.2). Note however that since the object is ellipsoidal, the observed

cross-section is an ellipse in the image. Consequently, we can define only five independent

visual features from the image. Thus, instead of using L̂−1
s , the pseudo inverse L̂+

s given

by (5.3) is employed in (5.2).
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The interaction of the probe with the object is simulated using the mathematical model we

developed and which has been introduced in Section 4.4.4. This model allows to position

and move the probe. It provides the observed image in form of contour points set, from

which the visual features s are computed. In the following simulations, we use 400 image

contour points to compute the visual features along with the interaction matrix. The inter-

action mathematical model also provides the pose (position and orientation) of the probe

(i. e., of its attached frame, already denoted {Rs}) with respect to a base frame. With this

model, we can test both the model-based and model-free visual servoing methods. Indeed,

it can also provide a 3-D mathematical (pre-operative) model of the ellipsoid in form of

3-D parameters and pose with respect to probe frame {Rs}; the 3-D parameters consist in

the ellipsoid half-length values (a1, a2, and a3), as formulated by (4.31) in Section 4.4.4.

With those data, normal vector s∇F can be obtained according to (4.32), and then can be

used to compute interaction matrix Ls involved in the control law.

In the following, we firstly present results from simulation performed using the model-

based visual servoing method, where the object pre-operative model is used to compute

the control law. Such results are essential to test the validity of the theoretical founda-

tions of the interaction matrix modeling, developed and presented in Chapter 3. Indeed,

a pre-operative model provides us with a ground truth. s∇F can be exactly known, and

consequently no modeling error can be introduced in the interaction matrix formula (3.34)

and (3.35). If the interaction matrix is truly exact, the visual features errors should con-

verge to zero exponentially and at the same time. If however they do no converge as so,

this would mean that the modeling is not exact. Afterwards, we present results obtained

using the model-free visual servoing method, based on the curved lines estimation technique

presented in Section 4.1.2, since this technique has shown to be better than the straight

lines and quadric surface estimation techniques according to the results reported in the

previous chapter. Nevertheless, visual servoing results with these two techniques can be

found in Appendix C.1. We recall that the mode-free visual servoing we propose uses only

the image contour points and the robot odometry to estimate the normal vector, and thus

to compute the control law.

The following simulations are conducted with an ellipsoidal object whose half length values

are (a1, a2, a3) = (1, 2.5, 4) cm. The control gain λ is set to 0.7, and the sampling time

to 40 ms.
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5.2.1 Model-based visual servoing

The ellipsoidal object, with which the probe is interacting, is exactly known. Both its

half length values (a1, a2, a3) and its pose with respect to {Rs} are used to compute the

exact value of s∇F, as related by (4.32). We first select the feedback visual features as

s = (xg, yg, α,
√
a, l1). The corresponding simulation results are shown on Fig. 5.4. The

feedback visual features errors e exponentially converge to zero [see Fig. 5.4(f)], and the

reached section image corresponds to the desired one (see Fig. 5.4(e)), despite the large

difference between this target image and the initial one. Moreover, the probe motions are

correct and smooth as can be seen on Fig. 5.4(g) and Fig. 5.4(a). Both the translational

and rotational motions are large, as can be seen respectively on Fig. 5.4(c) and Fig. 5.4(d).

These results, consequently, validate the proposed model-based visual servoing method.

More particularly, they validate the theoretical foundations along with the interaction ma-

trix modeling we developed and presented in Chapter 3.

With the above selected visual features s, we can notice that the rotational motions are

slightly coupled as can be seen on Fig. 5.4(d). We can remark indeed that the rotational

motions θuy and θuz intersect1. The origin of that can be explained by the fact that the two

last elements
√
a and l1 of s are not totally independent. Indeed, both these two features

are related to the size of the section in the image. Let us therefore select another visual

feature instead of l1 that would yield the probe motions more decoupled. Since
√
a relates

solely the size of the section in the image, a prospective visual feature would be nothing

but combination of moments invariants to image scale, as has already been highlighted

and explained above in Section 5.1. We have already proposed φ1 as fifth visual feature.

Nevertheless, this feature shows to be relatively more sensitive to image noise than l1, as

will be seen later from results we present in this section. In fact, since the feature l1 showed

to be relatively robust to image noise, as will be also seen afterwards, we want to derive

another feature close to l1. Thus, the obtained feature might well satisfy both decoupling

and robustness properties. Using the invariants presented in [50], we can deduce, that for

example, the feature l1/
√
a is invariant to both in-plane motions and image scale. In the

following, we present successively results obtained with l1/
√
a and then with φ1, as fifth

visual feature instead of l1, to subsequently compare the corresponding performance.

In the same scenario in which the precedent simulation has been conducted, we select now

l1/
√
a as the fifth visual feature, that is, s = (xg, yg, α,

√
a, l1/

√
a). The corresponding

simulation results are shown on Fig. 5.5. We can see that the task has been well performed,

as in the precedent simulation, where the feedback visual features errors converge to zero

1θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.
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Figure 5.4: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1). (a) and (b): The initial cross-section is plotted in

green, while the reached one is plotted in red. The probe initial frame is depicted with
the cartesian frame’s (X, Y, Z) axes respectively plotted with (red, green, blue) lines,
while the final frame is plotted with (red, green, black) lines. The path performed by
the probe is plotted in magenta. The visual features and their corresponding errors
are in (cm, cm, rad, cm, cm). The abscissa of (c), (d), (f), (g), (h) corresponds to the
number of iterations. It will be maintained as such for all the coming figures; this of
course concerns the vectors that have been plotted on those indicated figures.
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exponentially and the reached image corresponds to the desired one. Nevertheless, we can

note that indeed, as expected, the rotational motions are relatively decoupled, even though

slightly, comparing to those obtained with l1 as fifth feature, as can be seen respectively

on on Fig. 5.5(c) and Fig. 5.4(d). We can note indeed that the rotational motions θuy and

θuz do not intersect; although their plots are close to each other during the first iterations.

We finally test φ1, that is, s = (xg, yg, α,
√
a, φ1). The corresponding simulation results

are shown on Fig. 5.6. We can note that the decoupling performance on the rotational mo-

tions is better than those obtained either with l1 or l1/
√
a, as can be seen on Fig. 5.6(d).

Indeed, we can note that the rotational motions θuy and θuz neither intersect nor are close

to each other. The performance can also be clearly noticed from the plots of probe velocity

shown on Fig. 5.6(g). Indeed, velocity component vz converge with a considerably slight

back-and-forth behavior during the first iterations, compared to the former obtained results

with l1 and l1/
√
a.

The above three simulations have been conducted to compare the performance of the

visual servoing schemes in terms of probe motions decoupling, more particularly this con-

cerned the rotational motions. It is however important to compare their performances

in terms of robustness to image noise, especially since the ultrasound images are inher-

ently very noisy. To do so, we perform simulations with the three different visual servoing

schemes, that is, the visual features vector’s fifth element is respectively selected as l1,
l1√
a
,

and φ1 in the scenario where a measurement noise of 0.3 mm amplitude is present in the

image. This noise is set as a random white Gaussian noise. The impact that such noise can

have on the image coordinates of one point lying on contour C is shown on Fig. C.3(b). The

corresponding simulations results are shown on Fig. 5.7. The obtained respective perfor-

mances in terms of robustness to image noise are the inverse of those previously obtained in

terms of motion decoupling. Indeed, we can see that feature l1 is more robust to noise com-

paring to l1√
a

and φ1. The robustness is reflected on the performance of the visual servoing

scheme in terms of probe behavior, as can be seen on the obtained velocity commands.

This difference of robustness can be related to the denominators of these features. Feature

φ1 is less robust since its denominator is a second order moment; more the moment is of

higher order less it is robust, as discussed in Chapter 3.

Finally, we can conclude that both of the simulation results we obtained and presented

in this section validate the proposed model-based visual servoing method and its robustness

to image noise. In the following, we test the model-free visual servoing method. In fact,

from the interaction mathematical model used in the above simulations, we exploit this

time only the image contour coordinates and the probe pose. We recall that the latter, in
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Figure 5.5: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1√

a
). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.6: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, φ1). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.7: Model-based visual servoing on simulated ellipsoidal object, in the
presence of additive measurement perturbations of 0.3 mm amplitude. The results
obtained with l1 as fifth feature are shown on (a) and (b) - Those obtained with l1√

a

are shown on (c) and (d) - Those obtained with φ1 are shown on (e) and (f).
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practice, can be obtained from the robot odometry. Thus, we do not use any prior knowl-

edge of the shape, 3-D parameters, nor location (pose) of the object to compute the control

law. The servoing method is tested both in a perfect case, where no noise is present, and

in case where additive measurements noises are introduced.

Note however that since only five visual features are employed, although the reached image

corresponds to the desired one, the pose reached by the probe would unlikely correspond

to that where the desired image had been captured. This can be explained by the fact

that because of the object symmetry the probe can have an infinity of locations from which

it can convey a same image. To control the 6 DOFs of the robotic system, and thus to

automatically position the probe with respect to the observed object, at least six indepen-

dent visual features are required. Of course, afterwards we present results obtained with

an asymmetric object by controlling six visual features.

5.2.2 Model-free visual servoing using the curved line-based
normal vector estimation

In the present section, we test the model-free servoing that uses the curved line-based nor-

mal vector on-line estimation method, described in Section 4.1.2.

The virtual probe is firstly moved in open-loop with constant velocity while at the same

time the SLS algorithm, described in Section 4.3, is applied in order to obtain an initial

estimate Θ0. Note that this open-loop motion is applied for only the first NLS iterations;

in this case we set NLS =20 iterations. Right after, the servoing is launched, where the

recursive algorithm related by the relationships (4.8) and (4.16) takes place, instead of

the SLS one, throughout the servoing. The estimator parameters are empirically tuned to

β = 0.9, f0 = 5×1e3, β0 = 1
20×f0

, and ǫ0 =1e-10. The corresponding simulation results

are shown on Fig. 5.8, while the estimated parameters are plotted in Fig. 5.9. We can see

that the visual features errors exponentially converge to zero, and the reached image corre-

sponds to the desired one. Also, correct and smooth probe behavior and motions have been

obtained. These results thus validate the model-free visual servoing method that employs

the curved line-based estimation. The plots of Fig. 5.9 in fact highlights the consistency

of the estimated parameters between the whole points of the contour. Indeed, since the

object surface is smooth (i. e., the partial derivatives of the surface are continuous), the

variation of the normal vector when traveling along the object surface, and thus around

contour C also, should be smooth, too; it is the case for the results we obtained. If it was

not as such, this would mean that the normal vector is not well estimated. Doing so, that
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is, analyzing the consistency of the estimated parameters, could be therefore adopted as a

first indicator about the estimation performance.

An additive measurement noise of 0.4 mm amplitude is now introduced in the image. The

estimator parameters β and f0 are now tuned to β = 0.95 and f0 =1e2. Note that these

parameters are adjusted to values slightly different from the previous ones, used above,

only at the aim to adapt the system to noises and, thus, it could behave better than if the

previous parameters are used. The corresponding simulation results are shown on Fig. 5.10,

and the estimated parameters on Fig. 5.11. We can see that the results are satisfactory,

which validates the robustness of this model-free method with respect to measurement

perturbations. Note that the system still well converged in perfect conditions with these

values of the estimator parameters, but however the performance had slightly decreased.

The simulations described below relate this. Note, nevertheless, that tangent vector sdi,

involved in the normal vector computation [relationship (4.1)], is in this simulation di-

rectly computed as pixel difference between the adjacent contour points; we recall that sdi

corresponds to the vector tangent to contour C in the image. Performing directly a pixel

difference is well-known to decrease the system stability. In practice and in more realistic

simulations that we present afterwards, we do not compute sdi as such. We instead employ

firstly an image processing algorithm to extract a contour of the section in the image. The

extraction in fact consists to fit a parametric contour to the actual edge of the section in

the image. Thus, the extracted contour would be filtered from eventual noises. We then

compute sdi from that contour, thus mitigating the noise effect on the estimation. The

system robustness therefore can only be expected better.

The results we showed are those we consider obtained using sufficiently well tuned estima-

tor parameters. The tuning has been performed empirically, while making a compromise

between estimation speed, accuracy, robustness to image noise; we modified the parameters

according to a dichotomy manner. Nevertheless, we noticed that the system still converges

and well behaves for different values of the parameters, and generally it was relatively easy

to tune these latter. In fact the system performance is not dramatically compromised with

parameters wise changes. To show this, we conducted different set of simulations, where

in each set only one parameter is modified. In the first set we successively varied β. We

present on Fig. 5.12 results separately obtained for β = 1.0, 0.5, and 0.04, while the remain-

ing parameters are fixed throughout the tests to f0 = 5×1e3, β0 = 1
20×f0

, and ǫ0 =1e-10.

We can notice that when β = 0.5 the system performance is better. In the second set, the

system is tested when starting with different values of initial estimate Θ0. For that, we

assigned different values to parameter ǫ0, since the latter is involved in the SLS algorithm,

that is employed to obtain Θ0. The remaining parameters are fixed to β = 0.9, f0 = 5×1e3,

and β0 = 1
20×f0

. Results obtained for ǫ0 =1e-40, 1e-5, and 1.0 are shown on Fig. 5.13. We
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Figure 5.8: Model-free visual servoing using the curved line-based estimation
method, in a perfect condition where no measurement noise is present. The visual
features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.9: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.8.
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Figure 5.10: Model-free visual servoing using the curved line-based estimation
method, in the presence of an additive measurement noise of 0.4 mm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.11: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.10.
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can conclude that the visual servoing system using the curved line-based estimation is quite

tolerant to the values that the two parameters β and ǫ0 might have. We also tested the

system for different values of f0 and NLS . It was noticed that it grossly disclosed similar

performances for different values of f0, expect for very small ones, as 0.01 for example,

where the convergence becomes relatively quite slow. The system also converged for differ-

ent values of NLS .

We recall that results obtained with the straight line- and the quadric surface-based

estimation methods are respectively presented in Section C.1.1 and C.1.2. We conclude

that the quadric-based model-free servoing method considerably underperformed the two

other methods. In addition, it was quite difficult to tune its estimation parameters. In fact,

we are not surprised about this outcome, because of the low performances this estimation

method had already shown in Section 4.4.4. The other drawback of this method, as high-

lighted in the previous chapter, consists in the fact that it is relatively computationally

expensive. Indeed, this method uses at each iteration a segment of N points to estimate

and thus to update normal vector s∇F, in contrast to the two other methods (respectively

based on straight and curved line estimation) where only one point is used to update the

estimation.

5.3 Simulation results with realistic ultrasound im-

ages

In the present section, the curved line-based model-free visual servoing method is tested on

a realistic simulated object. The latter consists in an ultrasound image volume, made from

a previously performed scan of an ultrasound phantom containing an egg-shaped object.

The scan has been performed by acquiring 100 real B-scan images with a conventional

2D ultrasound probe, that swept the phantom by moving with constant velocity along its

orthogonal Z axis. The images were successively captured at each 0.1 mm interval of the

probe motion. Using a software presented in [45], the interaction of a virtual 2D ultrasound

probe with the object volume is simulated. This software simulator is built from the Visu-

alization Toolkit (VTK) software [70] system and ViSP [53]. It allows to move and position

the probe, and can provide the corresponding realistic ultrasound image along with a 3D

view of the interaction, as can be seen respectively on Fig. 5.14(a) and Fig. 5.14(b). In the

following, we test the servoing method, by using this simulator. This allows us to verify its

validity on realistic ultrasound images. The method uses only the observed image and the

probe pose (robot odometry), also provided by the simulator, to compute the control law.
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Figure 5.12: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure 5.13: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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The latter is then applied on the virtual probe that moves accordingly. However, we need

to extract from the observed image the section contour, since it is used to compute the

feedback visual features and the interaction matrix, both involved in the control law. 2D

ultrasound images are, yet, very noisy and difficult to segment. Moreover, such extraction

should be not time consuming, but it should instead be performed as fast as possible in a

duration within the real-time servoing streaming rate. This latter constraint is more diffi-

cult to satisfy when this concerns robotic applications, because of the high streaming rate at

which the systems perform. If this constraint is not satisfied, the system performance would

be totally compromised and, even more, its stability would be deeply threatened. We use

the image processing algorithm presented in [21] to segment and track the section in the ul-

trasound image. This algorithm is based on a snake approach, and a polar parametrization

to model the contour. It has shown to be relatively fast. Since image processing is beyond

the scope of this thesis, it is not detailed in this document. Note that this algorithm is

employed in all the simulations and experiments presented in the remainder of this chapter.

The segmentation provides coordinates of points lying on image section contour C, as can be

seen as instance on Fig. 5.15. These points, more precisely their image 2D coordinates, are

then used to compute feedback visual features vector s, on-line estimate normal vector s∇F,

and finally compute the control law (5.2). Note however that, in this case, the observed

section in the image is nearly an ellipse [see Fig. 5.14(b) for example]. Consequently, we

can define only five independent visual features from the image. We select them, similarly

as in Section 5.2.2 (and also Section C.1.1 and C.1.2), s = (xg, yg, α,
√
a, l1). Accordingly,

pseudo inverse L+
s is employed in (5.2) instead on inverse L−1

s , since matrix Ls is not square

in this case.

The task that has to be performed by the virtual probe consists to automatically reach

a first desired image starting from one different, and then to reach a second target. This

allows us to verify that the recursive algorithm can re-estimate s∇F, after the observed

image has not conveyed wealthy information during a while. Indeed, when the first tar-

get image would have been reached, the probe would stand roughly motionless until the

second target would be sent to the controller. During that time span, the observed image

is roughly the same and, as consequent, there would not be information to stimulate the

recursive estimator. This might yield the covariance matrix F[k] ill-conditioned, thus com-

promising the estimation. Moreover, the algorithm might be trapped and might not be

pulsed even though new images would then convey wealthy information. However, thanks

to stabilization term (1 − β) β0 I introduced both in the recursive relationships (4.9) and

(4.16), it is expected that covariance matrix F[k] is prevented from becoming ill-conditioned

when there are not enough probe motions.
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(a) (b)

Figure 5.14: Simulating the interaction of a virtual 2D ultrasound probe with a real
ultrasound 3D volume - (a) A 3D view of the probe observation plane intersecting
(observing) the egg-shaped object - (b) Observed 2D ultrasound image.

The simulation scenario consists to first position the probe on an image [see the section

image contoured in green, shown on Fig. 5.16(a)] totally different from both the two tar-

gets. Then, it is moved in open-loop with constant velocity v = ( − 0.4, 0, − 0.3, 0, 0, 0)

(cm/s and rad/s) during the first NLS iterations, where the SLS algorithm is being applied

in order to obtain an initial estimate Θ0. Right after, the servoing is launched where the

recursive algorithm takes place instead of the SLS one. The recursive algorithm is solely

applied throughout the servoing. The control gain is set to λ = 0.7. The first initial esti-

mate, before that the SLS algorithm is applied, is arbitrarily set to Θ[t0] = 0 (04 when using

the straight line-based estimation, and 06 when either using the curved line- or the quadric

surface-based estimation). The estimator parameters are tuned to β = 0.9, f0 = 5×1e3,

β0 = 1
20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The corresponding results are shown

on Fig. 5.16 and Fig. 5.17. We can see that the successive reached images correspond

to the desired ones, and the visual errors converge to zero. These results thus show the

validity of the curved line-base model-free visual servoing method on realistic ultrasound

images. Moreover, they show its robustness as can be clearly seen how much the images

are of low quality. Due to the fact that the snake shook when tracking the actual section

contour, because of the very noisy images and since the section is low contrasted from the

image background, the probe velocity has consequently not been smooth, as can be seen

on Fig. 5.16(f). Using a more powerful contour detection would undoubtedly, and perhaps

considerably, improve the system behavior.

Results obtained using the straight line- and the quadric surface-based estimation methods
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Figure 5.15: A Screenshot of the graphical human-machine interface (top left), along
with a 3D view of the interaction between the virtual probe plane with a realistic
object (top middle), and also along with the observed image whose section is con-
toured with green and where the contour of the target image section is displayed in
red (right). Right the user would have pushed the button “servo” (round button at
top left), the servoing would be launched.

are respectively reported in Section C.2.1 and C.2.2. As expected (see for example Sec-

tion C.1.2), the latter method again underperformed the two other methods.

The trials presented so far were able to use only five independent visual features in the

visual servoing scheme. This was due to the fact that the section in the image was roughly

ellipsoid, that is, symmetric. In such cases, however, although the desired section in the

image is reached, the pose reached by the probe would unlikely correspond to the desired

pose (i. e., pose where the target image had been captured). The reason is that when

the image is symmetric (i. e., the object is symmetric) a desired image can correspond to

an infinity of probe poses. In fact, to be able to reach a desired pose using the image,

at least six independent visual features are required to control the 6 DOFs of the robotic

system. In the next section, we perform simulations on a virtual object which is grossly
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Figure 5.16: Model-free visual servoing using the curved line-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.17: Estimated Parameters Θ̂ corresponding to the results shown on Fig. 5.16.
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non-symmetric, such that the six chosen visual features are all independent.

5.4 Simulation results with a binary object

The curved line-based model-free visual servoing method is now tested on a virtual binary

object, which is grossly asymmetric. The selected features are s = (xg, yg, α,
√
a, l1, φ2).

Note that in this case Ls is a 6 × 6 matrix and, thus, a square matrix. Therefore, we can

directly employ the control law (5.2) as is. The task now consists, besides of reaching the

desired image, to also reach the pose where that image had been captured. We use for the

simulations the same software described in Section 5.3, but, which is now loaded with slice

images of the binary object. We similarly load 100 slices.

The scenario is similar to that described in Section 5.3. Two target images are successively

sent to the visual servoing system, where the latter target is ordered after the former would

have been automatically reached. At initial time t0, the probe is positioned by the user at

a pose different from those where the two target images had been captured. Then, it is

moved in open-loop with constant velocity v = (0, − 0.1, 0.12, 0, 0, 0) (cm/s and rad/s)

for the first 100 iterations. During that time, the SLS algorithm is applied in order to

obtain initial estimate Θ0. Before the open-loop motion is performed, initial estimate Θ̂[t0]

is arbitrarily set Θ̂[t0] = 0. Note, however, that this open-loop motion yields the probe (and

thus the actual image) more farther from both the first and second targets. At the end

of this motion, the corresponding pose represents that from which the model-free visual

servoing is launched. As for the detection and tracking of the contour, which consists to

extract the 2D image coordinates of points lying on it, and which is required to compute the

control law, we similarly use the snake detection algorithm also introduced in Section 5.3.

The control gain is set to λ = 0.2. The estimator parameters are tuned to β = 0.8, f0 =1e6,

β0 = 1
20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The corresponding simulation results are

shown on Fig. 5.18 and 5.19. They are quite satisfactory, since the visual features errors

converge to zero, exponentially. The two poses reached by the probe correspond also to

those where the first and second target images had been captured, respectively. The ob-

tained positioning errors are (1.28×1e-3, -8.4×1e-4, -1.9×1e-4, 0.086, 0.378, 0.03)(cm

and deg) for the former and (4.5×1e-4, 4.1×1e-6, -1.13×1e-5, -0.12, -0.22, 0.008)(cm and

deg) for the latter automatic positioning. These results show the validity of the method in

automatically positioning the probe with respect to an observed object. They also show

the relevance of the selected six visual features to control the 6 DOFs of the system.



5.4. SIMULATION RESULTS WITH A BINARY OBJECT 154

(a) (b) (c)

(d)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

e
6

(e)

0 500 1000 1500 2000
−0.4

−0.2

0

0.2

0.4
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

1.5
2

0.5

1

1.5

1.5

2

2.5

X (cm)Y (cm)

Z
 (

cm
)

(g)

0 500 1000 1500 2000
−1

0

1

2

3
Visual features

 

 

x
g

y
g α a1/2 l

1
φ

2

(h)

Figure 5.18: Model-free visual servoing that uses the curved line-based estimation,
tested on a simulated binary object.
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Figure 5.19: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.18.
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Figure 5.20: Experimental setup - A 6 DOFs medical robot arm (right) actuating a 2D
ultrasound probe (left), which is interacting with an object immersed in a water-filled
tank. The observed image is displayed on the imaging system screen (middle).

5.5 Experimental results

In the following, we finally present experimental results obtained with the model-free visual

servoing that uses the line-based estimation. We employ 6 DOFs anthropomorphic robot

arms. All the experiments have been conducted with a medical robot arm similar to the

Hippocrate robotic system [65], except the last one where a new acquired robot has been

employed as presented in Section 5.5.5. The robot carries at its end-effector a 5-2 MHz 2D

broadband US transducer (see Fig. 5.20 for example). The latter acquires the images at a

streaming rate of 25 frames/s. A block diagram shown on Fig. 5.21 illustrates the different

steps involved in the servoing along with the corresponding data flow. The servoing method

has been implemented in the C++ programming language under LINUX operating system,

and the control law is computed using an ordinary personal computer. We consider first a

simple case of a spherical object with which the probe is interacting, the case of a relatively

symmetric object enclosed in an ultrasound phantom, and then a more complex case of

non-symmetrical soft tissue object. Both the spherical and soft tissue objects are sepa-

rately immersed in a water-filled tank. The latter experiment allows us to experimentally

test the automatic positioning with respect to an observed object and, thus, the validity

of the model-free visual servoing method in controlling the 6 DOFs of the robotic system.

We conclude these tests by carrying out an experiment where we take back the ultrasound
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Figure 5.21: Architecture of the model-free servoing method, where the different
involved steps along with the corresponding data flow, up to hardware setups, are
presented.

phantom. In the latter, in fact, two relatively-symmetric objects can be observed in a same

acquired image. The robotic task of this experiment consists in tracking both the two

sections, instead of only one. We will show that by doing so the probe can be positioned

and thus stabilized with respect to the two objects, although the symmetry of each one.

Therefore, we provide a solution to address the problem of symmetry, pointed out in this

document.

5.5.1 Experimental results with a spherical object

The robotic system is interacting with a ping-pong ball of 4 cm diameter. Note that we

do not use any prior knowledge about the ball in the servoing. No information about its

diameter nor location is exploited. Since the observed image is a sphere, we can define

only three independent visual features, as has been described in Section 3.7.1. Therefore,

the feedback visual features vector we select is s = (xg, yg,
√
a), where its elements have
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Figure 5.22: Experiment using the model-free visual servoing that uses the curved
line-based estimation, where the probe interacts with a spherical object -(a) Initial
image captured right before launching the servoing, where the actual section is con-
toured with green. The contour of the desired image section is displayed with red
and superimposed on the initial image - (b) Target image automatically reached after
visual servoing - (c) Visual features errors in (cm ,cm, cm) (d) Probe velocity applied
on the probe.

already been defined in terms of image moments by the relationship (3.48). The robotic

task consists in first learning a desired image section, then moving away the probe trans-

ducer from that target by applying open-loop motion with constant velocity. During that

motion, the SLS algorithm presented in Section 4.3 is employed for only the first NLS = 60

iterations, in order to obtain initial estimate Θ0. Right after, when the probe reaches a

distant location, the servoing is launched where the recursive least squares estimation algo-

rithm presented in Section 4.1.2 is employed throughout the trial. The control gain is set to

λ = 0.1. As for the estimator parameters, they are tuned to β = 0.8, f0 =1e6, β0 = 1
(20×f0)

,

and ǫ0 = 1e-10. Note that in this experiment, we have employed the straight line-based

estimation method. Corresponding experimental results are shown on Fig. 5.22. The visual

features errors converge to zero, roughly exponentially, as can be seen on Fig. 5.22(c), and

the reached image section corresponds to the desired one as can be seen on Fig. 5.22(b).
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Figure 5.23: The probe transducer interacting with an ultrasound phantom.

The robot behavior is correct, where smooth motions have been applied as can be seen on

Fig. 5.22(d). These results thus give a first experimental validation of the model-free visual

servoing method based on line estimation.

5.5.2 Exprimental results with an ultrasound phantom

The model-free visual servoing method based on straight line estimation is tested on an

ultrasound phantom (see Fig. 5.23). In this case the ultrasound transducer is in contact

with the phantom and applies a 2 N force on it. For that, the velocity vz of the probe

is constrained by force control. We noticed however that feature l1 was coupled with the

area, likely due to the relatively-symmetric shape in the image of the phantom object. We

thus removed that feature from the visual features vector, which is now s = (xg, yg, α,
√
a).

The estimator parameters are tuned to β = 0.95, f0 =1e8, and β0 = 1
20×f0

. The robotic

task consists to automatically reach two successive target images; the second target is sent

to the controller after the first one would have been reached. Corresponding results are

shown on Fig. 5.24. The visual features errors converge to zero roughly exponentially [see

Fig. 5.24(e)]. Both the two target images have been reached as can be seen respectively on

Fig. 5.24(b) and 5.24(d). The motions of the probe are also correct as can be noticed from

the applied probe velocity, shown on Fig. 5.24(f).
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Figure 5.24: Experimental results with an ultrasound phantom using the model-free
visual servoing method based on straight line estimation (the current contour is in
green and the desired one in red): (a) Initial and first target image - (b) First target
reached after visual servoing - (c) A second target image is sent to the robot - (d) The
second target image is reached after visual servoing - (e) Visual error time response
(cm, cm, rad, cm)- (f) Control velocity applied to the probe.
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5.5.3 Ex-vivo experimental results with a lamb kidney

We test the model-free visual servoing method based on straight line estimation on a mo-

tionless lamb kidney immersed in the water-filled tank. Similarly, the robotic task consists

to automatically reach two successive target images. The feedback visual features vector

is s = (xg, yg, α,
√
a, l1). We have not used six visual features because of the symmetry of

the section in the image. The estimator parameters are tuned to β = 0.8, f0 =1e5, and

f0 = 1
20×f0

. Corresponding results are shown on Fig. 5.25. The visual features errors con-

verge to zero [see Fig 5.25(e)]. Both to the two reached images correspond to the desired

ones, as can be seen respectively on Fig. 5.25(b) and 5.25(d). The robot behavior is correct

as can be noticed from the relatively smooth applied probe velocity shown on Fig. 5.25(f).

These results therefore experimentally validate the model-free servoing method on real soft

tissue.

Note that in the experiments presented above, less than six visual features have been

used. As such, the pose reached by the probe would unlikely correspond to that where the

desired image had been captured, as already highlighted in Section 5.2.1. In the following,

we present experimental results obtained with six visual features at least.

5.5.4 Experimental results with a motionless soft tissue

We test the servoing method on a grossly asymmetric gelatin-made soft tissue object. Such

asymmetry yields the six visual features independent, which allows to control the 6 DOFs

of the robotic system and, thus, to automatically position the probe with respect to the

object. In other words, the probe should automatically recover the pose with respect to

the object where the desired image had been captured. The feedback visual features are

s = (xg, yg, α,
√
a, φ1, φ2). Note that we used the curved line-based estimation method.

As before, the robotic task consists in first acquiring a desired image, then moving away the

probe from the corresponding location where this image had been captured. The motion

is performed during 70 iterations in open-loop with constant velocity. During this moving

away, the SLS algorithm is applied for the first NLS = 60 iterations. This allows to obtain

initial estimate Θ0. Right after the recursive algorithm takes place, instead of the SLS

one, and then is solely applied throughout the trial. The control gain is set to λ = 0.05,

and the estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1
20×f0

and ǫ0 =1e-

10. The corresponding experimental results are shown on Fig. 5.26. The six visual errors

converge to zero, roughly exponentially, as can be seen on Fig. 5.26(c), and the reached

image section corresponds to the desired one as can bee seen on Fig. 5.26(b). Moreover,

the probe automatically came back quite near the pose where the desired image had been
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Figure 5.25: Experimental results with a lamb kidney using the model-free visual
servoing method based on straight line estimation (the current contour is in green
and the desired one in red): (a) Initial and first target image - (b) First target reached
after visual servoing - (c) A second target image is sent to the robot - (d) The second
target image is reached after visual servoing - (e) Visual error time response (cm, cm,
rad, cm, cm)- (f) Control velocity applied to the probe.
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Figure 5.26: Experimental results obtained with the model-free visual servoing
method based on curved line estimation, where the probe is interacting with a soft
tissue object that possesses asymmetric regions - (a) Initial image captured right
before launching the servoing, where the actual section is contoured with green. The
contour of the desired image section is displayed with red and superimposed on the
initial image (b) Desired image reached after visual servoing - (c) Visual features
errors in (cm, cm, rad, cm, unit, 10×unit) - (d) Probe Velocity - (e) Trajectory
performed by the probe, where that obtained during the open-loop motion is plotted
in magenta and that obtained during the servoing is plotted with green. The position
where the desired image had been captured in indicated with the read stared point.
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captured [see Fig. 5.26(e)]. The corresponding obtained positioning errors are (0.4, 0.6,

-0.2) mm and (0.05, -0.7, -0.8) degree respectively for the position and the θu rotation2.

The robot behavior is correct, where smooth motions have been performed as can be seen

on Fig. 5.26(d), despite the noisy images. Thus, these results experimentally validate the

servoing method for both reaching a desired ultrasound image and recovering the location

where that image had been captured.

5.5.5 Tracking two targets

In case the observed object is not asymmetric, it is still possible to stabilize the probe with

respect to it. We propose two solutions for that. They are described in Chapter 6. Let

us consider here the second solution, that consists to rather consider a couple of targets

instead of only one, as was so far considered in this work. As observed object, we take back

the ultrasound phantom used in the experiment reported in Section 5.5.2. We have seen

that when considering only one target section image, it is unlikely that the probe retrieves

the pose where that target image is captured and thus it would not be possible to stabilize

the probe with respect to the phantom (object). However, in this experiment we consider

two target sections, as can be seen on Fig. 5.27(i). From each observed section, five vi-

sual features are computed. As a result, the system is fed back with 10 visual information.

Note however that velocity component vz is servoed by force control in order that the probe

exerts a couple of newton force along its Y axis (see Fig. 3.5 and 3.7 for the probe axes con-

figuration). The phantom is put on a manually-driven tray. The task consists to track the

two target section images when the phantom is arbitrarily and manually moved. Note that

in contrast to the above presented results, we employed in this experiment a new acquired

6 DOFs anthropomorphic robot arm. Corresponding experimental results3 are shown on

Fig. 5.27. We can see that the robotized probe automatically tracks the moving ultrasound

phantom, and stabilizes with respect to it. The observed image sections superimpose on

the target ones [see Fig. 5.27(i)]. Note that since we used a basic control law, the system

response is relatively slow and presents delays. Employing a tracking-dedicated control law,

the system reactivity would increase. We have not estimated and thus not predicted the

phantom motions to then eventually forward the information in the robot motions control.

In this work, only the observed image along with the robot odometry is used to compute

the commands to control the robot. However, estimating the phantom movements, as us-

ing for example a Kalman filter, the results are expected to be better. Note also that we

2θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.

3The corresponding video can be found at http://www.irisa.fr/lagadic/team/old/Rafik.Mebarki-
eng.html.
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(a) (b) (c)
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(g) (h) (i)

(j) (k) (l)

Figure 5.27: Tracking two target sections: sequences taken during the tracking - (i)
Observed 2D ultrasound image. The two observed cross-sections are contoured with
green, while the contours of their respective targets are in red. The contour of each
observed cross-section superimposes on its corresponding target.
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have been constrained by the computational time, since the image processing takes a large

amount of resources. To cope with that, we have used only 50 image points to characterize

the contour of each observed section. As so, the contour is not enough sub-sampled, which

could compromise the accuracy of both the normal vector estimation and the computed

command velocity. We noticed shakiness of the snake during the phantom displacements.

5.6 Conclusion

We presented new visual servoing methods to automatically position a robotized 2D ul-

trasound probe in order to reach and maintain desired cross-section images. Firstly, we

presented simulation results that have shown the validity of the model-based visual servo-

ing method, where the object 3-D model is required. The latter constraint, as emphasized,

considerably limits visual servoing based on ultrasound images. Thanks, however, to the

normal vector estimation methods, we developed model-free visual servoing methods that

overcome that constraint. Indeed, these methods do not require any prior knowledge of

the shape of the observed object, its 3D parameters, nor its location in the 3D space.

They instead on-line estimate normal vector s∇F to then employ it in the control law. We

presented three different model-free servoing methods, according to the geometrical primi-

tive they use for the estimation. We distinguished servoing methods that use respectively

straight line-, curved line-, and quadric surface-based estimation method. In this chap-

ter, we reported simulation results obtained with method based on curve estimation, while

those obtained with the straight line- and the quadric surface-based methods are presented

in Appendix C. The results showed the validity of the two methods based on straight and

curved line primitives. They suggested that these two methods outperform the quadric

surface-based method. The latter one, indeed, showed to be considerably less robust to

image noise, and has failed for important probe displacements. For small displacements,

the probe velocity was nevertheless too shaky. Such performances were in fact expected

from the simulations presented in Chapter 4. In those simulations, we noticed that the

curved line-based estimation showed to be more effective. Then, we reported experimental

results where we have tested the model-free visual servoing based on line estimation. They

have been obtained with both a spherical object, an ultrasound phantom, a lamb kidney,

and a relatively complex soft tissue object. The probe automatically reached the desired

cross-section images. Moreover, it automatically comes back quite near to the pose where

the desired image is captured on the gelatin-made soft tissue object. Finally, considering

two target sections simultaneously, on the the ultrasound phantom, the latter has been au-

tomatically tracked by the robotized probe. All those results thus experimentally validated

the model-free visual servoing we propose in this dissertation. Consequently, and more



5.6. CONCLUSION 167

precisely, they validate both the theoretical foundations developed in Section 3, the normal

vector on-line estimation method presented in Chapter 4, and the selection of feedback

visual features s in the present chapter.





Chapter 6

Conclusions

The research work presented in this dissertation lies mainly within the field of image-based

visual servoing. It investigated the exploitation of 2D ultrasound images for automatic

guidance and thus positioning of robotized 2D ultrasound probes with respect to observed

soft tissues. The scenario consists of a 2D ultrasound probe carried and thus actuated by

the end-effector of a general medical robot arm. The latter is servoed in velocity thanks

to the visual servoing schemes we developed and presented in this document. The con-

trol law of the visual servoing scheme indeed computes the velocity that the robot has to

achieve in order to reach the desired ultrasound image. As highlighted, the control law of

an image-based visual servoing scheme requires the interaction matrix related to the feed-

back visual features. The interaction matrix, in fact, relates the differential changes of the

visual features to differential displacements (configuration changes) of the robot. However,

the analytical form of such matrix was not available for 2D ultrasound imaging systems,

due to the fact that the latter interact with their environment with a manner that was, so

far (before our works), challenging to model. These systems completely differ from optical

systems, for instance, whose use in robotic automatic guidance is the subject of extensive

investigations in the field of visual servoing. In particular, for optical imaging systems,

as perspective cameras for example, the interaction matrix related to differential changes

of the image points coordinates is already available. From that matrix, that related to

different visual features can be derived. It was not the case for 2D ultrasound imaging

systems. Another main challenge when dealing with these systems consists in the fact that

the image feature variations strongly depend on the 3-D shape of the object with which

the probe is interacting. The challenge corresponds mainly to a mathematical modeling

problem. A couple of investigation works, that have been presented in Chapter 2, provided

the interaction matrix for only a simple 3-D geometrical primitive, namely 3-D straight

line. The work presented in this dissertation addressed all those cited challenges. We de-

veloped, indeed, general methods that endow the the robotic system with the capability of

dealing with objects of whatever shapes, in order to automatically position the probe with
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respect to them. Doing so required mainly to develop new theoretical foundations in term

of modeling techniques. Our contributions can be summarized as follows:

(a) We have proposed to use visual features based on image moments as feedback for

visual servoing schemes, to automatically control the robot from the observed 2D

ultrasound images. This direction seems judicious since the image moments show to

be relevant in case of 2D ultrasound images. Indeed, computing the image moments

needs only a global segmentation of the section in the image, and thus does not

require matching of points in the image except for the section in the image. This is

of great interest when dealing with 2D ultrasound since, as described in the present

document, the points of the image do not match to those of the precedent image.

This is explained by the fact that the observed points are not the same, in contrast

to optical systems for example. A preliminary exploration work [54] validated the

relevance of our choice for image moments. However the interaction matrix related

to image moments was approximated. Moreover, the considered observed object

is assumed grossly ellipsoidal, and its 3-D parameters are assumed roughly known.

This has been addressed and presented in this dissertation, where the exact form of

interaction matrix Lmij
, related to image moment mij , has been modeled;

(b) To obtain the interaction matrix, its exact form, more precisely, we first highlighted

that a key solution would be to consider only the image velocity of the points lying

on the contour of the section in the image (the contour and the section in the image

have been respectively denoted by C and S). The image moments time variation,

thanks to the Green’s theorem, can be formulated as function of the velocity of those

contour points. The objective then consisted to obtain such image velocity;

(c) The image contour points indeed correspond to points sliding on the surface of the

observed object. We have shown that such points can satisfy two constraints, that

consist in the relationships (3.20) and (3.22). Each constraint corresponds to a scalar

mathematical relationship. Using these two constraints, we then have been able to

model an exact form of the image velocity of the contour points. The formulae is

given by the relationship (3.27) according to (3.28). Such image velocity, denoted

(ẋ, ẏ), is expressed as function of velocity v of the robot end-effector (or of frame

{Rs} attached to the robotized probe);

(d) Using the image velocity relationship, we finally derived the exact form of interaction

matrix Lmij
, as given by the relationship (3.34) according to (3.35). It was noticed

that the interaction matrix requires the knowledge of the image coordinates of the

points lying on the image contour, and also vector s∇F normal to the surface of the

observed object at each of the considered contour points. The obtained results have
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been verified on simple 3-D geometrical primitives, like spheres and cylinders, for

certain configurations. We then have designed a visual servoing scheme where the

feedback visual features are combinations of image moments. Six relevant indepen-

dent visual features have been proposed to control the 6 DOFs of the robotic system.

A classical control law has been employed in the servoing scheme. The control law

requires the interaction matrix, or its estimate, at each iteration. If the matrix is

exact, the visual features errors are expected to converge to zero exponentially. This

latter characteristic has been exploited to verify again the exactitude of the inter-

action matrix. To do so, we performed simulations where the scenario consisted of

a virtual 2D ultrasound probe that interacts with an ellipsoidal object. This object

was assumed exactly known. Its half length values an its pose are used to compute

the actual values of the image coordinates and the normal vector, that are used to

compute the control law. We have noticed that, indeed, as expected, the feedback

visual features errors converge to zero exponentially [e. g. Fig. 5.4(f)]. This validates,

once again, the correctness of the developed interaction matrix;

(e) Another problematic, as pointed out above, consisted in the fact that the variations

of the image information depend strongly on the 3-D shape of the observed object.

This can be noticed from the involvement of s∇F in elements Kx and Ky, given by

(3.28), that are required in the expression of the image point velocity and, hence, of

interaction matrix Lmij
. Computing this normal vector would have suggested the use

of a 3-D pre-operative model of the observed object. Such resolution however would

have greatly hindered the visual servoing, where the 3-D model has to be registered

to the object at each iteration; besides that the accuracy of the extracted normal

vector would be directly and heavily based on that of the registered 3-D model.

Our work overcame such limitations, where we proposed model-free visual servoing

methods that do not require any prior information about the shape, 3-D parameters,

nor 3-D location (position and orientation) of the observed object. To do so, we have

developed estimation methods to on-line estimate the normal vector. We proposed

three estimation techniques:

· straight line-based estimation;

· curved line-based estimation;

· and quadric surface-based estimation.

Even though that opting for quadric surface primitives for the estimation seems the

more natural direction that one could take, we have noticed from different performed

simulations that the quadric surface-based estimation considerably underperformed

the first two methods, that rather well performed in different conditions. In fact, we

expected such difference of outcomes. This can be explained by the fact that the
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two first methods do not estimate in whole the normal vector but only a part of it.

Indeed, these two techniques decompose a normal vector into two tangent vectors.

The former tangent vector can be extracted from the image, while only the latter

needs to be estimated. Doing so, we spare the obtained normal vector value the effect

of a part that would add errors if the normal vector would have to be estimated in

whole; thus only the errors on the estimation of the second tangent vector have an

impact on the normal vector. Moreover, fitting a line to a set of successive points

seems less constrained than fitting a surface to a cloud of points. Experiments have

been conducted, where we tested the model-free visual servoing methods that use

the line-based estimation. The corresponding results have experimentally validated

the methods.

Thus, the previous cited challenges that were faced and that hindered robotics auto-

matic guidance from 2D ultrasound images are now addressed thanks to the theoretical

foundations and the methods we have presented in this document. We have provided

through this thesis basics on which new investigation and thus developments can now be

undertaken. Nevertheless, some of the proposed methods could be improved. It was pro-

posed in this dissertation to employ a stabilized recursive least squares algorithm to perform

the estimation of s∇F. It would be interesting instead to test a Kalman filter (KF), or an

Extended Kalman filter (EKF), in order to verify which algorithm gives the best outcome

in terms of estimation accuracy, speed, and robustness. Let us point out that in [86] it was

concluded that an EKF estimator outperformed a least squares one in terms of accuracy

and speed in predicting periodic motions; mimicking mitral valve motions for heart surgery.

The 3-D ultrasound imaging was employed in that work. Another point is that we have

performed simulations and experiments mainly on motionless observed objects. Dealing

with moving objects could be considered with the developed methods as is. This in fact

could be technically addressed by making the robotic system performing at high sampling

streaming rates. Indeed, acquiring the images and then ordering the command velocity at

a sufficiently high streaming rate, such that the motions of the object between two samples

could be neglected, the estimation algorithm would be insensitive to the object motions.

The modeled interaction matrix is also concerned if moving objects are considered, but

this again could be similarly addressed. However, if the motions of the observed object

become faster with regards to the streaming rate, such that its displacements between two

acquired images can not be neglected, the proposed methods might fail. That is the reason

why this should be further investigated. Nevertheless, we think that the concepts we have

proposed and used in the modeling of the interaction matrix and in the estimation of the

normal vector can be taken back and adapted for the case of moving objects.
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We have proposed six visual features to control the 6 DOFs of the robotic system and thus

to automatically position the probe at a desired cross-section of the observed object. The

2D ultrasound probe can automatically come back to the pose (position and orientation)

where a desired image is captured. This can be achieved provided that object is asymmet-

ric. If it is not the case, a desired image can corresponds to an infinity of cross-sections

(slices), and consequently the probe might fail to automatically retrieve the corresponding

pose. Nevertheless, such issue might be addressed by employing not only one 2D ultrasound

probe but, instead, a couple of probes; as example to illustrate, two orthogonal probes can

be employed. Both probes should of course be actuated by the same robotic system. Each

acquired image from each of the probes would provide different section and also would

target a different cross-section. The task would then consist to reach both desired cross-

sections. In fact, the whole information provided by all the probes should be enough to

extract at least six independent visual information. This can be afforded by means of, for

example, a selection matrix using the task function approach [68]. When all the probes

would reach their respective target cross-sections, the considered probe would thus clearly

be positioned at the desired cross-section that we are interested in; the other probes with

the imaged cross-sections are only considered to add visual information, no more. A second

solution, which is a dual solution of the above-mentioned one, would be to rather consider

different target sections in the same image, instead of only one section. Indeed, we have

shown in Section 5.5.5 that by considering two target sections the robotized probe has been

able to stabilize with respect to a moving ultrasound volume, the 3-D phantom in this case.

Another issue is that if the shape (closed surface) of the object possesses local minima, the

visual servoing method might be trapped by these latter, in case the probe trajectory would

encounter them. A resolution that could be proposed consists in using path of images that

would successively guide the probe up to the desired image of the target cross-section that

we are interested in. Such resolution could be also used to guide the probe from relatively

far locations. As for the selection of the six visual features, we suggested to use φ1 [given

by the relationship (5.8)] as fifth feature, if the image noise is not considerably high to a

certain extent that would compromise the system stability. If it is not the case (i. e., the

noise is high) we recommended to instead use l1 [relationship (5.11)] as fifth feature. This

latter indeed showed to me more robust to image noise. The advantage of φ1 is that it

has rather showed to yield the probe motions more decoupled. The choice between φ1 and

l1 is thus subject to a compromise between motion decoupling and robustness. However,

it would be nice to find, or to investigate for, a feature that could well satisfy both the

two traits: decoupling and robustness. The same applies for the sixth feature, where we

proposed φ2.
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In a practical scenario, the probe is in contact with the patient skin. Therefore, the interac-

tion forces need to be controlled. In some of the experiments we have conducted, where the

probe was in contact with the soft surface of the ultrasound phantom, we have constrained

probe velocity component vy with a proportional force controller, in such a way the probe

could exert a couple of newtons force along its Y axis. However, such an approach is

rudimentary, since one DOF of the system is no longer used and thus lost by the visual

servo controller to compensate for all in-plane and out-of-plane motions. As such, some

motions could no longer be compensated to keep the target in the image. Moreover, in

case the probe is oriented with respect to the contact surface, the force along Y axis would

not correspond to the amount of exerted forces on that surface. Therefore, controlling vz

would no longer allow to control all the contact forces. That is the reason why we propose

to investigate for a more sophisticated approach. However, we provide a direction for this.

A system where visual servoing and force control share the command of the robot motions

should be considered. The task function approach again could be useful, where the control

law can be computed based on the priority given to the functions to achieve: vision or force.

To do so, we propose to consider at least two modes. The first mode would correspond to

the case where the exerted forces are below a pre-fixed threshold and thus are considered

no dangerous for the patient body, while the second mode would consist in the case where

these forces are above the threshold. In the first mode, the priority should be given to

the visual servoing rather than to the force control. As for the second mode, the priority

should be inverted, that is, giving more importance to control the forces than keeping the

target in the image. The system of course should switch to either modes depending on the

amount of exerted forces with respect to the threshold.

Dealing with deformable objects (mimicking soft tissue deformations) should also be inves-

tigated in the future works. Doing so seems to be a strong challenge. A preliminary key

solution would be to order the robotic system with variable desired image, and not with

static one as it is the case for most of visual servoing schemes. In case the object deforms

periodically, the section in the image would also periodically vary. Consequently, the vari-

ation of the cross-section and thus of the section in the image could be predicted. The

objective would be then to send to the visual servoing schemes the predicted images of the

desired cross-section. If the images are well predicted and synchronized with respect to the

object deformations, we expect that the 2D US probe could be automatically positioned at

the desired cross-section of the observed object. It would be likely assumed that the object

deforms homogeneously, such that shear deformations would not be considered.

Finally, the methods developed through this thesis have brought basics on which, we

expect, new techniques could now be developed. These theoretical foundations could also

be combined with other different techniques dedicated for robotics control. Although the
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methods we developed focused on robotic guidance using 2D ultrasound images, they might

be extended to MRI and X-ray. These two latter modalities provide indeed, like ultrasound,

full information in their observation plane, and thus both of these three modalities interact

with their environments by the same manner. Therefore the modeling methods developed

in this thesis can apply to the two latter modalities. Ultimately, the imaging modalities

discussed in this thesis might be complementary and thus exploited in a synergistic manner.





Appendix A

Some fundamentals in coordinate
transformations

A.1 Scalar product

Let vectors a and b be of same dimension n defined respectively by a = (a1, a2, ..., an) and

b = (b1, b2, ..., bn). The scalar product a · b of a and b is defined by:

a · b = b · a = a⊤b = b⊤a =
k=n
∑

k=1

ak bk (A.1)

If a and b are orthogonal, we have:

a · b = 0 (A.2)

A.2 Skew-symmetric matrix

The skew-symmetric matrix [a]× associated to vector a = (ax, ay, az) is given by:

[a]× =







0 −az ay

az 0 −ax

−ay ax 0






(A.3)

The following property can be deduced:

[a]⊤× = −[a]× (A.4)
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Figure A.1: Points projection

A.3 Vector cross-product

Let a and b be vectors. Their cross-product can be written as:

a× b = [a]× b (A.5)

with the following property:

a× b = − b× a (A.6)

The resulted vector is orthogonal to the plane formed by a and b. This can be written by

the following scalar product:

(a× b) · a = (a× b) · b = 0 (A.7)

If a and b are parallel, we therefore have:

a× b = 0 (A.8)
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A.4 Points Projection

Let P a point of the 3-D space, where {Ra} and {Rb} are 3-D cartesian frames (see Fig A.1).

The coordinates of P in the frame {Ra} are given by the vector position aP = (ax, ay, az).

Let also, aRb be the rotation matrix defining the orientation of the frame {Rb} with respect

to the frame {Ra}, and atb be the vector position defining the origin of {Rb} in the frame

{Ra}. Therefore the 3-D coordinates bP = (bx, by, bz) of P in the frame {Rb} can be

obtained as follows:

bP = aR⊤
b ( aP − atb) (A.9)

A.5 Rotation matrix properties

A rotation matrix is an orthogonal matrix. Considering a rotation matrix R, the orthogo-

nality is expressed as follows:

R⊤ = R−1 (A.10)

that can be also written by:

R⊤ R = RR⊤ = I3 (A.11)

A rotation matrix possesses the following property:

aRb = bR−1
a = bR⊤

a (A.12)





Appendix B

Calculus

B.1 Integral of trigonometric functions

We provide in this section calculus results of some trigonometric functions integration that

has been used in Section 3.7.1.

Consider a real scalar θ. We obviously have:

∫ 2π

0
sin θ dθ = 0 (B.1)

∫ 2π

0
cos θ dθ = 0 (B.2)

Consider now the complex entity eiθ, of the scalar θ, and its conjugate e−iθ, where i is the

imaginary unit such that i2 = −1. Theses two complex entities can be written:

{

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ
(B.3)

From which it can be deduced:

{

cos θ = 1
2 (eiθ + e−iθ)

sin θ = 1
2 i (eiθ − e−iθ)

(B.4)
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The above relationship is used to calculate first the integral of the function sin2 θ. The

same approach can then be followed to calculate the integral of the remaining functions,

presented in the following, that we need in Section B.2. We have from (B.4):

sin2 θ = −1

4

(

e2iθ + e−2iθ − 2
)

(B.5)

Integrating the above relationship gives:

∫ 2π

0
sin2 θ dθ = −1

4

[

1

2i

(

e2iθ − e−2iθ
)

− 2θ

]2π

0

(B.6)

which yields:

∫ 2π

0
sin2 θ dθ = π (B.7)

Similarly following the above approach, we have:

∫ 2π

0
cos2 θ sin θ dθ = 0 (B.8)

∫ 2π

0
cos θ sin2 θ dθ = 0 (B.9)

∫ 2π

0
cos2 θ sin2 θ dθ =

π

4
(B.10)

∫ 2π

0
sin3 θ dθ = 0 (B.11)

∫ 2π

0
cos θ sin3 θ dθ = 0 (B.12)

∫ 2π

0
sin4 θ dθ =

3π

4
(B.13)
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B.2 Calculus of nij, spherical case

In this section, we express in a simple and appropriate form the elements n20, n11, and n02

given by (3.51). From the obtained equation (3.44) that states the relationship of points

lying on the image contour in case of sphere shaped object, we can set the following change

of coordinates:

{

x = tx + r Cθ

y = ty + r Sθ
0 6 θ < 2π (B.14)

with Cθ = cos(θ) and Sθ = sin(θ), where θ represents the angle in the image.

Since tx = xg and ty = yg, the above relationship system becomes:

{

x = xg + r Cθ

y = yg + r Sθ
(B.15)

The image moment mij can be formulated as a line integral around the image contour C,

as given by (3.32). We use this relationship to calculate the second order image moments

m20, m11 and m02.

Applying (3.32), the moment m20 is thus expressed as:

m20 = −
∮

C
x2 y dx (B.16)

= −
∫ 2 π

0
x2 y

dx

dθ
dθ (B.17)

substituting x and y with their corresponding expressions given by (B.15), we have:

m20 = r3 yg

∫ 2π

0
Cθ2 Sθ + r2 x2

g

∫ 2π

0
Sθ2 + 2r3 xg

∫ 2π

0
CθSθ2 + r4Cθ2Sθ2 (B.18)

then using the result of some trigonometric integrations provided in Appendix B.1, then

recalling that the area a of the image section is a = πr2, we obtain

m20 = a(x2
g + r2/4) (B.19)

replacing, finally, this in (3.51), n20 = m20/a, yields:
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n20 = (x2
g + r2/4) (B.20)

Similarly for the moment m11, it can be expressed as follows:

m11 = −1

2

∮

C
x y2 dx (B.21)

=

∫ 2π

0
x y2 dx

dθ
(B.22)

substituting x and y with their respective expressions given by (B.15) yields:

m11 = 1
2 r

4
∫ 2π
0 CθSθ3dθ + 1

2 r
3 xg

∫ 2π
0 Sθ3dθ +

r3 yg

∫ 2π
0 CθS2θ dθ + r2 xg yg

∫ 2π
0 Sθ2dθ +

1
2 r

2 y2
g

∫ 2π
0 Cθ Sθ dθ + 1

2 r xg y
2
g

∫ 2π
0 Sθ dθ

(B.23)

after using calculus results of Appendix B.1, we obtain m11 as follows:

m11 = a xg yg (B.24)

which yields since n11 = m11/a:

n11 = xg yg (B.25)

We follow the same steps for m02. It can be expressed by:

m02 = −1

3

∮

C
y3 dx (B.26)

= −1

3

∫ 2π

0
y3 dx

dθ
dθ (B.27)

substituting y with its expression given by (B.15), we have:

m02 =
1

3
r4
∫ 2π

0
Sθ4dθ + r3 yg

∫ 2π

0
Sθ3dθ + r2 y2

g

∫ 2π

0
Sθ2dθ (B.28)
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we find:

m02 = a(y2
g + r2/4) (B.29)

and thus:

n02 = (y2
g + r2/4) (B.30)





Appendix C

Supplementary simulation results
of model-free visual servoing

C.1 Model-free servoing on the ellipsoid

C.1.1 Using the straight line-based method

We use the straight line-based technique, described in Section 4.1.1 to on-line estimate the

normal vector to the object surface, namely the surface of the ellipsoidal object in this

case. The estimation is performed at each of the 400 contour points. When the servoing is

applied, the new acquired image with its extracted contour points update the estimation.

The new computed value of the normal vector then is used to compute the control law.

An open-loop motion with constant velocity is applied to the probe before the servoing is

launched. During that motion, the SLS algorithm described in Section 4.3 is firstly ap-

plied. This allows us to obtain an initial estimate Θ0, which is expected more closer to

the actual one Θ. This aims to spare the robotized probe possible backlash, that might

result from wrong estimation of the normal vector in the control law. Right after the SLS

algorithm has been performed for the first iterations, the recursive algorithm formulated

by the relationships (4.8) and (4.9) is applied throughout the servoing.

The estimator parameters have been empirically tuned to β = 0.95, f0 =1e8, β0 = 1
20×f0

,

NLS = 10, and ǫ0 =1e-10. The corresponding simulation results are shown on Fig. C.1.

The visual features errors exponentially converge to zero as can be seen on Fig. C.1(e), and

the reached image corresponds to the desired one despite the large difference with the initial

one as can be seen on Fig. C.1(d). The system behavior is quite correct [see Fig. C.1(f)],

and the probe motions are smooth [see Fig. C.1(a), C.1(b), and C.1(c)]. These results are

similar to those obtained with the model-based servoing. Consequently, they validate the

model-free visual servoing method that is based on straight line estimation. The estimated
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parameters Θ̂ are shown on Fig. C.2.

We now consider the case where an additive measurement noise perturbs the image. Sim-

ilarly to the simulations conducted for the model-based servoing, the noise consists in a

random white Gaussian signal of 0.4 mm amplitude. The corresponding simulation results

are shown on Fig. C.3. The results are satisfactory, where the visual features errors ex-

ponentially converge to zero and the reached image corresponds to the desired one. The

probe behavior is correct as can be seen on Fig. C.3(g), despite the effect of the noise on

the image as can be seen on Fig. C.3(b). The estimated parameters are plotted on Fig. C.4.

Other simulations have been conducted to test up to what noise amplitude the servoing

system can still perform. We have noticed that the system did not converge when the

measurement noise is over 0.5 cm amplitude. However, note again that a pixel difference

is performed to compute di, as it is the case for the simulations presented in Section 5.2.2.

We test the system for different values of the estimator parameters. We consider two

sets of simulations. In the first one, parameter β is varied while the remaining parameters

are fixed to f0 =1e8, β0 = 1
20×f0

, ǫ0 =1e-10, NLS = 10. We show on Fig. C.5 results

obtained for β set to 1.0, 0.5, and 0.04. We noticed that the system well behaved for β’s

values ranging from 0.5 to 1.0. It diverged only for values below 0.04.

In the second set we consider the case where ǫ0 is varied and the remaining parameters

are fixed throughout the tests to β = 0.95, f0 =1e8, β0 = 1
20×f0

, NLS = 10. We show on

Fig. C.6 results obtained for ǫ0 equal to 1e-40 and 1e-7. The results for ǫ0 =1e-10 have

already been reported earlier in this appendix. We can notice that the servoing system is

quite tolerable to the values that ǫ0, and thus Θ0, might have.

The system has also been tested for different values of NLS and of f0. It was noticed that

it similarly behaves for NLS values ranging for example, from 5 to 30, and for f0 values

above 1. For very small values of this latter, for example below 0.001, the convergence

is relatively slow. We thus can conclude that the model-fee servoing using the straight

line-based method is quite tolerant also to the values that f0 and NLS might have.
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Figure C.1: Model-free visual servoing using the straight line-based estimation
method, in a perfect case where no perturbation is present. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.2: Estimated parameters Θ̂ corresponding to the experiment whose results
are shown on Fig. C.1.
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Figure C.3: Model-free visual servoing using the straight line-based estimation tech-
nique, in the presence of an additive measurement noise of 0.4 cm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.4: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.3.
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Figure C.5: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure C.6: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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C.1.2 Using the quadric surface-based method

The model-free visual servoing method that uses the quadric surface-based estimation, pre-

sented in Section 4.2, is finally tested. The simulation scenario is the same as before. The

SLS algorithm is applied for only the first NLS iterations in order to obtain an initial esti-

mate Θ0. Then, the servoing is launched where the recursive algorithm, formulated by the

relationships (4.8) and (4.16), is employed, instead of the SLS one, throughout the servoing.

We firstly test the method in a perfect condition where no measurement noise is present.

The estimator parameters are tuned to β = 1.0, f0 =1e2, NLS = 21, and ǫ0 =1e-20. As

for length N of the contour segments, that update the algorithm at each iteration, as de-

scribed in Section 4.2, it is tuned to N = 21. The corresponding simulation results are

shown on Fig. C.7, while the estimated parameters are plotted in Fig. C.8. The results are

also satisfactory, which validates the model-free visual servoing method based on quadric

surface estimation, for a perfect condition.

The method is now tested when measurement perturbations are present in the image.

The noise also consists in a random white Gaussian signal of 0.4 cm amplitude. The

corresponding simulation results are shown on Fig. C.9 and Fig. C.10. We can see that

they are clearly not satisfactory. The probe velocity is shaky, as can be seen on Fig. C.9(g),

which results also in a shaky probe path as can be seen on Fig. C.9(a). Thus, we can

conclude that the model-free method based on quadric surface estimation is not robust.

Moreover, it was not easy to tune the estimator parameters, compared to the two previously

tested model-free servoing methods.
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Figure C.7: Model-free visual servoing using the quadric surface-based estimation
method, in a perfect case where no measurement noise is present. The visual features
and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.8: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.7.
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Figure C.9: Model-free visual servoing using the quadric surface-based estimation
method, when measurement noises of 0.4 mm amplitude are introduced in the image.
The visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.10: Estimated parameters Θ̂ corresponding to results shown on Fig. C.9.



C.2. SIMULATIONS WITH REALISTIC ULTRASOUND IMAGES200

C.2 Simulations with realistic ultrasound images

In this section we test the straight line- and the quadric surface-based model-free visual

servoing methods using realistic ultrasound images. The images are afforded with the

simulator described in Section 5.3. The task to be achieved by the virtual probe is also

presented in that section.

C.2.1 Straight line-based estimation

The estimator parameters are tuned to β = 0.8, f0 =1e4, β0 = 1
20×f0

, ǫ0 =1e-10, and

NLS = 10 iterations. The corresponding results are shown on Fig. C.11 and Fig. C.12.

The visual features errors converge to zero as can be seen on Fig. C.11(e), and both two

target image sections have been reached as can be seen respectively on Fig. C.11(b) and

Fig. C.11(d). These results show the validity of the model-free method that uses the straight

line-based estimation.

C.2.2 Quadric surface-based estimation

Finally, we test the servoing method that uses the quadric surface-based estimation. The

estimator parameters are tuned to β = 1.0, f0 =1e5, β0 = 1
20×f0

, ǫ0 =1e-20, NLS = 17

iterations, and N = 17 points. Corresponding results are shown on Fig. C.13 and Fig. C.14.

In contrast to those previously obtained with the two other servoing methods, these results

are however not satisfactory, where both the visual features do not converge smoothly,

as can be seen on Fig, C.13(e), and the probe velocity is very shaky, as can be seen on

Fig. C.13(f). Moreover, it was relatively tedious to tune the estimator parameters, where

we noticed that with this method the system is highly sensitive to their variation. The ob-

tained outcome was in fact expected, because of the low performances this servoing method

had previously shown in the simulation presented in Section C.1.2. Those performances

indeed seem to agree with the present ones.
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Figure C.11: Model-free visual servoing using the straight line-based estimation
method performed on a realistic ultrasound 3D volume - (a) Initial image, whose
section is contoured with green, captured right before the servoing is launched. The
contour, of the first target image section, is displayed in red and is superimposed on
the image - (b) The first target is automatically reached, where the observed (green)
and the desired contour (red) now become superimposed - (d) The second target (red)
is ordered - (d) The second target is automatically reached. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.12: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.11.



C.2. SIMULATIONS WITH REALISTIC ULTRASOUND IMAGES203

(a) (b)

(c) (d)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(e)

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

0 500 1000 1500 2000
−2

−1

0

1

2

3
Visual features

 

 

x
g

y
g α a1/2 l

1

(g)

Figure C.13: Model-free visual servoing using the quadric surface-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.14: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.13.
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C.3 Simulations with the binary volume

Following the results shown in Section 5.4, the straight line- and the quadric-based model-

free servoing methods are tested on a binary object.

C.3.1 Straight line-based estimation

The estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1
20×f0

, ǫ0 =1e-10, and

NLS = 10 iterations. The corresponding simulation results are shown on Fig. C.15 and

Fig. C.16. The visual features errors converge to zero, roughly exponentially, as can be

seen on Fig. C.15(e), and the reached images correspond to the desired ones as can be seen

respectively on Fig. C.15(b) and C.15(d), despite the large initial differences. The system

behavior is quite correct as can bee seen on Fig. C.15(f), and the path performed by the

probe is thus also quite smooth as can be seen on Fig. C.15(g). More, the objective has

been achieved, since the two reached poses correspond respectively to the poses were the

first and second target images had been captured. We obtained positioning errors of (

4.4×1e-4, 9.1×1e-4, 2.7×1e-4, 0.0469, 0.0745, -0.0573)(cm and deg) for the former and (0,

4.2x1e-4, -2.09x1e-3, -0.2865, -0.3323, -0.0017 )(cm and deg) for the latter positioning.

C.3.2 Quadric surface-based estimation

As for the model-free method based on quadric surface estimation, it has considerably

underperformed the straight and the curved lines-based estimation methods. In the same

simulation conditions this method has completely diverged. For small displacements from

the target image, it nevertheless converged the system to the desired target as can be seen

on Fig. C.17. The estimator parameters were tuned to β = 0.7, f0 =1e2, β0 = 1
20×f0

,

ǫ0 =1e-20, NLS = 41 iterations, and N = 41 points. However, the probe velocity is

too shaky, as can be clearly seen on Fig. C.17(e), although the images are not noisy but

perfectly contrasted (image section in black and the background in white). This shakiness

is thus due to the quadric-based method itself and not to image noise. Indeed, in this

same simulation condition the two other methods performed quite well, as can be seen on

Fig. C.19.
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Figure C.15: Model-free visual servoing that uses the straight line-based esti-
mation, tested on a simulated binary object (a) Initial image acquired right before
launching the servoing, where the actual section is contoured with green. The con-
tour of the target image section is displayed in red and superimposed on the image
- (b) The first target is reached - (c) The second target is ordered - (d) The second
target image is reached - (g) The probe initial pose frame is indicated by its cartesian
frame whose (X, Y, Z) axes are respectively represented by the red, green and blue
segments. The probe path is plotted in green. At the poses of the first and second
target, the Z axis is represented with a black segment - (h) and (e) The visual features
and their corresponding errors are in (cm ,cm, rad, cm, cm, 10×unit).



C.3. SIMULATIONS WITH THE BINARY VOLUME 207
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Figure C.16: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.15.



C.3. SIMULATIONS WITH THE BINARY VOLUME 208

(a) (b) (c)

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

e
6

(d)

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(e)

0 200 400 600 800 1000
−1

0

1

2

3
Visual features

 

 

x
g

y
g α a1/2 l

1
φ

2

(f)

1.6 1.651.71.2

1.3

1.4

1.5

1.55

1.6

1.65

X (cm)
Y (cm)

Z
 (

cm
)

(g)

Figure C.17: Model-free visual servoing that uses the quadric surface-based esti-
mation, tested on a simulated binary object for relatively small displacements.
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(c) (d)

(e) (f)

Figure C.18: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.17.



C.3. SIMULATIONS WITH THE BINARY VOLUME 210

0 500 1000 1500
−0.4

−0.2

0

0.2

0.4

0.6
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

e
6

(a)

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

0.15
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(b)

0 500 1000 1500
−0.4

−0.2

0

0.2

0.4

0.6
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

e
6

(c)

0 500 1000 1500
−0.1

−0.05

0

0.05

0.1

0.15
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(d)

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

e
6

(e)

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

Figure C.19: Comparison of the performances obtained with the model-free servoing
method that uses the quadric surface-based estimation (Fig. C.17, that are also
reported here on the two figures at the bottom) to those obtained with the two
methods that use respectively the straight line- (top) and the curved line-based
estimation (middle).
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Résumé

Cette thèse présente de nouvelles méthodes permettant de guider automatiquement une

sonde échographique actionnée par un robot médical. Nous proposons d’utiliser des in-

formations visuelles basées sur des moments 2D extraits de l’image échographique. Cela

nécessite l’obtention de la matrice d’interaction qui lie ces informations à la vitesse de la

sonde (ou bien du robot porteur de cette dernière). Nous présentons de nouvelles bases

théoriques qui ont permis de développer l’expression analytique exacte de cette matrice.

Nous avons également élaboré six informations visuelles indépendantes permettant de con-

trôler les 6 degrés de liberté de la sonde et ainsi pouvoir positionner automatiquement la

sonde par rapport à l’objet observé. Le système robotique est aussi capable d’interagir avec

des objets dont aucune connaissance préalable sur leur forme, paramètres 3D, ni position

dans l’espace 3D est disponible. Pour cela, nous avons développé une méthode efficace qui

estime en-ligne les paramètres 3D intervenant dans la matrice d’interaction.

Enfin, nous présentons des résultats de simulations et d’expérimentations obtenus re-

spectivement à partir d’objet 3D simulés, et d’une plate-forme expérimentale constitué un

robot médical à 6 degrés de liberté portant une sonde qui interagit avec des objets immergés

dans une bassine d’eau. Ces résultats ont validé les méthodes développées dans cette thèse

et ont montré leur robustesse au bruit des images échographiques.

Mots clés : Robotique médicale, asservissement visuel, imagerie échographique, mod-

élisation, commande sans modèle.



Abstract

This dissertation presents a new 2D ultrasound-based visual servoing method. The main

goal is to automatically guide a robotized 2D ultrasound probe held by a medical robot in

order to reach a desired cross-section ultrasound image of an object of interest. This method

allows to control both the in-plane and out-of-plane motions of a 2D ultrasound probe. It

makes direct use of the 2D ultrasound image in the visual servo scheme, where the feed-

back visual features are combinations of image moments. To build the servo scheme, we

develop the analytical form of the interaction matrix that relates the image moments time

variation to the probe velocity. That modeling is theoretically verified on simple shapes

like spherical and cylindrical objects. In order to be able to automatically position the 2D

ultrasound probe with respect to an observed object, we propose six relevant independent

visual features to control the 6 degrees of freedom of the robotic system. Then, the system

is endowed with the capability of automatically interacting with objects without any prior

information about their shape, 3D parameters, nor 3D location. To do so, we develop

on-line estimation methods that identify the parameters involved in the built visual servo

scheme.

We conducted both simulation and experimental trials respectively on simulated vol-

umetric objects, and on both objects and soft tissues immersed in a water-filled tank.

Successful results have been obtained, which show the validity of the developed methods

and their robustness to different errors and perturbations especially those inherent to the

ultrasound modality.

Keywords: Medical robotics, visual servoing, 2D ultrasound imaging, kinematics mod-

eling, model-free servoing.


