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Abstract— In this paper we propose a new on-line sensor
self-calibration framework. The approach is to consider the
sensor/robot interaction that links the sensor signal variations
to the robot velocity. By on-line calibration, we mean only
the actual measurements are used to perform calibration
under the condition that the interaction matrix is analytically
known. This allows us to propose a very simple and versatile
formulation of sensor parameter calibration. Various sensors
can be considered, and calibration from different sensory
data may be considered within the same process. Intrinsic
and extrinsic parameters estimation are formulated as a non-
linear minimization problem the jacobian of which can be
expressed analytically from the sensor model. Simulations and
experiments are presented for a camera observing four points,
showing good results in the case of separated intrinsic and
extrinsic calibration, and illustrating the possible limitations in
the case of simultaneous estimation.

Index Terms— self-calibration, visual servoing

I. INTRODUCTION

Sensors calibration is a fundamental problem in many
robotic research fields. Without proper calibration, sensor
devices produce data that may not be useful or can even be
misleading or meaningless. Hence, to maintain an up-to-date
model, the calibration has to be repeated at regular intervals.
In this work, we focus on on-line self-calibration approach,
which means we assume the robot is in its environment,
with sensors acquiring information that are not made for the
calibration in the first time.

The literature provides many works related to the calibra-
tion problem. For example, Borenstein and Feng [1] intro-
duce near-optimal calibration methods for reducing odometry
errors in mobile robotics. Recently, an Extended Kalman
Filter has been introduced to simultaneously estimate the
robotic system configuration and the parameters charac-
terizing the systematic error of sensor (i.e., to solve the
Simultaneous Localization and Auto Calibration (SLAC)
problem) [8], [12]. Another way to address the problem is
to consider it as a mobile sensor network. For instance, in
[10] a robot with calibrated sensors gathers samples within
the sensor field to allow already deployed static sensors to
be calibrated/re-calibrated as required.

Furthermore, since one most used sensor in robotics is
vision, camera self-calibration has been widely investigated
[14], [9]. For example, in [14] the authors introduce a cam-
era calibration method using epipolar transformation. The
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camera is calibrated simply by evolving in the environment,
selecting and tracking points of interest in the image as the
camera moves.

We propose in this work a new on-line sensor self-
calibration framework using the sensor/robot interaction. We
first present in Section II some preliminaries and introduce
the sensor/robot motion model. We describe in Sections III,
IV and V our on-line parameters estimation method. In
Section VI, we describe an application based on a camera,
and present some simulation and experimental results.

II. SENSOR-BASED MODELING

We consider a sensor mounted on a robotic system and
we assume the robot velocity can be measured. The sensor
motion can be characterized by its instantaneous velocity
vs = (vs,ωs), where vs = (vx, vy, vz) and ωs = (ωx, ωy, ωz)
represent the translational and rotational velocity of the
sensor frame Fs (Fig. 1). The sensor motion vs is related
to the robot motion ve by:

vs = sWeve (1)

where sWe allows to transform the velocity screw from the
sensor frame Fs to the end-effector frame Fe. It is given by:

sWe(ξEx) =
[

sRe [ste]×
sRe

03×3
sRe

]
(2)

where sRe ∈ SO(3) and ste ∈ R3 are respectively the
rotation and the translation between Fe and Fs. [ste]× is
the 3 × 3 skew-symmetric matrix related to ste. Using the
θu representation for rotation, 6 extrinsic parameters can be
represented by:

ξEx = (tx, ty, tz, θux, θuy, θuz)

Fig. 1. Sensor-based model.
Now, let s be a set of data provided by a sensor mounted

on a robot. Assuming that only the sensor motion vs affects
the sensor signal variations ṡ (i.e. motionless environment),
the variation of the sensor features ṡ can be expressed by:

ṡ = Ls(s,ξIn,a)vs (3)

where Ls(s,ξIn,a) is named the interaction matrix of s [4]. It
can be derived for many features coming from exteroceptive
sensors. It depends mainly on the type of considered sensory
data s and on the intrinsic parameters ξIn. It may also depend



on other data: for instance the interaction matrix of an image
point observed by a camera depends on the depth z of
that point, which is not actually known. Therefore, for a
single sensor, we have the following general sensor-based
definition:

ṡ = Ls(s,ξIn)vs = Ls(s,ξIn)
sHe(ξEx)ve = H(s,ξIn,ξEx)ve (4)

This model can be extended to multiple sensors, and in case
of n sensors we get:

ṡ1=Ls(s1,ξIn1)vs1=H(s1,ξIn1,ξEx1)
ve...

...
ṡn=Ls(sn,ξInn)vsn=H(sn,ξInn,ξExn)ve

}
ṡ=H(s,ξIn,ξEx)ve (5)

Our idea is to exploit the above sensor/robot motion link to
estimate the calibration parameters: {ξIn, ξEx}.

III. INTRINSIC PARAMETERS (ξIN)
If the intrinsic parameters are wrong, then we obtain an

error ε
(ξ̃In)

which can be formulated as follow:

ṡ = Ls(s,ξIn)vs = L
s(s,ξ̃In)

vs + ε
(ξ̃In)

Hence, the objective is to minimize the following error:∥∥∥ε
(ξ̃In)

∥∥∥2

=
∥∥∥ṡ− L

s(s,ξ̃In)
vs

∥∥∥2

(6)

A. General formulation
We assume here that we perfectly measure the sensor

velocity vs and the sensor feature variation ṡ. The idea is
to minimize the error with a classical non-linear least square
approach, that requires the computation of the error jacobian
J

(s,ξ̃In)
. If we consider a set of m intrinsic parameters

ξIn = (ξIn1, . . . , ξInk), from Eq. (6) we easily deduce the
error jacobian, and we get:

J
(s,ξ̃In)

=
∂ε

(ξ̃In)

∂ξIn
= −

∂
(
L

s(s,ξ̃In)
vs

)
∂ξIn

= −


∂ Ls1
∂ξIn

vs
...

∂ Lsk

∂ξIn
vs

 (7)

where Lsi is the 1 × 6 interaction matrix of the i-th sensor
data.

Finally, the error jacobian J
(s,ξ̃In)

only depends on the
derivative of the interaction matrix L

s(s,ξ̃In)
wrt. the intrinsic

parameters ξIn. Thus, the error jacobian can be known for
any set of sensory data s for which we are able to compute
the analytical form of its interaction matrix.
The minimization is done through a gradient descent in (6),
that is:

∆ξIn = −λξInJ
+

(s,ξ̃In)
ε
(ξ̃In)

(8)

where λξIn > 0 tunes the decay, and J+

(s,ξ̃In)
denotes the

Moore-Penrose pseudo-inverse of the error jacobian J
(s,ξ̃In)

.
Afterward, the intrinsic parameters are iteratively updated
with:

ξ̃In(tk+1) = ξ̃In(tk)⊕∆ξIn (9)

where ξ̃In(t0) is an initial guess of the intrinsic parameters,
and ⊕ is an update operator (for instance a simple weighted
sum).

Fig. 2. Camera model.

B. Application to camera self-calibration

We apply here the proposed formalism to the camera
self-calibration case. We use image features for which the
interaction matrix Ls(s,ξIn) can be determined analytically.
Such expressions are available for different kinds of visual
features such as points, straight lines, circles [6], and image
moments [2]. The point is a very simple primitive which can
be easily extracted from the image. It is then widely used
in robot vision. This is the reason why we first address this
case by considering a visual landmark made of n points.

Let us recall that, using the pinhole camera model, a 3D
point P of coordinates (X, Y, Z) in the camera frame FC

is projected into a 2D point with coordinates p = (x, y) in
the image plane (see Fig. 2) with a perspective projection
model:

x =
X

Z
, y =

Y

Z
(10)

If we denote (xp, yp) the pixel coordinates of the corre-
sponding point in the image, it is related to the normalized
coordinates (x, y) by:{

xp = xc + αxx

yp = yc + αyy
(11)

where (αx, αy) is the ratio between the focal length and the
pixel size, and (xc, yc) is the principal point coordinate in
pixel (see Fig. 2). These four parameters define the camera
intrinsic parameters, that is ξIn = (αx, αy, xc, yc).

We have to use the interaction matrix Ls(p,ξIn) that links
the motion ṗ = (ẋp, ẏp) of a point p = (xp, yp) in the image
to the camera motion vs. This interaction matrix is deduced
from the optic flow equations, and is given by [6]:

Ls(p,ξIn,Z) =
[
Lxp(p,ξIn,Z)

Lyp(p,ξIn,Z)

]

=

−αx

Z 0 xp−xc

Z
(xp−xc)(yp−yc)

αy
−

(
αx+

(xp−xc)
2

αx

)
αx

αy
(yp−yc)

0 −αy

Z
yp−yc

Z

(
αy+

(yp−yc)
2

αy

)
−(xp−xc)(yp−yc)

αx
−αy

αx
(xp−xc)


(12)

As one can see, the interaction matrix Ls(p,ξIn) induces the
value of the depth Z of each considered point p. Several
approaches may be used to determine it. The most obvious
solution is to measure it using dedicated sensors. However, if
the robotic platform is not equipped with such sensors, it is
possible to use structure from motion (SFM) techniques [3],
[15], signal processing methods [13], or even pose relative
estimation [16]. Recent work has also shown that Z-depth
can be retrieved in the case of partially uncalibrated camera
[5].



All these techniques requiring calibrated sensors, we pro-
pose to treat the depths as additional unknown parameters of
the interaction matrix: we use the sensor/robot motion model
to estimate the Z-depth [7].

From the analytical interaction matrix, we can express
the error jacobian for this visual feature. With ξIn =
(αx, αy, xc, yc), (7) yields:

J
(p,ξ̃In)

= −

∂ Lxp

∂αx
vs

∂ Lxp

∂αy
vs

∂ Lxp

∂xc
vs

∂ Lxp

∂yc
vs

∂ Lyp

∂αx
vs

∂ Lyp

∂αy
vs

∂ Lyp

∂xc
vs

∂ Lyp

∂yc
vs


with, from (12):

∂ Lxp

∂αx
=

[
− 1

Z 0 0 0 −
(
1− x2

)
y
]

∂ Lxp

∂αy
=

[
0 0 0 −αx

αy
xy 0 −αx

αy
y

]
∂ Lxp

∂xc
=

[
0 0 − 1

Z −y 2x 0
]

∂ Lxp

∂yc
=

[
0 0 0 −αx

αy
x 0 −αx

αy

] (13)

∂ Lyp

∂αx
=

[
0 0 0 0 αy

αx
xy

αy

αx
x

]
∂ Lyp

∂αy
=

[
0 − 1

Z 0
(
1− y2

)
0 −x

]
∂ Lyp

∂xc
=

[
0 0 0 0 αy

αx
y

αy

αx

]
∂ Lyp

∂yc
=

[
0 0 − 1

Z −2y x 0
] (14)

where x = xp−xc

αx
and y = yp−yc

αy
.

As we consider Z as an additional unknown parameter,
we have to express Z error jacobian

∂ L
s(p,ξ̃In)

∂Z , by deriving
Eq. (6) wrt. Z, and we get from (12):

∂ Lxp

∂Z =
[
αx

1
Z2 0 −αx

x
Z2 0 0 0

]
∂ Lyp

∂Z =
[
0 αy

1
Z2 −αy

y
Z2 0 0 0

]
Finally, the complete jacobian wrt. (αx, αy, xc, yc, Z) can

be written:

J
(p,ξ̃In)

=


−vx

Z−
(
1−x2

)
ωy+yωz

αy

αx
x (yωy+ωz)

−αx

αy
y (xωx+ωz) −vy

Z+
(
1−y2

)
ωx−xωz

−vz

Z−yωx+2xωy
αy

αx
(yωy+ωz)

−αx

αy
(xωx+ωz) −vz

Z−2yωx+xωy

αx

Z2 (vx−xvz)
αy

Z2 (vy−yvz)



>

(15)
Under the condition that this jacobian is of rank 2, we have

to use at least 4 points to get a full rank jacobian in the
error minimization: the 8 features will allow estimating the
4 intrinsic parameters and the 4 depths.

IV. EXTRINSIC PARAMETERS (ξEX)

If the extrinsic parameters are not correctly estimated, we
have an error ε

(ξ̃Ex)
which can be formulated as follow:

ṡ = Ls(s,ξIn)
sW

e(ξ̃Ex)
ve + ε

(ξ̃Ex)
(16)

and the goal is then to minimize the following error:∥∥∥ε
(ξ̃Ex)

∥∥∥2

=
∥∥∥ṡ− Ls(s,ξIn)

sW
e(ξ̃Ex)

ve

∥∥∥2

(17)

A. Approach formulation

If we recall the extrinsic parameters denote the pose
of the sensor wrt. the end-effector frame, we notice this
minimization problem takes place in SE3 and then we can
define the velocity screw v of the estimated end-effector
frame F̃e that virtually moves as the parameters are being
updated. We denote Lε(ξ̃Ex)

the error interaction matrix that
links the error time derivative to the screw of the estimated
frame:

ε̇
(ξ̃Ex)

= Lε(ξ̃Ex)
v (18)

This relation allows minimizing the error in (17): we
can indeed impose in (18) an exponential decrease for the
error during the minimization process, which leads to the
expression of the instantaneous velocity:

Lε(ξ̃Ex)
v = ε̇

(ξ̃Ex)
= −λε

(ξ̃Ex)

from which we deduce:
v = −λL+

ε(ξ̃Ex)
ε = −λL+

ε(ξ̃Ex)

(
Ls(s,ξIn)W(ξ̃Ex)

ve − ṡ
)

(19)

where L+
ε(ξ̃Ex)

is the Moore-Penrose pseudo-inverse of the
interaction matrix Lε(ξ̃Ex)

. This virtual screw v allows to
compute the values of ste and sRe (hence sW

e(ξ̃Ex)
) using

the exponential map. If sM̃e(t) is the homogeneous matrix
expressing the position of F̃e in Fs at t, it is updated
following:

sM̃e(t+1) = sM̃e(t)
e(t)Me(t+1) (20)

with e(t)Me(t+1) = exp(v, δt)

The iteration is then repeated until the error vanishes.

B. The error interaction matrix

In order to minimize the error in (19), one must find
the expression of the interaction matrix defined in (18).
According to (17), the only element that depends on the
parameters to be estimated is the transformation matrix sWe

which leads to the relation:
ε̇
(ξ̃Ex)

= Ls(s,ξIn)
sẆ

e(ξ̃Ex)
ve (21)

with ˙sWe =

[
˙sRe

˙[ste]×
sRe + [ste]× ˙sRe

03×3
˙sRe

]
(22)

where
{

sṫe = −v + [ste]× ω
˙sRe = sRe [ω]×

(23)

v = (v,ω) being, as already said, the instantaneous velocity
of the virtual end-effector frame F̃e corresponding to the
current estimation of the extrinsic parameters. There exist
three v-dependent 3 × 3 matrices A(v), B(ω) and C(ω)
such that:

Ẇ(ξEx) =

[
B A + C

03×3 B

]
(24)

with, by injecting (23) in (22):
B = ˙sRe = sRe[ω]× (25)

A + C = ˙[ste]×
sRe+[ste]× ˙sRe

=
[
−v+[ste]× ω

]
×

sRe+[ste]×
sRe [ω]×



from which we deduce:
A = −[v]×

sRe (26)

C =
[
[ste]× ω

]
×

sRe+[ste]×
sRe[ω]× (27)

If we denote Ls(s,ξIn) = [Lv Lω], substituting (24) in (21)
yields:

ε̇
(ξ̃Ex)

= [Lv Lω]

[
B A + C

03×3 B

] [
ve

ωe

]
= [Lv Lω]

[
Bve + (A + C) ωe

Bωe

]
= LvBve + LvAωe + LvCωe + LωBωe

= K1v + K2ω (28)

with
{

K1v = LvAωe

K2ω = LvBve + LvCωe + LωBωe

Substituting (26) in (28) leads to:
K1v = LvAωe = −Lv [v]×

sReωe

= Lv [sReωe]× v

from which we deduce:
K1 = Lv [sReωe]× (29)

In the same way, substituting (25) and (27) in (28) leads to:

K2ω = LvBve+LvCωe+LωBωe

= K2aω + K2bω + K2cω

with
LvBve = Lv

sRe[ω]×ve

= −Lv
sRe [ve]× ω

LvCωe = Lv

([
[ste]×ω

]
×

sRe+[ste]×
sRe[ω]×

)
ωe

= Lv

([
[ste]×ω

]
×

sReωe−[ste]×
sRe[ωe]×ω

)
=−Lv

(
[ste]×

sRe[ωe]×ω+
(
ste
>sReωe

)
ω−

(
ω>sReωe

)
ste

)
=−Lv

(
[ste]×

sRe[ωe]×ω+
(
ste
>sReωe

)
ω−ste

(
(sReωe)>ω

))
=−Lv

(
[ste]×

sRe[ωe]×ω+
(
ste
>sReωe

)
ω−

(
ste(sReωe)>

)
ω
)

=−Lv

(
[ste]×

sRe [ωe]×−ste
>sReωeI3+ste(sReωe)>

)
ω

LωBωe = Lω
sRe [ω]× ωe

= −Lω
sRe [ωe]× ω

from which we deduce:
K2a = −Lv

sRe [ve]×
K2b =−Lv

(
[ste]×

sRe [ωe]×−
ste
>sReωeI3+ste(sReωe)>

)
K2c = −Lω

sRe [ωe]×
K2 = K2a + K2b + K2c (30)

From (28), (29) and (30) we deduce the interaction matrix:

ε̇
(ξ̃Ex)

= [K1 K2]
[

v
ω

]
= Lε(ξ̃Ex)

v

with Lε(ξ̃Ex)
= [K1 K2] (31)

Assuming Ls(s,ξIn) is of full rank 6 (i.e., at least 6 inde-
pendent sensor features are used), K1 and K2 coming from
skew-symmetric matrices, they are both of rank 2, which
makes Lε(ξ̃Ex)

of rank 4 and thus rank deficient as we have 6

parameters to estimate. Therefore, we must use at least two
measurements to get a full rank error interaction matrix to
be inversed:

v = −λ

 Lε1...
Lεh

+  Ls1W1ve1 − ṡ1...
LshWhveh − ṡh

 (32)

with h ≥ 2 being the size of the history used for the extrinsic
parameters estimation.

V. SIMULTANEOUS ESTIMATION

In order to achieve simultaneous intrinsic and extrinsic
parameters estimation, the sensor feature error expressed in
(16) becomes:

ṡ = L
s(s,ξ̃In)

sW
e(ξ̃Ex)

ve + ε
(ξ̃In,ξ̃Ex)

From (8) and (18) we can deduce the error evolution wrt. the
parameters being updated:

ε̇
(ξ̃In,ξ̃Ex)

= J
(s,ξ̃In)

ξ̇In + Lεv

where ξ̇In is the intrinsic parameters evolution, and v the
velocity of the virtual end-effector frame corresponding to
the current extrinsic parameters estimation.
If we denote ∆w = [∆ξIn v] and impose an exponential
decrease of the error, we obtain:

∆w = −λ [J Lε]
+

ε (33)

From (33) using the update rules (9) and (20) we can
perform simultaneous intrinsic and extrinsic parameters es-
timation. In the case of a camera, the additional Z-depth
parameters cannot be estimated in the same time as tz due
to an observability problem, therefore we have to measure
the Z-depth somehow in order to perform simultaneous
estimation.

VI. APPLICATION

We have chosen to perform a visual servoing (VS) task [4].
We first describe the considered task before presenting the
obtained results. In addition, in order to validate the proposed
approach, we have realized several simulations using ViSP
software [11].

A. Vision-based Task

The objective of the task is to position the embedded
camera with respect to a visual landmark. To this aim, we
have applied the VS technique given in [6] that consists in
regulating the following task function to zero:

evs = C(s− s?) (34)

where s? represents the desired value of the visual features,
while C is a full-rank combination matrix allowing to take
into account more visual features than available DOFs [6].
A simple way to choose C is to consider the Moore-Penrose
pseudo-inverse of an estimation of the interaction matrix:
C = L̂+

s [4]. One often used estimation is the interaction
matrix computed at the desired configuration: Ls?

+ with the
known desired Z-depths. However, estimating the Z-depths
allows using the current interaction matrix that improves the
VS behavior. In the sequel, we use the current interaction



matrix while performing intrinsic calibration, and the desired
interaction matrix while performing extrinsic calibration (Z-
depths not estimated).

Using Eqs (4) and (34), and considering vs as the input of
the robot controller, we obtain the control law that ensures
an exponential decoupled decrease of the error [4]:

vs = −λvsL̂+
s (s− s?) (35)

The control law requires the knowledge of the intrinsic and
extrinsic parameters of the camera: therefore, our goal is to
estimate the parameters during the VS in order to perform
the task with the best behaviour.

B. Simulation results

Simulations are done with the following parameters :
ξIn = (595, 607, 192, 144), (tx, ty, tz) = (0.5,−0.3, 0.1)m
and (θux, θuy, θuz) = (−30, 45, 60)deg.

Fig.3 shows the estimation of ξIn and Zi-depths, from the
robot velocity and the features variation measurement after
the first iteration of the VS task. In this first estimation, the
parameters and Zi-depths do not converge perfectly towards
the right value yet, the first guess for Zi(0) inducing a local
minimum.

Fig.4 shows the same for ξEx, this time the estimation is
done after two iterations of the VS task (see (32)). Here, the
estimation converges exactly towards the right values.

Fig.5 shows ξIn and Zi estimation obtained during the first
20 iterations of the VS. A new estimation is performed at
each iteration of the VS since new measurements are avail-
able. The values estimated at the first iteration correspond to
the achieved estimation in Fig.3. In order to get redundancy,
we use up to 4 successive measurements of the VS in the
optimization process. This calibration window is damped so
that past Z estimated values have less impact on the current
estimation: each past iteration has its weight divided by 2.
After a few iterations, the Z-depth estimation delay does not
impact the ξIn calibration.

In the same way, Fig.6 shows the simulation results for
simultaneous ξIn and ξEx estimation during the first 20
iterations of the VS. This time, we assume the Z-depths are
known. The parameters converge towards the right values in
a few steps.
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Fig. 3. Estimation of the intrinsic parameters. Evolution of ξIn , Z-depth
and ε
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components during the first minimization step.

C. Experimental results

Experiments have been carried on the IRISA 6-dof eye-
in-hand robot.
The true parameters are: ξIn = (1129, 1127, 313, 270),
(tx, ty, tz) = (0.009,−0.23,−0.01)m and (θux, θuy, θuz) =
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Fig. 6. Simultaneous estimation (known Z-depth). Evolution of ξIn , t and
R during the VS task (first 20 iterations)

(−70.5,−68.8,−69.9)deg. The complete VS task takes 300
iterations, but only the first 100 ones are presented on Fig.7
and 8

During the VS, the estimation is stopped when the am-
plitude of the camera velocity is less than a given threshold
(that is near the convergence of the VS) since no more mea-
surements are available when the camera is motionless. Z
being no more estimated, the VS uses the desired interaction
matrix afterwards.

Contrary to the simulations, here the parameters (but not
Z) are updated at each iteration with the mean value between
the past estimation and the latest achieved one, in order to
filter the values of ξIn and ξEx.

For intrinsic calibration (see Fig.7), Z-depths are all
initialized to 0.43m while the actual value is between 0.38m
and 0.48m.

Once again, intrinsic calibration can be performed with a
slight delay due to the initial error and the estimation filter.
As in simulation, the history window is damped so that past
estimated values of Z have less impact.

For extrinsic calibration (see Fig.8), translation and ro-
tation parameters are estimated in a few iterations. As in
simulation, we assume Z is known. The results obtained are
thus particularly accurate and stable.

The VS results are shown in Fig.9. Intrinsic calibration is
performed during the task, with damped calibration window
and mean-value parameters update. It is a well-known fact
that VS is robust to calibration errors, that is why both VS
converge towards the good value. However, estimating the Z-
depths allows using the current interaction matrix, that leads
to a better behavior of the feature error decrease. During this
task, we can retrieve the real camera parameters ξIn and Z-
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Fig. 7. Estimation of the intrinsic parameters. Evolution of the pixel ratio,
principal point and Zi-depths during the VS task (first 100 iterations)
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Fig. 8. Estimation of the extrinsic parameters. Evolution of t and R during
the VS task (first 100 iterations)
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Fig. 9. Visual servoing results with and without calibration. Evolution of the
components of the error (top) and the command (bottom). The calibration
stops at the iteration 150

depths. However, as the VS converges the camera gets slower
and the calibration can become unstable as it depends on the
camera velocity. That is why under a certain velocity value,
the on-line calibration is turned off, and the VS task uses
the desired interaction matrix. In this experiment this occurs
around the iteration 150. Since the system is very near from
the convergence, it has no effect on its behaviour.

VII. CONCLUSION

A sensor calibration framework has been presented. It
uses the sensor/robot motion and velocity measurements
instead of usual position measurements. This framework
allows retrieving the true intrinsic and extrinsic parameters
of any sensor the interaction matrix can be expressed for.

Parameter estimation is expressed as a minimization prob-
lem, the jacobian of which can be expressed analytically
from the interaction matrix and the frame transformation ma-
trix. The framework has been detailed for a camera observing
four points. The classically unknown Z-depths have been
considered as additional intrinsic parameters. Simulations
and experiments show good results for intrinsic estimation
with unknown Z-depth and extrinsic parameters estimation
with known Z-depth. Simultaneous intrinsic and extrinsic
calibration can also be performed under the condition that
Z-depth is known.

As a future work, we could use this framework to perform

hand-eye calibration, which consists in estimating the pose
between the tool and the camera. The case of varying
intrinsic parameters (e.g. zooming camera) could also be
studied. Finally, the framework could benefit from an ob-
servability analysis that would show the parameters that can
be estimated at the same time, and highlight the singular
motions preventing from having rank-sufficient matrices.
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