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Abstract— In this paper, we propose a new projection
operator for the redundancy framework based on a task
function defined as the norm of the usual error. This projection
operator allows performing secondary tasks even when the main
task is full rank. To ensure the convergence of the system,
a switching strategy is then defined to switch from the new
projection operator to the classical one before the norm of
the total error reaches zero. An adaptive gain is also defined
to slow down the convergence of the main task. It allows
the secondary tasks to be active for longer. The experimental
results obtained show the agreement with the analytical study
and demonstrate the effectiveness of the proposed projection
operator with respect to the classical one.

Index Terms— Robot redundancy, secondary task, projection
operator, visual servoing.

I. I NTRODUCTION

Redundancy allows robot systems to increase their level
of manipulability and flexibility. There are several types
of redundancy for a robot manipulator: redundancy with
respect to the end effector when the manipulator has more
DOFs than those required to place its end effector at a
given position and orientation within the task space, and
redundancy with respect to the task when the number of
independent parameters required by a task is less than
the DOFs of the robot manipulator [5],[4],[13],[3]. Several
works have been done on the utilization of redundancy to
consider different sorts of constraints. This is usually done
by combining secondary tasks that express these constraints
with the main task [1],[6],[2],[7],[12],[9].

In [1], a global objective function that realizes a com-
promise between the main task and secondary tasks is used
by exploiting the robot redundant DOFs with respect to
the main task. This approach was used to avoid kinematic
singularities and joint limits in a target tracking system.
However, important perturbations can be produced by the
obtained motions, which are generally not compatible with
the regulation to zero of the main task. Also, the global task
can fail when the same joints are used for the avoidance
and for achieving the main task. Another classical approach
uses the gradient projection method [10]. This is done by
projecting any vector representing the desired motion in
the space of the secondary task onto the null space of the
Jacobian of the main task to modify the behavior of the
system, but not the convergence of the main task. This
method requires that the main task does not constrain all
the robot DOFs. Indeed, in that case, the main task Jacobian

Mohammed Marey and François Chaumette are with INRIA, Centre
Rennes-Bretagne Atlantique, IRISA, Campus de Beaulieu, F35042 Rennes-
cedex, France. E-mail:Firstname.Name@irisa.fr

Mohammed Marey is granted by the Egyptian Government.

becomes of full rank and no redundancy space is left for
projecting any constraint. This is a limitation of the classical
gradient projection method. That is why a proper selection
of the projection operator is required to provide secondary
motions of the manipulator that respect the constraints and
keep the projected vector from being distorted as much as
possible [4],[7]. A nonlinear projection operator has been
recently proposed in [2]. We will see that the method we
propose leads to significant improvements.

In this paper, we propose a new projection operator.
Instead of considering all thek components of the main
taske, only the norm‖e‖ of this task is used. Considering
the norm of the errors allows the corresponding projection
operator to enlarge the permitted motions, at least when
the errors are still large. As we will see, using this new
projection operator leads to a less constrained problem since
the new main task‖e‖ is of rank one at maximum. Our
analytical studies show that this operator has to switch to
the classical projection operator when the norm of the total
error approaches zero. A switching strategy for the projection
operator has thus been developed. Finally, an adaptive gain
is also proposed to slow down the convergence of the main
task. It allows the secondary tasks to be active for longer,
which may be useful in practice when the secondary tasks
have really to be taken into account (for obstacles or joint
limits avoidance for instance).

This paper is organized as follow: in Section II, the new
projection operator is developed and discussed. In Section
III, different test cases with respect to varying number of task
components and robot DOFs are presented and analytically
studied ase nears zero. In Section IV, a switching strategy
is given to solve the problems exhibited in Sections II and
III. Finally, a description of the implementation of the new
projection operator followed by experimental results in visual
servoing are given in Section VI.

II. T HE NEW PROJECTION OPERATORP‖e‖

Let e ∈ R
k be the main task function where k is the

number of its components. The classical approach that tries
to ensure an exponential decrease of all components ofe

leads to the following control scheme [10]:

q̇ = q̇e + Pe g (1)

= −λJ+
e e + (In − Je

+Je) g (2)

where q̇ is the robot joint velocity sent as inputs of the
low level robot controller,Je ∈ R

k×n is the task Jacobian
defined such thaṫe = Jeq̇, n is the number of robot
DOFs, J+

e is the Moore-Penrose pseudoinverse ofJe, g

represents the motion induced by the secondary task, and



Pe = (In − J+
e Je) is a projection operator on the null

space ofJe so thatg is realized at best under the constraint
that it does not perturb the regulation ofe to 0. This
projection operator may be too much constraining: it has no
component available when the errore constrains all then
DOFs of the system, and onlyn − r (wherer is the rank
of Je) in the general case.

The main original idea of this paper is to define the main
task function asη = ‖e‖. We can then deduce the analytical
form of the new projection operatorP‖e‖ and the articular
velocity q̇‖e‖. Since the error norm and the error vector are
linked by ‖e‖2 = e⊤e, we have2‖e‖ ˙‖e‖ = 2e⊤ė, from
which we obtain:

η̇ = ˙‖e‖ =
1

‖e‖
e⊤ė (3)

Sinceė = Jeq̇, we obtain by injectinġe in (3) :

η̇ =
1

‖e‖
e⊤Jeq̇ (4)

from which we deduce

J‖e‖ =
1

‖e‖
e⊤Je (5)

Note thatJ‖e‖ ∈ R
1×n is at most of rank 1. For alle such

that ‖e‖ 6= 0, we then obtain

J+
‖e‖ =

‖e‖

e⊤JeJ⊤
e e

J⊤
e e (6)

If we wantη to have an exponential decrease, i.e.η̇ = −λη,
then the least square solutionq̇‖e‖ of J‖e‖ q̇‖e‖ = −λ η is
given by:

q̇‖e‖ = −λ ‖e‖ J+
‖e‖ (7)

and the general control law will be:

q̇ = q̇‖e‖ + q̇⊥
‖e‖ = q̇‖e‖ + P‖e‖g (8)

where P‖e‖ = (In − J‖e‖
+J‖e‖) is a projection operator

on the null space ofJ‖e‖ and g is any vector that can be
designed to try to realize secondary tasks.
Using (5) and (6), we directly get:

P‖e‖ = In −
1

e⊤JeJ⊤
e e

J⊤
e ee⊤Je (9)

Since J‖e‖ is at most of full rank 1, we note thatP‖e‖

is at least of rankn − 1, which will thus not filter a lot
the secondary taskg. That is the main idea of this work
especially if we remember that, in the classical approach,
the rank of Pe is equal ton − r. As soon asr > 1,
supplementary directions of motions are thus available to
achieve the secondary tasks. That is particularly true when
Je is of full rank n, in which casePe = 0 and no secondary
task at all can be considered in that usual case.

Let us now consideṙq‖e‖. After injecting (6) in (7) we
obtain:

q̇‖e‖ = −λ
‖e‖

2

e⊤JeJ⊤
e e

J⊤
e e (10)

Using control scheme outputq̇‖e‖ given by (10) , a singular
configuration is obtained ife ∈ Ker(J⊤). That is clear
from (5) directly. This case corresponds to a local minima
of the classical control scheme:q̇e = −λJ+

e e (see (1) and
(2)), sinceKer(J⊤

e ) = Ker(J+
e ). Another singularity occurs

when e → 0 if the denominatore⊤JeJ
⊤
e e has a conver-

gence rate to zero faster than that of the nominator. If the
denominator and the nominator have the same convergence
rate to zero whene → 0, thenlime→0 q̇‖e‖ is indeterminate
and the system will not be stable nor robust with respect to
any perturbation. Of course, we obtain the same results by
studying the stability analysis of the control scheme (10).Let
us consider the candidate Lyapunov functionV (t) = η2. By
taking the derivative ofV (t) and injecting (4) in the result
we obtain:

V̇ (t) = 2 η η̇ = 2
‖e‖

‖e‖
e⊤Jeq̇

= 2 e⊤Jeq̇ when e 6= 0 (11)

Consideringe 6= 0 and injecting (10) in (11), we get:

V̇ (t) =
−2λ‖e‖2

e⊤JeJ⊤
e e

e⊤JeJ
⊤
e e

= −2λ‖e‖2 whenJ⊤
e e 6= 0 (12)

We haveV̇ (t) < 0 as soon ase 6= 0 and e /∈ Ker(J⊤
e ),

thus ensuring the local asymptotic stability of the system as
in the classical case [8], but whene = 0. Let us note that
the same results are obtained considering other main task
functions such asη =

√

‖η‖, η = ‖η‖
2, and evenη = ‖e‖γ

whatever the value ofγ. We will see how to deal with these
problems of singularity and stability in Section V-A.

III. A NALYTICAL STUDY OF P‖e‖

This section presents an analytical analysis of the pro-
jection operatorP‖e‖ given by (9). On one hand, we can
note that, ase → 0, the value ofP‖e‖ is unstable since the
denominator tends to zero. On the other hand, we would like
that P‖e‖ tends toPe when e → 0. Indeed, whene → 0,
no perturbation has to be introduced by the secondary tasks
on each component ofe to preserve its convergence and
stability. In the following, we illustrate this point by two
examples.

A. Case when k=2 and n=2

If we consider a system with two DOFs and a task with
two componentse = (x, y) then Je ∈ R

2×2. By assuming
that Je is of full rank and is given by:

Je =

[

a b
c d

]

(13)

we get:

J⊤
e ee⊤Je =

[

A2 AB
AB B2

]

(14)

and
e⊤JeJ

⊤
e e = A2 + B2 (15)

whereA = (ax + cy) and B = (bx + dy).



By injecting (14) and (15) in (9) and assuming for simplic-
ity that x = y then taking the limit ase → 0 for P‖e‖[1, 1]
we get:

lim
e→0

P‖e‖[1, 1] = 1 −
(a + c)2

(a + c)2 + (b + d)2
6= 0 (16)

while we have

Pe = In − J−1
e Je = 0 (17)

which implies:

lim
e→0

P‖e‖ 6= Pe (18)

Similarly, the same result can be obtained for a higher DOFs
system when the number of features is equal to the number
of the robot DOFs and the task Jacobian is of full rank.

B. Case when k=2 and n=3

If a system of three DOFs is considered with the same
taske = (x, y), then the task JacobianJe ∈ R

2×3 is given
by:

Je =

[

a1 a2 a3

b1 b2 b3

]

(19)

then we get:

J⊤
e ee⊤Je =





X2 XY XZ
XY Y 2 Y Z
XZ Y Z Z2



 (20)

and
e⊤JeJ

⊤
e e = x2 A + 2xy C + y2 B (21)

whereX = a1x + b1y, Y = a2x + b2y, Z = a3x + b3y,
A =

∑3
i=1 a2

i , B =
∑3

i=1 b2
i , C =

∑3
i=1 aibi.

Injecting (20) and (21) in (9) we get:

P‖e‖ =







1 − X2

D
XY
D

XZ
D

XY
D

1 − Y 2

D
Y Z
D

XZ
D

Y Z
D

1 − Z2

D






(22)

whereD = e⊤JeJ
⊤
e e. By considering again the particular

casex = y and taking the limit ofP‖e‖ whene → 0, then
multiply the first column of the result byJe we get:

Je lim
e→0

P‖e‖[1, 1..3] =

[

a1 −
a1X2

0

D0

+ a2X0Y0

D0

+ a3X0Z0

D0

b1 −
b1X2

0

D0

+ b2X0Y0

D0

+ b3X0Z0

D0

]

6=

[

0
0

]

(23)

where D0 =
∑3

i=1(a
2
i + aibi + b2

i ), X = a1 + b1, Y =
a2 + b2, Z = a3 + b3. This results shows that once again
lime→0 P‖e‖ 6= Pe since we have of courseJePe = 0.

The previous study directs us to the following conclusion:
as soon as the system nears its goal (that is whene → 0) we
have to switchP‖e‖ to the classical projection operatorPe.
This switching ensures the convergence of the system, since
it allows solving the instability problem ofP‖e‖ ase → 0

due to the singularity ofJ‖e‖ whene = 0.

IV. SWITCHING BASED PROJECTION OPERATOR

As discussed before, the new projection operatorP‖e‖ 9

Pe as e → 0. To ensure thatP‖e‖ → Pe, a switching
strategy is designed. It consists in defining a convex com-
bination Pλ between the classical and the new projection
operator such that:

Pλ = λ(‖e‖) P‖e‖ + (1 − λ(‖e‖)) Pe (24)

where the proposed formula for the switching function
λ(‖e‖) : R → [0, 1] is defined by:

λ(‖e‖) =







1
λ(‖e‖)−λ0

λ1−λ0

0

if e1 < ‖e‖
if e0 ≤ ‖e‖ ≤ e1

if ‖e‖ < e0

(25)

where e1 and e0 are two threshold values that define the
starting and the ending conditions for the switching period.
λ(e) : R → R is a continuous monotonically increasing
function, such thatλ1 = λ(e1) ≈ 1 andλ0 = λ(e0) ≈ 0. The
sigmoid functionλ(t) = 1

1+exp(−t) shows early exponential
growth from zero for negativet, which slows to linear
growth of slope 1/4 neart = 0, then approaches one with
an exponentially decaying gap for positivet [14]. A good
selection for the functionλ(‖e‖) is then the sigmoid function
given as:

λ(‖e‖) =
1

1 + exp(−12‖e‖−e0

e1−e0

+ 6)
(26)

where values ofe0 and e1 have to be selected such that
the system does not converge too fast during the interval
[e0, e1]. This allows the switching to be performed smoothly
during a sufficient number of iterations. Figure (1) shows the
shape of the switching functionλ(‖e‖) when e0 = 0.1 and
e1 = (0.3, 0.5, 0.7, 0.9).

Fig. 1. Switching functionλ(‖e‖).

V. M AIN TASK FUNCTION

A. Possible control schemes

As discussed before in Section II, stability problem and
singularity appear whene → 0 if the control schemėq‖e‖

defined in (10) is used as output of the main task. These
problems can be avoided by performing a switching from



q̇‖e‖ to the classical̇qe given in (2) by defining as control
scheme:

q̇λ = λ(‖e‖) q̇‖e‖ + (1 − λ(‖e‖)) q̇e (27)

whereλ(‖e‖) is given by (25) for whiche0 is selected such
that as long as‖e‖ > e0, the singularity effect oḟq‖e‖ does
not appear. Applying this switching strategy ensures that the
main task will avoid the singularity situation whene → 0

since

lim
e→0

q̇λ = lim
e→0

q̇e = 0 (28)

In order to avoid the indetermination problem when the
denominator ofq̇‖e‖ is equal to zero (that is whene ∈
Ker(J+

e ), a direct switching without a transition interval
from q̇‖e‖ to q̇e can be employed by settinge0 = e, where
e is the value of the error norm when the indetermination
problem occurs. Finally, the classical control schemeq̇e can
also be used directly with the new projection operatorPλ

instead ofq̇‖e‖ or q̇λ. In that case, the control scheme will
be:

q̇ = q̇e + Pλg (29)

Starting the task with the classical control scheme ensures
an exponential decreasing of each error component, which
may be useful in practice as will be seen in Section VI.

B. Adaptive gain β(‖e‖)

Usually, the gainλ involved in the classical control scheme
q̇e = −λJ+

e e is tuned so that the convergence rate of the
main task is as fast as possible while preserving the stability
of the system. This leads to increaseλ ase decreases (using
for instanceλ(‖e‖) = λ min + K exp(B‖e‖) whereλmin, K
and B are constant scalar values). However, having a fast
convergence rate for the main task may not be adequate in
our case. Indeed, sinceP‖e‖ switches toPe when e → 0,
this switch may occur too early to have enough time to take
the secondary tasks into account. This is especially the case
when the secondary tasks are critical (such as obstacles and
joints limits avoidance for example). That is why it may be
useful to slow down the convergence of the main task. For
that, the norm of the total error is used in the control scheme
and we propose to useλ = λ0 ‖e‖ whereλ0 is a constant.
However, as soon as‖e‖ → 0, the convergence rate of the
main task becomes too small. To avoid this problem, we
define a gain functionβ(‖e‖) which returns the norm of the
total error as long asPλ = P‖e‖ and switches automatically
to 1 as soon as the norm of the error reaches a specified
threshold value. The scheme of the adaptive gain function
β(‖e‖) can be deduced and written as:

β(‖e‖) = 1 − λ(‖e‖) + ‖e‖ λ(‖e‖) (30)

with the same switching conditions used to switch fromP‖e‖

to Pe used forβ(‖e‖). Settingλ = λ0β(‖e‖), the control
scheme (29) becomes:

q̇ = −λ0 β(‖e‖) J+e + Pλ g (31)

Using this control scheme increases the time during which
the secondary tasks will be active thanks to the use ofP‖e‖.

VI. EXPERIMENTAL RESULTS

Results presented in this section have been obtained after
applying the proposed methods in visual servoing on a six
DOFs robot. In visual servoing [11], the task function is
defined bye = s − s∗ where s and s∗ ∈ R

k are two
vectors representing the current and the desired selected
visual features. The task JacobianJe = LsMJq whereLs

is the interaction matrix that relateṡs to the instantaneous
camera velocityv by ṡ = Lsv, Jq is the robot Jacobian and
M is the matrix that relatesv to the variation of the camera
posep by v = Mṗ. An object composed of four points
forming a square is considered with the Cartesian coordinates
of the four points in the image defining the visual features
used in the visual servoing system. This means that we have
a system of six DOFs and eight visual features with a full
rank main task. The camera pose isp = (t, r) wheret is a
translational vector expressed in meter andr is the rotational
vector expressed in degree. Three different experiments have
been implemented to validate and investigate the efficiencyof
the new projection operator. In all cases, the desired camera
pose is (0, 0, 0.5, 0, 0, 0), which means that the camera has
to be at 0.5 m in front of the square so that it appears as a
centered square in the image.

A. Case 1: Control schemes q̇‖e‖ and q̇e

In this case, we study the behavior ofq̇‖e‖ and the
effect of the adaptive gainβ(‖e‖) with the classical control
schemeq̇e. The initial camera pose is I=(-0.1,0.1,1.0,0,0,0)
and no secondary task is added to the main task. Applying
q̇‖e‖, the initial movement consists of translations along x-
axis and y-axis combined with a small rotation around y-
axis till iteration number 80, as depicted in Fig. 2(a). Then
the translational movement along z-axis starts to increase.
Also, Fig. 2(a) shows that as soon as‖e‖ nears zero, the
control low q̇‖e‖ is completely unstable, as explained in
Section II. As expected, the norm of the total error is
exponentially decreasing but during the instability due tothe
perturbations it induces. If the switching toq̇e is performed
when‖e‖ → 0, that is using (27), the system converges as
can be seen in Fig. 2(b). As shown in Fig. 2(c), applying the
classical control schemėqe, each error component converges
exponentially to zero, as well as the norm of the error. Setting
the gainλ = λ0‖e‖, the convergence rate is extremely slow,
as depicted in Fig. 2(d). Finally, using the adaptive gain
function β(‖e‖) with the classical control law ensures the
convergence of the system as shown in Fig. 2(e).

B. Case 2: Secondary task g = (0.1, 0, 0, 0, 0, 0)

Now, we use the new projection operator and apply a
simple secondary task consisting of a translation of 10 cm/s
along x-axis. Let us first recall that usingPe would not
allow any secondary task to be achieved. As expected, using
the projection operatorP‖e‖ during all the servo does not
produces a satisfactory behavior (see Fig. 3(a)). Indeed, some
secondary motions are produced while the main task tries
the robot to reach the desired pose, where it has then to
be motionless. This explains the oscillating behavior on the
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Fig. 2. Results for case 1. Comparison between the different control schemes Line 1:image points trajectories, line 2: imagepoint error, line 3: norm of
the total error, line 4: translational camera velocity (cm/s)and rotational camera velocity (deg/s).

velocity components of the global task. In Fig 3(b), the
projection operatorPλ is used and the system switches
automatically to the classical projection operator. This allows
the secondary task to be taken into account at the beginning
of the servo and ensures the convergence of the system to the
desired position. Fig. 3(c) shows the results obtained when
the switching gain functionβ(‖e‖) is used. It is clear that
the secondary task is considered during a longer number of
iterations, which may be useful in practice.

C. Case 3: Secondary task g = (-0.02,0.04,0.02, 4,4,4)

In this case, a more general secondary task is
used with non-zero value in all its components,g =
(−0.02, 0.04, 0.02, 4, 4, 4). Using the new projection oper-
ator Pλ with the classical control scheme, most of the
secondary task components are projected successfully onto
the main task, see Fig.3(d). At each iteration, the main
task tries keeping the exponential decreasing of each error
component while the projection operator tries to keep the
exponential decreasing of the norm of the total error, which
leads to a nice behavior for the system. Then, thanks to the
switching strategy to the classical projection operator, the
system converges to the desired pose. When the switching
gain functionβ(‖e‖) is used (see Fig. 3(e)), the number of
iterations where the secondary task is considered increases
significantly.

VII. C ONCLUSION AND FUTURE WORK

In this paper we have proposed a new large projection
operator by defining the main task as the norm of the total
error. A switching strategy has been proposed to ensure
that the new projection operator smoothly switches to the
classical projection operator as soon as the error nears
zero. An adaptive gain has also been developed so that the
secondary task is effective during a long period by slowing
down the convergence rate of the main task. That may be
useful when the secondary tasks are extremely important and
have really to be considered (which is the case for instance
for joints limits and obstacle avoidance).

These theoretical developments have been implemented
and validated experimentally on a six DOFs robot arm. The
main interest of the new projection operator is that it is
always at least of rank (n-1). Hence it can be used even
if the main task is of full rank. This property enlarges the
applicability of the redundancy framework. As future works,
we plan to apply the new projection operator to classical
constraints such as joint limits avoidance, obstacle avoidance,
occlusion avoidance and also to ensure the visibility of the
visual features.
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Fig. 3. Results for case 2 are in (a), (b) and (c) and for case 3 in (d) and (f). Line 1: image points trajectories, line 2: image point error, line 3: norm of
the total error, lines (4), (5) and (6): camera velocity components in cm/s and deg/s of the general, main and secondary tasks respectively.
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