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Figure 1: Augmenting an aerial image through MI-based tracking. An image template (a) extracted from a geographic map is registered in
real-time with an aerial image (b). The information extracted from a geographic information system is used to augment the aerial image (c).

ABSTRACT

In this paper we present a direct tracking approach that uses Mutual
Information (MI) as a metric for alignment. The proposed approach
is robust, real-time and gives an accurate estimation of the displace-
ment that makes it adapted to augmented reality applications. MI is
a measure of the quantity of information shared by signals that has
been widely used in medical applications. Since then, and although
MI has the ability to perform robust alignment with illumination
changes, multi-modality and partial occlusions, few works propose
MI-based applications related to object tracking in image sequences
due to some optimization problems.

In this work, we propose an optimization method that is adapted
to the MI cost function and gives a practical solution for augmented
reality application. We show that by refining the computation of
the Hessian matrix and using a specific optimization approach, the
tracking results are far more robust and accurate than the existing
solutions. A new approach is also proposed to speed up the compu-
tation of the derivatives and keep the same optimization efficiency.

To validate the advantages of the proposed approach, several ex-
periments are performed. The ESM and the proposed MI tracking
approaches are compared on a standard dataset. We also show the
robustness of the proposed approach on registration applications
with different sensor modalities: map versus satellite images and
satellite images versus airborne infrared images within different AR
applications.

1 INTRODUCTION

Typical augmented reality applications require real-time tracking
performances. Indeed, to allow a precise positioning of the virtual
scene within the real images, knowing the actual position of the
camera is necessary. As for many problems in computer vision, the
motion estimation remains therefore one of the key issues.
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Major difficulties in such a tracking process are image noise, il-
lumination changes and occlusions. Along with robustness to such
perturbations, our motivation is to focus on tracking and registra-
tion considering different sensor modalities. For example, registra-
tions will be performed between a map and an airborne image se-
quence (see figure 1) or between infra-red and visible images (see
figure 10).

Most of the available tracking techniques can be divided into
two main classes: feature-based and model-based tracking. The
former approach focuses on tracking 2D features such as geomet-
rical primitives (point, segments, circles, etc.) or object contours
(such as active contours). The latter explicitly uses a model of the
tracked objects. This model can be a 3D model leading, mainly,
to a pose estimation process corresponding to a registration process
between measures in the image and the forward projection of the
3D model [7][4]. One can also consider 2D models. Within this
category, the object to be tracked can be represented by a descrip-
tor. These descriptors can be object histograms leading to mean
shift like approaches [3] or point neighborhood leading to keypoint
tracking by matching approaches [12][10]. Such approaches are
usually very robust to illumination variation, occlusions, etc. It is
also possible to consider that this 2D model is a reference image
(or a template). In that case, the goal is to estimate the motion (or
warp) between the current image and a reference template. An ex-
ample of such approaches are differential tracking methods such as
the KLT [13] or [8][1][2]. Those approaches are not limited to 2D
motion estimation, considering for example the motion of a planar
object in the image, it is indeed possible to estimate its 3D motion.

The approach described in this paper is related to the later cat-
egory of trackers. In this context, a measure of the alignment be-
tween the reference image and the current image and its deriva-
tives with respect to the motion (warp) parameters is used within
a non-linear estimation process to estimate the current object mo-
tion. What seems to be a well adapted measure is the standard
Sum of Squared Differences (SSD) function [13][1]. But such ap-
proaches are not effective in the case of illumination changes and
occlusions. Several solutions have been proposed to add robustness
toward those variations. Some include the use of M-estimators to
deal with occlusions or add new parameters to estimate the illumi-
nation variations [8][20]. Nevertheless those approaches leads to



complex models.
In this paper, our goal is first to have a visual tracking approach

that is robust to occlusions and illumination variations, but also
to track an object with its appearance model acquired in another
modality than the one used in the current image sequence. The pro-
posed solution is then to replace the SSD function by a more robust
alignment function.

One can consider local normalized cross correlation (NCC) [9]
to replace SSD, but our results show that it is not applicable to dif-
ferent image modalities. The proposed solution is then to max-
imize the information shared between the reference image and
the sequence by maximizing the Mutual Information (MI) func-
tion [19, 22, 17]. MI has also proved to be robust to occlusions
and illumination variations and can therefore be considered as a
good alignment measure for tracking [6, 15]. However the existing
approaches are not taking full advantage of the accuracy of MI and
thus are not appropriate for augmented reality applications.

In this paper we present a MI-based tracker where an impor-
tant contribution is to propose an optimization process adapted to
the MI cost function. The optimization process that we propose is
an inverse compositional approach where an important part of the
derivatives needed in the optimization can be precomputed, result-
ing in small computation times. A precise, complete and efficient
computation of the Hessian matrix is described. The inverse com-
positional approach allows the estimation of the Hessian matrix af-
ter convergence. We show that this Hessian matrix can be used in
a Newton’s like approach to give an accurate and fast estimation of
the displacement parameters that will prove its reliability in aug-
mented reality applications. Finally a new approach is proposed to
speed up the computation of the derivatives through a selection of
the used reference pixels that makes the mutual information track-
ing process possible at video-rate meeting AR requirements.

In the remainder of this paper, Section 2 presents an overview
of the differential approaches. In section 3, a brief introduction on
information theory is given with the definition of mutual informa-
tion, then a formulation adapted to the differential tracking method
is presented. Section 4 deals with the optimization of the resulting
mutual information function with respect to the motion parameters
to estimate. Finally section 5 presents tracking results including the
Metaio benchmark and presents augmented reality experiments that
demonstrate the new multimodal capability of the approach.

2 DIFFERENTIAL TEMPLATE-BASED TRACKING

Differential tracking is a class of approaches based on the optimiza-
tion of an image registration function. The goal is to estimate the
displacement p of an image template I∗ in a sequence of images
I0..It . In the case of a similarity function f , the problem can be
written as :

p̂t = argmax
p

f (I∗,w(It ,p)). (1)

where we search the displacement p̂t that maximizes the similarity
between the template I∗ and the warped current image It . In the case
of a dissimilarity function the problem would be simply inverted in
the sense that we would search the minimum of the function f . For
the purpose of clarity, the warping function w is here used in an
abuse of notation to define the overall transformation of the image
I by the parameters p. Indeed, its correct formulation w(x,p) gives
the function that moves a point x from the reference image to its
coordinates in the current image.

The displacement parameters p can be of high dimension. For
instance, the experiments that will be presented at the end of the
paper consider a homography transformation that corresponds to
p ∈ sl(3) that is 8 parameters. Approaches such as an exhaustive
search of p̂ are thus too expensive if not impossible.

To solve the maximization problem, the assumption made in the
differential tracking approaches is that the displacement of the ob-
ject between two consecutive frames is quite small. The previous
estimated displacement p̂t−1 can therefore be used as first estima-
tion of the current displacement to perform the optimization of f
and incrementally reach the best estimation p̂t .

Multiple solutions exists to compute the update of the current
displacement parameters and perform the optimization. Indeed
Baker and Matthews showed that two formulations were equiva-
lent [1]. The former is the direct compositional formulation which
considers that the update is applied to the current image, thus we
search the update ∆p that maximize f as:

∆pk = argmax
∆p

f (I∗,w(w(It ,∆p),pk)). (2)

This equation is typically solved using a Taylor expansion where
the update is computed with the function derivatives with respect
to ∆p. The update of the current parameters pk is then applied as
follows:

w( w(x,∆p),pk) → w(x,pk+1). (3)

A second equivalent formulation is the inverse compositional for-
mulation which considers that the update modifies the reference im-
age, so that ∆p is chosen to maximize:

∆pk = argmax
∆p

f (w(I∗,∆p),w(It ,pk)). (4)

In this case the current parameters will be updated using:

w( w−1(x,∆pk),pk) → w(x,pk+1). (5)

In the inverse compositional formulation, since the update parame-
ters are applied to the reference image, the derivatives with respect
to the displacement parameters will classically be computed using
the gradient of the reference image. Thus, these derivatives can be
partially precomputed and the algorithm is far less time consuming.
Since we are interested in a fast estimation of the displacement pa-
rameters, the remainder of the paper will focus on the later inverse
compositional approach.

One essential choice remains the one of the alignment function
f . One natural solution is to choose the function f as the sum of
squared differences (SSD) of the pixel intensities between the ref-
erence image and the transformed current image:

p̂t = argmin
p

(SSD(I∗,w(It ,p))) (6)

= argmin
p

∑
x∈ROI

(I∗(x)− It(w(x,p)))2
(7)

where the summation is computed on each point x of the reference
template that is the region of interest (ROI) of the reference image.
As suggested by its definition, this dissimilarity function is very
sensitive to occlusions and illumination variations. Many solutions
have been proposed to robustify the SSD. M-estimators robustifies
the least squared problem toward occlusions [8] and a model of illu-
mination changes can be coupled with the motion model to create a
tracker robust to lighting changes [20].Nevertheless those solutions
are complex since additional parameters have to be estimated and
aligning two images acquired using different modalities of acquisi-
tion remains impossible.

Let us for example consider an aerial image and a map template
(see figure 2(a)). Considering these two modalities is obviously an
extreme case, but it will emphasize the robustness of the proposed
approach. The value of SSD is computed with respect to the trans-
lations between the map and the satellite image. It is clear that
the two images are showing the same place (at least for a human
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Figure 2: Alignment functions wrt. translations between two images from the same area: (a) aerial image and the map reference. MI shows a
maximum near zero translation at the alignment position whereas SSD and ZNCC gives no clear information on the alignment quality.

eye they contain the same “information”), however, since the link
between the intensities of the pixels is not linear, the SSD function
represented in figure 2(b) gives no information on the alignment be-
tween the two images. The NCC has shown some very good results
in multimodal alignment problems [9]. The efficiency of the zero-
mean normalized cross correlation (ZNCC) has been evaluated on
the mutlimodal example in figure 2(c). We can see that the case is
too extreme and that there is also no significant optimum. We can
conclude that even ZNCC is not sufficient to give a good measure
of alignment in this case.

To deal with occlusions, illumination variations and multimodal-
ity, we propose to use the mutual information [19, 22] as the align-
ment function, that is, as we will see, robust to all this variations of
appearance.

3 MUTUAL INFORMATION

3.1 Information theory

Mutual information is an alignment function that was first intro-
duced in the context of information theory [19]. Some essential
notions such as entropy and joint entropy are required for a good
understanding of this alignment measure.

3.1.1 Entropy

Entropy h(I) is a measure of variability of a random variable I (sig-
nal, image...). If r are the possible values of I and pI(r) = P(I = r)
is the probability distribution function of r, then the Shannon en-
tropy h(I) of a discrete variable I is given by the following expres-
sion:

h(I) = −∑
r

pI(r) log(pI(r)) . (8)

The log basis only changes the entropy value with a scale factor,
therefore it has no interest in our tracking problem and will be omit-
ted since we only seek the maximum of the cost function but not a
particular value.

Since our goal is to focus on images, let us consider I as an image
and r = I(x) as the possible gray-level intensities of the image pix-
els x. The probability distribution function of the gray-level values
is then simply given by a the normalized histogram of the image I.
The entropy can therefore be considered as a measure of dispersion
of the image histogram.

3.1.2 Joint entropy

Following the same principle, joint entropy h(I, I∗) of two random
variables I and I∗ can be defined as the variability of the couple of
variables (I, I∗). The Shannon joint entropy expression is given by:

h(I, I∗) = −∑
r,t

pII∗(r, t) log(pII∗(r, t)) (9)

where r and t are respectively the possible values of the variables I
and I∗, and pII∗(r, t) = P(I = r∩ I∗ = t) is the joint probability dis-
tribution function. In our problem I and I∗ are images. Then r and
t are the gray-level values of the two images and the joint probabil-
ity distribution function is a normalized bidimensional histogram
of the two images. As for entropy, joint entropy corresponds to a
measure of dispersion of the joint histogram of (I, I∗).

At first sight the joint entropy could be considered as a good
alignment measure: if the dispersion of the joint histogram is small
then the correlation between the two images is strong and we can
suppose that the two images are aligned. Nevertheless the depen-
dencies on the entropies of I and I∗ makes it not adapted. Indeed
if one of the images has a constant gray-level value then the joint
histogram would be very focused and the entropy value very small
despite the fact that the two images are not aligned.

3.1.3 Original Mutual information

The definition of mutual information (MI) solves the above men-
tioned problem [19, 22]. Subtracting the random variable’s en-
tropies from their joint entropy yields to an alignment measure that
is not depending on the variable marginal entropies. The MI of two
random variables I and I∗ is then given by the following equation:

MI(I, I∗) = h(I)+h(I∗)−h(I, I∗). (10)

MI is then the quantity of information shared between two random
variables. If the two variables/images are aligned then their mutual
information is maximal.

If this expression is combined with the previously defined differ-
ential motion estimation problem, we can consider that the image I
is depending on the displacement parameters p. If we use the same
warp function notation as in section 2, the mutual information can
thus be written with respect to p:

MI(p) = MI(w(I,p), I∗) = h(w(I,p))+h(I∗)−h(w(I,p), I∗).
(11)

The final expression of MI is obtained by developing the previous
equation using the entropy equations (8) and (9):

MI(p) = ∑
r,t

pII∗(r, t,p) log

(
pII∗(r, t,p)

pI(r,p)pI∗(t)

)
(12)

Let us consider a simple example, in figure 3 mutual information
has been computed with respect to a translational displacement p =
(tx, ty) using its classical definition. A white noise has been added
to the reference image I∗. The ground truth displacement between
the two images is known and is p = 0. The blue rectangle drawn in
the images represents the region of the reference image that is used
to compute the reference histograms. On the left is represented
this histogram that contains 256 gray level values. As we can see,
the original definition of MI proposed by Shannon shows a large
maximum at the ground truth position but also shows many local
maxima known as interpolation artifacts.



3.2 Smoothing Mutual Information

The differential approach consists of using the function and its
derivatives to bring the estimated parameters to the optimum of
the similarity function. The smoother the function the more effi-
cient the optimization. Thus, preliminary modifications have to be
applied to the original formulation to modify the shape of mutual
information function and smooth it.

3.2.1 Histograms binning

The computation of MI on histograms of 256 entries presents prob-
lems due to the large number of empty bins that have strong reper-
cussions on the entropies measures [16]. Moreover the computation
of those histograms are expensive in memory and time.

Starting from this observations, one obvious solution is to de-
crease the number of histogram bins. The analytical formulation
of a normalized histogram of an image I∗ is classically written as
follows:

pI∗(t) =
1

Nx
∑
x

φ (t − I∗(x)) (13)

where x are the points of the region of interest in the image, Nx

is the number of points and t are the possible values of I∗(x), i.e.
t ∈ [0,255]. In the classical formulation φ is a Kronecker’s func-
tion: φ(x) = 1 for x = 0 and φ(x) = 0 otherwise. So that each time

I∗(x) = i the ith histogram bin value is incremented.
The number of bins corresponds to the maximal gray level inten-

sity of the image NcI∗
= 256. To reduce it, the image intensities are

simply scaled as follows:

I∗(x) = I∗(x)
Nc −1

NcI∗
−1

(14)

where Nc is the new number of histogram bins. The resulting in-
tensities are no longer integer values. Thus the φ function has to
be modified to keep the information on these real values. Several
solutions have been proposed to simultaneously smooth the mutual
information function and keep its accuracy [22][14]. Our approach
is based on the use of B-spline functions [14] that are approxima-
tions of Gaussian functions and have the advantages of their fast
computation and differentiability.

The final analytical formulation of the normalized histogram be-
comes:

pI∗(t) =
1

Nx
∑
x

φ
(
t − I∗(x)

)
(15)

where the possible gray-level values are now t ∈ [0,Nc].
The probability distribution function of I∗ and the joint proba-

bility of (I, I∗) are modified using the same approach that yields
to:

pI(r,p) =
1

Nx
∑
x

φ
(
r− I(w(x,p))

)
(16)

pII∗(r, t,p) =
1

Nx
∑
x

φ
(
r− I(w(x,p))

)
φ

(
t − I∗(x)

)
(17)

Several solutions have been proposed to estimate an optimal
number of histogram bins such as Sturges’ rule or Scott’s rule [18].
Nevertheless, a constant number of bin set with Nc = 8, that keeps a
small value and avoids loosing information, has always given satis-
fying results in our experiments. Note that the final number of bins
is higher than Nc due to the side-effect of the B-spline functions.

If we compare the mutual information values between the origi-
nal formulation and the new one, the benefits of the histogram bin-
ning operation are obvious. As figure 3 shows, mutual information
function is convexified. Nevertheless MI is still subject to small
interpolation artifacts.

3.2.2 Image interpolation

The image interpolation problem is similar to the binning interpola-
tion one. In binning interpolation we put a real value on an integer
array, in image interpolation a real value is extracted from an in-
teger array. Indeed the position resulting from the warp of a point
w(x,p) is usually not an integer value.

One classical solution that has been used in the previous compu-
tation of the MI in figure 3 is to choose a bilinear interpolation. This
is typically similar to the use of first-order B-splines in the binning
interpolation problem. The typical solution to solve this problem
would be to use a cubic or quadratic image interpolation. Neverthe-
less such methods are highly time consuming since for each warped
point, the computation of its intensity would require to use the in-
tensities of the 9 or 16 neighboring pixels.

The proposed solution that is less time consuming and as far as
we know equally efficient is to convolute the current image with a
Gaussian filter to smooth the pixel intensities and then use bilinear
interpolation. The corresponding MI results have been represented
on the 2D translational example that was previously showing in-
terpolation artifacts in figure 3. Using both histogram binning and
image filtering, the mutual information function’s shape becomes
perfectly smooth and thus adapted to work with its derivatives in an
optimization method.

The proposed MI formulation is also appropriate if we consider
the alignment between the map image and aerial image shown in
figure 2. Indeed MI is maximal at p = 0 and the shape of the func-
tion remains smooth.
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Figure 3: Smoothing mutual information.



Figure 4: SSD, MI and their derivatives with respect to one translation (px). The purple area is the convergence domain using a classical
Newton’s method, the blue one is the convergence domain of a Gradient descent method. The proposed method keeps the wider convergence
domain of the gradient’s method in blue.

4 MUTUAL INFORMATION-BASED TRACKER

In this section we will see how to use the MI cost function with
the differential trackers presented in section 2. Let us remind that
the goal is to estimate the displacement parameters pt that maxi-
mizes the MI using a first estimation of the parameters pt−1 and an
iterative update of the parameters.

4.1 Derivative function analysis

In this work we ought to track planar objects through 3D displace-
ments. This problem implies a strong correlation between the ele-
ments of the vector p. Therefore, the use of first-order optimization
method such as a steepest gradient descent is not adapted. Such
non-linear optimization are usually performed using a Newton’s
method that assume the shape of the function to be parabolic.

Newton’s method uses a second order Taylor expansion at the
current position pk−1 to estimate the update ∆p required to reach
the optimum of the function (where the gradient of the function
is null). The same estimation and update are performed until the
parameter pk effectively reaches the optimum. The update is esti-
mated following the equation:

∆p = −H−1G⊤ (18)

where G and H are respectively the Hessian and gradient matrices
of the mutual information with respect to the update ∆p. Following
the inverse compositional formulation defined in equation (4) those
matrices are equal to:

G =
∂MI(w(I∗,∆p),w(I,p))

∂∆p
(19)

H =
∂ 2MI(w(I∗,∆p),w(I,p))

∂∆p2
(20)

Applying the derivative chain rules to equation (12) yields the
following gradient and Hessian matrices:

G = ∑
r,t

∂ pII∗

∂∆p

(
1+ log

(
pII∗

pI∗

))
(21)

H = ∑
r,t

∂ pII∗

∂∆p

⊤∂ pII∗

∂∆p

(
1

pII∗
−

1

pI∗

)
+

∂ 2 pII∗

∂∆p2

(
1+ log

pII∗

pI∗

)
(22)

For the purpose of clarity, the marginal probabilities and joint
probability that are actually depending on r, t, p * and ∆p are simply
denoted as pI , pI∗ and pII∗ . The details of the calculation from
equation (19) to equation (22) can be found in [5].

By analogy with classical Hessian computation in SSD mini-
mization, second order derivatives are usually neglected in the Hes-
sian matrix computation [21, 5, 6]. In our approach we compute
the Hessian matrix using the second order derivatives that are, in

our point of view, required to obtain a precise estimation of the mo-
tion. More details are given in appendix A to highlight the problems
induced by this classical approximation.

As we can see in equation (21) and equation (22), the deriva-
tives of the mutual information depend on the derivatives of the
joint probability. Using the previous definition in (17) and passing
the derivative operator through the summation yields the following
expressions:

∂ pII∗

∂∆p
=

1

Nx
∑
x

φ
(
t − I(w(x,p))

) ∂φ
(
r− I∗(w(x,∆p))

)

∂∆p
(23)

∂ 2 pII∗

∂∆p2
=

1

Nx
∑
x

φ
(
t − I(w(x,p))

) ∂ 2φ
(
r− I∗(w(x,∆p))

)

∂∆p2
.(24)

The remaining expressions to evaluate are the variations of the B-
spline function φ with respect to the update. Their derivatives are
obtained using the chain rule leading to:

∂φ(r− I∗(w(x,∆p)))

∂∆p
= −

∂φ

∂ r

∂ I∗

∂∆p
(25)

∂ 2φ
(
r− I∗(w(x,∆p))

)

∂∆p2
=

∂ 2φ

∂ t2

∂ I∗

∂∆p

⊤
∂ I∗

∂∆p
−

∂φ

∂ r

∂ 2I∗

∂∆p2
.(26)

Finally the derivatives of the reference image intensity with respect
to the update parameters ∆p is given by the following expressions:

∂ I∗

∂∆p
= ∇I∗

∂w(x,p)

∂∆p
(27)

∂ 2I∗

∂∆p2
=

∂w

∂∆p

⊤

∇2I∗
∂w

∂∆p
+∇I∗x

∂ 2wx

∂∆p2
+∇I∗y

∂ 2wy

∂∆p2
(28)

The motivation for using the inverse compositional formulation is
then obvious. The derivatives of the warp function are all com-
puted at ∆p = 0, their values are then constant for each pixels of the
template. Moreover, since the reference image is constant, all the
expressions from equation (25) to equation (28) are constants and
have to be precomputed only one time.

In our work we focus on planar object tracking. The warp func-
tion is thus defined by the group action w : SL(3)×P

2 with x ∈ P
2

and p defines the 8 parameters of the sl(3) lie algebra associated
to the SL(3) group. However, this research is not limited to such a
warp function but can also be applied on pose estimation on SE(3)
and other motion models, thus details will not be given on the warp
derivatives. All details regarding the derivatives of the chosen warp
function can be found in [2].



4.2 Optimization approach

The Newton’s method that can be used to perform the estimation
of the update parameters ∆p is based on the assumption of a simi-
larity function with a parabolic shape. One can immediately notice
that this assumption can be easily violated by looking at the func-
tion’s shape (see figure 3). The violation could cause the Newton’s
method to fail, thus a better approach has to be chosen.

To evaluate the efficiency of the following optimization meth-
ods, a set of alignment experiments has been realized. The goal is
to estimate the known position p∗ of a template in an image (see
figure 5(a)) from many initial position parameters (see figure 5(b)).
The initial parameters are automatically generated applying a ran-
dom noise to the ground truth position.

The convergence rate of the optimization method are then evalu-
ated with respect to the initial positioning error. The positioning er-
ror err is defined as the RMS distance between the correct position
of some reference points x∗i = w(xi,p

∗) and the current position of
the points w(xi,p) [11]. The reference points are simply chosen as
the 4 corners of the template so that the error becomes:

err(p) =

√√√√
4

∑
i=1

‖x∗i −w(xi,p)‖ (29)

We consider that the optimization converges as soon as the error err
is below 0.5 px. 500 alignment experiments are performed for each
initial positioning error err from 1 to 20 that is a total of 10000
experiments. We represent the convergence rate and the average
number of iterations required to reach convergence. Indeed, those
values gives a good overview of the efficiency of the optimization
methods.

The Gradient descent method cannot estimate an accurate esti-
mation of the homography (see section 4.1). Indeed its use gives a
final estimation with an error always above 0.5 px for the all set of
experiments (that is a 0% convergence rate). Thus the results have
not been included in figure 5.

4.2.1 Newton’s method

Mutual information function is a quasi-concave function, thus the
parabolic hypothesis of the Newton’s method is only valid near the
convergence. As soon as the displacement in the sequence is im-
portant, the initial parameters pt−1 would be on the convex part of
the cost function that will cause the optimization to diverge.

The problem is in fact equivalent using a SSD function. One ex-
ample of the values obtained on the estimation of a translational dis-
placement is presented in figure 4 for both the MI function and the
minus of the SSD function. For the purpose of clarity, we choose to
analyze the minus of the SSD function to deal with a maximization
for both functions. The quasi-concave shape of both functions is
obvious. The parabolic assumption is only correct for the concave
part of the function, that is where their second order derivatives are
negative (the area highlighted in purple). The convergence domain
using a classical Newton’s method would be very small.

As figure 5(c) shows, the convergence domain of the Newton’s
method is indeed very small in the case of the homography estima-
tion. As soon as the initial error exceeds 2 px, the initial parameters
are, most of the time, out of the convergence domain of the New-
ton’s method and the convergence rate becomes very small.

However considering the one dimensional example, one could
expect an optimization that has a convergence domain as wide as
the one of the gradient descent method (the blue area in figure 4).

4.2.2 Conditioning the optimization

In tracking problem formulated with a SSD function, the Gauss-
Newton approximation condition the problem by estimating a Hes-
sian matrix that is always definite positive (see the green curve in
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Figure 5: Empirical convergence analysis of the optimization meth-
ods. The proposed methods (blue and green curves) have a very
high convergence rate compared to the classical Newton’s methods
(red curve).

figure 4) and that is a good approximation of the exact Hessian ma-
trix after convergence. Therefore its use permits to have a con-
vergence domain as wide as the one with a gradient method (blue
area).

In the mutual information maximization, the problem is differ-
ent. Indeed approximating the Hessian matrix as it is proposed
in [21, 5, 6] do not gives an estimation of the Hessian matrix af-
ter convergence (see the green curve in 4 for the MI function). No
approximation on the Hessian of MI simplifies the problem as the
Gauss-Newton approach does for the SSD.

The solution that we propose is inspired from the Gauss-Newton
approach. The idea remains to use an estimation of the Hessian
matrix after convergence. To compute this estimation we consider
that after convergence the alignment between the template and the
warped current image is perfect. Therefore we simply assume that
I(w(x,p)) = I∗(x).

This solution has several advantages:

• It gives a definite negative Hessian matrix that yields to have
a wide convergence domain (blue area in figure 4). We can
notice that the resulting convergence domain is as wide as the
one of the SSD function in the considered 1D example. In
section 5.1.2, further experiments will show that it is also the
case for a homography estimation.

• Since the Hessian matrix used in the Newton’s method is the
Hessian matrix after convergence, the behavior of the opti-
mization near convergence is optimal and the final estimated
displacement parameters are very accurate.

• This approach has the advantage of its computation time. In
the classical Newton’s method the Hessian and Jacobian are
computed for each iterations. In the proposed approach the
Hessian matrix is computed one time in the whole experiment.

The proposed optimization has been evaluated on the set of ex-
periment presented in figure 5. As expected, the convergence do-
main is larger than the one using the classical Newton’s method.
The optimization converges for all the experiments with an initial
error below 16px and the convergence rate slightly decreases for
err > 16.

Figure 5(d) shows the number of iterations to reach convergence.
The number of iterations with the proposed method is fewer than
the one with the classical Newton’s method.



4.2.3 Improving the computation time

Compared to a simple least squared problem, mutual information
can still be considered as a very complex function to compute. The
proposed approach offers already a practical solution. Nevertheless,
faster performance is sometimes desired.

To compute the MI between the two images, all the information
is required, so all the reference pixels must be used to compute the
marginal and joint probabilities. As for the variation of the mutual
information computation, only the motion of the pixels that are not
in a uniform region will have a strong effect. This fact is obvious
from equation (27) and (28). One very simple modification is then
to perform the computation of the gradient and Hessian using only
a selection of pixels in the template.

A simple measure to determine if a point is in a uniform region of
the template is given by the norm of the reference image gradients.
Therefore the selection condition can be written as:

‖∇I∗(x)‖ > α (30)

where α is a given threshold. The summation in equation (23) is
therefore computed on the reference pixels that respect this condi-
tion.

The efficiency of the proposed approach has been compared to
the previous one using the set of experiments represented in fig-
ure 5. Using a threshold α = 6, the selected number of points cor-
responds to 18% of the total number of reference points. We can
see on figure 5(c & d) that the convergence rate and the number of
required iterations is equal to the ones of the previous method up to
few percent and iterations.

In summary, for a similar efficiency, the computation time of
the proposed method is 30% smaller. Such a selection method is
therefore highly recommended in MI derivatives computation.

5 VISUAL TRACKING EXPERIMENTAL RESULTS

The visual tracking method that is presented in this paper has been
implemented on a laptop with a 2.4GHz processor. The evalua-
tion of the displacement parameters has been performed using the
presented inverse compositional scheme combined with a pyrami-
dal approach that increases the convergence domain and speeds up
convergence of the optimization. We limit our experiments to the
estimation of the displacement of planar objects. The estimated ho-
mography can be decomposed to find the rotations and translations
of the plane and its normal up to a distance factor, which is suffi-
cient for augmented reality applications.

5.1 Monomodal tracking

The robustness and accuracy of the proposed mutual information
tracker have been evaluated on various image sequences.

5.1.1 Tracking through natural variations

This experiment concerns an indoor sequence acquired at video rate
(25Hz). The initialization of the tracker has been performed by
learning the reference image from the first image of the sequence
and setting the initial homography to an identity. The template in-
cludes 16000 reference pixels.

The sequence has been chosen to illustrate the robustness of the
motion estimation through many perturbation. Some images of the
sequence are shown in figure 7. Firstly, the object is subject to sev-
eral illumination variations: the artificial light produced an oscilla-
tion on the global illumination of the captured sequence. Moreover
the object is not Lambertian, thus the sequence is subject to satura-
tion and specularities (see figure 7 frame 200). The object is moved
from its initial position using wide angle and wide range motions
(figure 7 frame 400). And finally the object is subject to fast motion
causing a significant blur in many images (figure 7 frame 600).

The frames of the sequence are presented with the corresponding
estimated positions of the reference image. No ground truth of the
object position is known, however, the projection of the tracked im-
age on the reference image has been performed and qualitatively at-
tests the accuracy of the tracker. Indeed the reconstructed templates
show strong variations in terms of appearance but not in terms of
position. We can conclude that the estimation of the motion is
robust and accurate despite the strong illumination variations and
blurring effects.

Concerning the processing time, using the proposed approach
with no selection of the reference points (section 4.2.2), the images
are processed at video rate (25Hz). Using the fast computation (sec-
tion 4.2.3) it is about 40Hz. All the corresponding sequences are
presented in the attached video.

5.1.2 Evaluation on benchmark datasets

To have a quantitative measure of its accuracy and robustness,
the tracker has been evaluated on some very demanding reference
datasets proposed by Metaio GmbH [11]. Those datasets include a
large set of sequences with the typical motions that we are suppose
to face in augmented reality applications. Indeed sequences using
eight reference images from low repetitive texture to highly repet-
itive texture are included. And for each reference image is a set of
four sequences depicting wide angle, high range, fast far and fast
close motion and one sequence with illumination variations.

The estimated motion has been compared with the ground truth
for each sequences. The percentages given in the tables have been
computed by Metaio relative to their ground truth. The upper ta-
ble on figure 6 shows the results that have been obtained using the
proposed approach. The tracker is considered in convergence if the
error between the estimation and the ground truth is below a given
threshold. The error measure is similar to the one defined in equa-
tion (29), a detailed definition is available in [11]. The mutual in-
formation based tracker proves its robustness and accuracy on most
of the sequences.

The results obtained using the ESM approach [2] reported
from [11] are also represented in the lower table of figure 6 where
better convergence results are in bold characters. If we compare the
results of the two methods we can see that both have similar con-
vergence rates in most cases. But MI has an undeniable advantage
in the cases of illumination variations experiments.

We can conclude that the proposed MI computation has a large
convergence domain (at least as large as the one in the least squared
problem) and that the proposed optimization is adapted to use the
potential of the MI function leading to a very efficient tracker well
suited for the augmented reality problem.

MI Angle Range Fast Far Fast Close Illumination

Low 100.0 % 94.1 % 75.2 % 56.5 % 99.5 %

100.0 % 98.1 % 69.9 % 43.7 % 93.0 %

Repetitive 76.9 % 67.9 % 22.8 % 63.6 % 100.0 %

91.3 % 67.1 % 10.4 % 70.5 % 96.2 %

Normal 99.2 % 99.3 % 43.9 % 86.7 % 99.6 %

100.0 % 100.0 % 14.8 % 84.5 % 100.0 %

High 47.1 % 23.2 % 7.2 % 10.0 % 50.6 %

100.0 % 69.8 % 20.8 % 83.8 % 100.0 %

ESM Angle Range Fast Far Fast Close Illumination

Low 100.0 % 92.3 % 35.0 % 21.6 % 71.1 %

100.0 % 64.2 % 10.6 % 26.8 % 56.3 %

Repetitive 61.9 % 50.4 % 22.5 % 50.2 % 34.5 %

2.9 % 11.3 % 6.8 % 35.8 % 11.3 %

Normal 95.4 % 77.8 % 7.5 % 67.1 % 76.8 %

99.6 % 99.0 % 15.7 % 86.8 % 90.7 %

High 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

100.0 % 61.4 % 22.8 % 45.5 % 79.7 %

Figure 6: Ratio of successfully tracked images for our approach com-
pared to the ESM [11].



Figure 7: Tracking of a planar object through illumination variations. First row: frame 0, 200, 400 and 600. The green rectangle represents the
rectangle from the template image transformed using the estimated homography. Second row: projection of the templates for the same iterations
in the reference image. Third row: augmenting with a virtual robot placed on the top of the box.

5.2 Multimodal tracking

5.2.1 Satellite images versus map

This experiment illustrates the capabilities of the presented mutual
information-based tracker in alignment applications between map
and aerial images. The reference image is a map template provided
by IGN (Institut Géographique National) that can easily be linked
to Geographic Information System (GIS) and the sequence has been
acquired using a moving USB camera focusing on a poster repre-
senting the satellite image corresponding to the map.

As it has been previously noticed in figure 2, a non-linear rela-
tionship exists between the intensities of the map and aerial image
and this link can be evaluated by the MI functions. Mutual infor-
mation can therefore allow for tracking the satellite image using the
map image. Figure 9 shows the reference image and some image of
the sequence with the corresponding overlaid results. There is no
available ground truth for this experiment, nevertheless the overlaid
results give a good overview of the alignment accuracy. We can also
see in the attached video that the tracker converges despite some
strong blurring effects. To validate the accuracy, we also used the
estimated homography in an augmented reality application. Since
the IGN map are linked with a GIS, some virtual information such
as road, hydrographic network, or house footprint can be overlaid
on the original satellite image in a consistent way.

5.2.2 Airborne infrared image versus satellite images

The same method has been evaluated with another current modality.
This time the reference is a satellite image and the sequence is an
airborne infrared sequence provided by Thales Optronic. The initial
homography is manually defined.

As we can expect, although very different, the two images shown
in figure 10 are sharing a lot of information and thus MI can han-
dle the tracking of the infrared sequence. The warp function is still
a homography. The satellite scene is then supposed to be planar
leading to an approximation. Nevertheless the proposed method re-
mains robust. No ground truth is available, but the overlaid images

as well as the augmented reality application qualitatively validates
the accuracy of the tracker. As figure 10 shows, the satellite image
of the airport is well tracked on the sequence.

Figure 8: From the homography to the estimation of the camera po-
sition. Green curve: estimated camera trajectory in the 3D space,
blue: the 6 estimated camera positions corresponding to the frames
represented in figure 10.

The homographies have been decomposed to estimate the po-
sition of the plane with respect to the airport. The resulting 3D
trajectory of the camera is represented in figure 8, as we can see the
trajectory is smooth and has the expected behavior that shows the
approach of a plane with respect to the runway. The trajectory of the
camera with respect to the time is presented in the attached video.
Figures 10 and 11 also shows some tracked images and some aug-
mented images that validate the accuracy of the motion estimation.
The complete sequences are visible in the attached video.



Template Tracked images

Classical image Augmented images

Figure 9: Tracking of an aerial sequence using a map template image by MI: frames 1, 250 and 500 are represented with the overimposed satellite
reference (inside the green rectangle) projected using the estimated homography (image and map source: IGN) and augmented with the roads
positions.

Template & image Tracked images

Figure 10: Tracking of a satellite template image using MI on an airborne infrared sequence. 6 frames are represented with the overimposed
aerial reference (inside the green rectangle) projected using the estimated homography (Infrared images courtesy of Thales Optronic, optical
image is obtained from google earth).

Figure 11: Augmenting the infrared images with the satellite appearance of the runway and an additional “land here” sign.



5.2.3 Potential AR applications of multimodal registration

Registering a map and an aerial image sequence is an extreme case,
but registration between aerial and satellite (or any combination of
such modalities), acquired at different time (and thus different) can
be considered. Potential applications include visual odometry, air-
craft or drone localization, pilot assistance, etc.

Infrared cameras (although still expensive) are widely used by
civilians and, obviously, military aircraft. Such a registration pro-
cess with a simple satellite image may prove to be very helpful for
the pilots especially when landing (night or day) on a small and ILS
free airport. Considering that aircraft position is fully known, addi-
tional information about runway, other aircraft positions or military
targets may thus be easily displayed in the pilot helmet.

Although, we mentioned here applications in the aeronautic area,
it is clear that other domains may be targeted such as energy moni-
toring, robotics, urbanism, architecture, defense, ...

6 CONCLUSION

This paper presented a robust and accurate template based-tracker
that was defined using a new approach based on the mutual infor-
mation alignment function. The definition of MI has been adapted
to the differential tracking problem so that the function is smooth
and as concave as possible. The proposed definition preserves the
advantages of MI with respect to its robustness toward occlusions,
illumination variations and images from different modalities. A
new optimization approach has been defined to deal with the quasi-
concave shape of MI. The proposed approach is taking advantage
of both the wide convergence domain of MI and its accurate max-
imum and besides is not computationally expensive. Moreover the
time consumption is greatly reduced using a new approach based
on the reference pixels selection that yields to an accurate, fast and
robust tracker suitable for augmented reality applications.

Finally the proposed tracker has been evaluated using several
experiments. Its robustness and accuracy is verified using refer-
ence datasets and shows its advantages compared with classical ap-
proaches on monomodal tracking. Some new applications are also
proposed to use a model image acquired from another modality than
the tracked sequence that are significant in flying, for example, in
vehicle localization applications.

The algorithm presented here has been limited to planar object
tracking. Nevertheless the proposed approach could similarly be
applied to more complex model-based tracking applications where
we could directly estimate the position of the object on SE(3). The
method could also be extended to non-rigid object tracking.

APPENDIX

A WHY THE HESSIAN MATRIX MUST NOT BE APPROXI-
MATED

It is common to find the Hessian matrix of MI given in equation
(22) approximated by the following expression [21][5]:

H ≃ ∑
r,t

∂ pII∗

∂∆p

⊤ ∂ pII∗

∂∆p

(
1

pII∗
−

1

pI∗

)
. (31)

where the second order derivative of the joint probability has been
neglected. The approximation is inspired from the one that is made
in the Gauss-Newton’s method for a least squared problem that is
assuming that the neglected term is null after convergence.

Considering the expression of the marginal probability pI∗(t) =
∑r pII∗(r, t), it is clear that pI∗(t) > pII∗(r, t) so 1/pII∗(r, t) −

1/pI∗(t) > 0. Since
∂ pII∗

∂∆p

⊤ ∂ pII∗

∂∆p
is a positive matrix then the final

Hessian matrix given by (31) is positive. The goal is to maximize
MI. The Hessian matrix after convergence would then be supposed
to be negative by definition. The common approximation of (31) is
thus not suited for the optimization of MI.
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