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Abstract— In this paper a generic decoupled imaged-based
control scheme for calibrated cameras obeying the unified
projection model is proposed. The proposed decoupled scheme
is based on the surface of object projections onto the unit
sphere. Such features are invariant to rotational motions.This
allows the control of translational motion independently from
the rotational motion. Finally, the proposed results are validated
with experiments using a classical perspective camera as well
as a fisheye camera mounted on a 6dofs robot platform.

I. INTRODUCTION

In image based visual servoing (IBVS), the control of the
camera position is performed by canceling the feature errors
in the image [18]. This yields some degree of robustness to
disturbances as well as to calibration errors. On the other
hand, if the initial error between the initial and the desired
positions is large, IBVS may produce erratic behavior such
as convergence to local minima and an inappropriate camera
trajectory due to coupling between the controlleddofs [1].
Usually, IBVS is considered as a servoing approach suitable
only for “small” displacements so a basic idea consists of
sampling the initial errors in order to ensure that the errorat
each iteration remains small in order to overcome the IBVS
problems already mentioned. That is, using a path planning
step jointly with the servoing one[12][4].

The main cause of trouble for IBVS is the strong non-
linearities in the relation from the image space to the
workspace which are generally observed in the interaction
matrix. In principle, an exponential decoupled decrease
would be obtained simultaneously on the visual features and
on the camera velocity (perfect behavior) if the interaction
matrix was constant, which is unfortunately not the case.
To overcome the non-linearity problem, the approximation
can be improved by incorporating second order terms (based
on the Hessian [8], for instance). Another approach con-
sists of selecting features with good decoupling and lin-
earizing properties. In fact, the choice of feature directly
influences the closed-loop dynamics in task-space. In [3]
features including the distance between two points in the
image plane and the orientation of the line connecting those
two points was proposed. In [18] the relative area of two
projected surfaces has been proposed as a feature. In [13],
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a vanishing point and the horizon line have been selected.
This choice ensures a good decoupling between translational
and rotationaldofs. In [9], vanishing points have also been
used for a dedicated object (a 3D rectangle), once again to
obtain some decoupling properties. For the same object, six
visual features have been designed in [2] to control the six
dofs of a robot arm, following a partitioned approach. In
[7], the coordinates of points are expressed in a cylindrical
coordinate system instead of the classical Cartesian one, so as
to improve the robot trajectory. In [6], the three coordinates
of the centroid of an object in a virtual image obtained
through a spherical projection have been selected to control
three dofs of an under-actuated system. In [10], Mahonyet al
deal with the selection of the optimal feature to control the
camera motion with respect to the depth axis. Tatsambon
et al in [17] proposed a decoupled visual servoing from
spheres using a spherical projection model. Despite of the
large quantity of results obtained in the last few years, the
choice of the set of visual features to be used in the control
scheme is still an open question in terms of stability analysis
and validity for different kinds of sensor and environment.

The results presented in this paper belong to a series of
research about the use of invariants for decoupled image
based visual control. More precisely, the invariance property
of some combinations of image moments computed from
image regions or a set of points are used to decouple
the degrees of freedom from each-other. For instance, in
[14], [15], moments allow the use of intuitive geometrical
features, such as the center of gravity or the orientation
of an object. By selecting an adequate combination of
moments, it is then possible to determine partitioned systems
with good decoupling and linearizing properties [15]. For
instance, using such features, the interaction matrix block
corresponding to the translational velocity can be a constant
block diagonal. However, these works only concerned planar
objects and conventional perspective cameras. More recently,
a new decoupled image-based control scheme from the
projection onto a unit sphere has been proposed in [16].
The proposed method is based on polynomials invariant to
rotational motion computed from a set of image points. In
this paper, we propose a more generic and efficient decoupled
scheme valid when the object is defined by set of points as
well as by image regions (or closed contour). The proposed
features also reduce the sensitivity of interaction matrix
entries to object depth distribution.

In the next section we recall the unified camera model.
In Section III, theoretical details about feature selection and
obtaining the interaction matrices are detailed. A new vector
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of six features to control the six camera degrees of freedom
is proposed. Finally, in Section IV, experimental results
obtained using conventional camera and a fisheye camera
mounted on a6 dofs robot are presented to validate our
approach.

II. CAMERA MODEL

Central imaging systems can be modeled using two con-
secutive projections: spherical then perspective. This geo-
metric formulation called theunified modelwas proposed by
Geyer and Daniilidis in [5]. Consider a virtual unitary sphere
centered onCm and the perspective camera centered onCp.
The frames attached to the sphere and the perspective camera
are related by a simple translation of−ξ along the Z-axis. Let
X be a 3D point with coordinatesX = [X Y Z] in Fm. The
world pointX is projected on to the image plane at a point
with homogeneous coordinatesp = Km, whereK is a3×3
upper triangular matrix containing the conventional camera
intrinsic parameters coupled with mirror intrinsic parameters
and

m =
[

x y 1
]

=
[

X
Z+ξ‖X‖

Y
Z+ξ‖X‖ 1

]

(1)

The matrixK and the parameterξ can be obtained after
calibration using, for example, the methods proposed in [11].
In the sequel, the imaging system is assumed to be calibrated.
In this case, the inverse projection onto the unit sphere can
be obtained by:

Xs = λ
[

x y 1 − ξ
λ

]

(2)

whereλ =
ξ+
√

1+(1−ξ2)(x2+y2)

1+x2+y2

Note that the conventional perspective camera is nothing
but a particular case of this model (whenξ = 0). The
projection onto the unit sphere from the image plane is
possible for all sensors obeying the unified model.

III. T HEORETICAL BACKGROUND

In this Section, the theoretical background of the main
idea of this work will first be detailed. Then, six new features
will be proposed to control the sixdofsof the robot-mounted
camera.

A. Invariants to rotational motion from a projection onto a
sphere

The decoupled control we propose is simply based on the
invariance property of the projection shape of an object onto
a sphere under rotational motion. In this way, the following
invariant polynomial to rotations has been proposed in [16]
to control the translationaldofs:

I1 = m200m020 −m200m002 +m
2
110 +m

2
101 −m020m002 +m

2
011

(3)
where:

mi,j,k =

N
∑

h=1

xi
sh

yj
sh

zk
sh

(4)

(xs, ys, zs) being the coordinates of a 3D point. In our
application, these coordinates are nothing but the coordinates
of a point projected onto the unit sphere. This invariance to
rotations is valid whatever the object shape and orientation.
In this paper, the surface∆ of the object projection onto
a sphere will be used instead of the polynomial mentioned
above to control the translationaldofs. In fact, the surface of
the object projection onto a sphere is nothing but the moment
of order0 that can be computed using the general formula:

msi,j,k
=

∫∫

region
xi

sy
j
sz

k
s ds (5)

The surface is a generic descriptor that can be computed
from an image region defined by a closed and complex
contour or simply by a polygonal curve. Furthermore, as
it will be shown, after an adequate transformation, a new
feature can be obtained from the projection surface such that
the corresponding interaction matrix is almost constant with
the depth distribution. In the remainder of this paper, the
surface of the triangles built by the combination of three non-
collinear points (from a set ofN points) will be considered.

For planar objects and triangle is of course a planar object,
it has been shown that the interaction matrix related to the
moment can be obtained by [14]:

Lmsi,j,k
=

(

msvx
msvy

msvz
mswx

mswy
mswz

)

(6)

where :























































msvx = A(βmi+2,j,k − (i + 1)mi,j,k)+

B(βmi+1,j+1,k − imi−1,j+1,k) + C(βmi+1,j,k+1 − imi−1,j,k+1)
msvy = A(βmi+1,j+1,k − jmi+1,j−1,k)+

B(βmi,j+2,k − (j + 1)mi,j,k) + C(βmi,j+1,k+1 − jmi,j−1,k+1)
msvz = A(βmi+1,j,k+1 − kmi+1,j,k−1)+

B(βmi,j+1,k+1 − kmi,j+1,k−1) + C(βmi,j,k+2 − (k + 1)mi,j,k)
mswx = jmi,j−1,k+1 − kmi,j+1,k−1

mswy = kmi+1,j,k−1 − imi−1,j,k+1

mswz = imi−1,j+1,k − jmi+1,j−1,k

whereβ = i + j + k + 3 and(A, B, C) are the parameters
defining the object plane in the camera frame:

1

r
= Axs + Bys + C (7)

From (6) we can show thatmswx
= mswy

= mswz
= 0

wheni = j = k = 0, thus the feature∆ = m000 is invariant
to rotational motions.



B. Variations of the interaction matrix related to the surface
with respect to the camera position

As has been mentioned above, the problems observed
using IBVS are in general due to the strong variations
of the interaction matrix with respect to camera position.
Therefore, one of the main goals of this work is to decrease
these variations. Note firstly that designing a decoupled or
a partitioned system is a step toward this goal, since it
introduces terms equal to0 in the interaction matrix. In
the following, a transformation is proposed to decrease the
variation of the interaction matrix with respect to the object
depth.

1) Variation with respect to translational motion:In [10],
using a square object, it was shown that for good z-axis
behavior in IBVS, one should choose image features that
scale ass ∼ z (z is the object depth). In [15], the same idea is
extended to any object shape using bi-dimensional moments.
Using the conventional perspective projection model, the
selected feature iss = 1√

m00
in the case where the object

is defined by an image region.m00 is the bi-dimensional
moment of order0 (that is the object surface in the image).
In the case where the object is defined by a set of discrete
points, the selected optimal feature iss = 1√

(µ20+µ02)
, where

µij are the central moments computed from a set of discrete
points (see [15], for more theoretical details). In fact, the
selected features allows us to obtain an interaction matrixthat
changes slowly with respect to depth (and is even constant
if the object is parallel to the image plane). We now show
that, the behavior of the surface∆ of an object projection
onto the unit sphere is similar (∆ ∼ 1

z2 and 1√
∆

∼ z).
Let L∆ = [Lx, Ly, Lz, 0, 0, 0] and L 1

√

∆

=

[Lx1
, Ly1

, Lz1
, 0, 0, 0] be the interaction matrices related

to the projection surface∆ and 1√
∆

respectively. From (6),
it can be obtained that:














Lx = A(3m200 − m000) + 3Bm110 + 3Cm101

Ly = 3Am110 + B(3m020 − m000) + 3Cm011

Lz = 3Am101 + 3Bm011 + C(3m002 − m000)

Lx1
= − Lx

2∆
√

∆
, Ly1

= − Ly

2∆
√

∆
, Lz1

= − Lz

2∆
√

∆

(8)

It can be shown that the choice ofs = 1√
∆

is better
than the choices = ∆. To illustrate this, Figure 3 gives
the variation of the interaction matrix entries with respect to
translational motion applied to the following triangle in the
unit sphere frame:

X =





−0.15 −0.15 0.3
0.2598 −0.2598 −0.

0.5 0.5 0.5



 (9)

The triangle shape is given on Figure 2.a.
The results presented in Figure 3 correspond to configu-

rations whereA = B = 0 andm101 = m010 = 0. Plugging
all into (8) we can obtainLx = Lx1

= Ly = Ly1
= 0.

Indeed, from Figures 3.(a) and 3.(b), it can be seen that
Lx = Lx1

= Ly = Ly1
= 0 whatever the object depth

is. In practice, the features∆ and 1√
∆

depend mainly on
the translational motion along z-axis. From Figures 3.(a) and

a b

Fig. 2. Triangle shapes

3.(b), it can also be seen thatLz1
= −C(3m002−∆)/(2∆

3

2 )
is almost constant and largely invariant to the object depth.
On the other handLz = C(3m002−∆) decreases to0 when
the object depth increases.

The variation of interaction matrix elements for trans-
lational motion with respect to x-axis and y-axis motion
are given in Figures 3.(c) to 3.(f). Firstly, it can be seen
that x-axis translational motion influences mainly the entries
corresponding to the x-axis and z-axis. In the same way,
y-axis translational motion influences mainly the entries
corresponding to the y-axis and z-axis. Furthermore, vari-
ation of the interaction matrix entries for x-axis and y-axis
translational motion are more uniform for1√

∆
than for∆.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Results obtained fors = ∆ ( (a) variation with respect to depth,
(c) variation with respect to x-axis translation (e) variation with respect to
y-axis translation); Results obtained fors = 1

√

∆
((b) variation with respect

to depth, (d) variation with respect to x-axis translation (f) variation with
respect to y-axis translation)



2) Variations with respect to the camera frame orienta-
tion: Despite the fact that the surface of the projection of
a target onto a sphere is invariant to rotations, its related
interaction matrix depends naturally on the camera frame
orientation. In order to explain that, let us consider two
framesF1 andF2 related to the unit sphere with different
orientations (1R2 is the rotation matrix between the two
frames) but with the same center. In this case, the value
of the projection surface onto the sphere is the same for the
two frames, since it is invariant to rotational motions. Now,
let us consider that a translational velocityv1 is applied to
the frameF1. This is equivalent to applying a translational
velocity to the frameF2 but taking into account the change
of frame (v2 = 1R2v1). Since the interaction matrix links
the features variation with the velocities (i.e.ṡ = Lsv),
the interaction matrix for the frameF2 is nothing but the
interaction matrix computed for the frameF1 by the rotation
matrix 1R2. This result shows that rotational motions do not
change the rank of the interaction matrix of the features used
to control the translationaldofs.

C. Features selection

As in [16], we could consider the center of gravity of
the object’s projection onto the unit sphere to control the
rotational degrees of freedom:

xsg =
(

xsg
, ysg

, zsg

)

=
(

m100

m000
, m010

m000
, m001

m000

)

In fact, only two coordinates ofxsg are useful for the control
sincexsg belongs to the unit sphere making one coordinate
dependent.

That is why in order to control rotation around the optical
axis, the mean orientation of all segments in the image is
used as a feature. Each segment is built using two different
points in a geometrically correct image. In the case where the
objects are defined by contours rather than simple triangles,
the object orientation in the image can be used as in [15] for
instance.

Finally, as mentioned previously, the invariants to 3D
rotation will be considered to control the translation. For
the reason mentioned above it iss = 1√

∆
that will be used

to control the translational motions instead ofs = ∆. In
practice, three different targets (i.e. three different triangles
or three different contours) such that their centers are non-
collinear might be enough to control the three translational
dofs. In the next section, experimental results are presented
to validate these theoretical results.

IV. EXPERIMENTAL RESULTS

In this section, simulations results are firstly presented
using four non coplanar points. Thereby, a series of experi-
ments using two kinds of camera (conventional and fisheye)
will be shown.

A. Simulation results using 3D objects

In these simulations, the set of points is composed of 4
non coplanar points. The desired position corresponds to the

3D points coordinates defined in the camera frame as follow:

Xd =





0 −0.2 0 0.2
0.2 0 −0.2 0
0.9 1. 1 1.2



 (10)

In the first simulation, only the rotational motion given by
(11) has been considered. The corresponding results are
given on Figure 4. From Figure 4.a, it can be seen that a nice
decrease of the features errors is obtained. Furthermore, since
the considered translational motion is null, the translational
velocity computed using the invariants to rotations are null
also (see Fig. 4.b). If the point Cartesian coordinates were
used to control the camera position, as in classical IBVS,
an undesired and strong translational motion with respect to
the optical axis would have been obtained [16], [1]. Finally,
Figure 4.c shows good behavior of the rotational velocities
despite the large rotational displacement to perform between
the desired and the initial camera positions.

θu =
[

−7.90 23.70 158.0
]o

(11)

In the second simulation, a generic motion combining the ro-
tational motion given by (11) and the following translational
motion has been considered:

t1 =
[

−0. −0.3 1
]

(12)

The obtained results are given on Figs. 4.d, 4.e and 4.f.
Despite the large motion, it can be seen that a satisfactory
behavior is obtained for the feature errors (see Fig 4.d). Fur-
thermore, similar satisfactory behaviors are simultaneously
obtained for the velocities (see Figs 4.e and 4.f). From these
plots, it can be also seen that the behavior of the rotational
motion is still almost identical to the behavior obtained when
only a rotational motion was considered (compare 4.e and
4.b), thanks to the efficient decoupling obtained using the
invariant to rotations.

B. Experimental validations results using a conventional and
a fisheye cameras

For all these experiments, only approximations of the point
depths for the desired position are used. More precisely, the
interaction matrices are computed using the current valuesof
the points in the image and constant approximated desired
point depths.

1) Results using a conventional perspective camera:
In a first experiment, only a rotational motion around the
camera optical axis (80dg) has been considered between
the initial and the desired camera positions. The desired
image and the current one are given respectively on Figures
5.a and 6.a. Four combinations of triangles obtained from
the four point target are used to control the translational
motion. The obtained results are given on Figures 6.b, 6.c
and 6.d. From 6.b, it can be seen that a nice decrease of the
features errors is obtained. Furthermore, from Fig. 6.b, since
the considered translational motion is null, the translational
velocity computed using the invariants to rotations are almost



null. The observed small translational velocities are due to
the weak calibration of the camera. Finally, Fig. 6.d shows
good behavior of the rotational motions.

In a second experiment using a conventional camera, a
complex motion is considered between the initial and the
desired camera positions. The same desired camera position
as for the first experiment is used. The image corresponding
to the initial position of the camera is given in Figure
7.a. From Figures 7.b, it can be noticed that the feature
errors behavior is very satisfactory, despite the errors in
camera calibration and points depth (the point depths are not
computed at each iteration). The same satisfactory behavior
is obtained for translational and rotational velocities (see
Figures 7.c and 7.d). Indeed, nice decreases of the feature
errors as well as for the velocities are obtained.

2) Results using a fisheye camera:As for the conventional
camera, only a rotational motion around the camera optical
axis (80dg) has been considered first between the initial and
the desired camera positions. The desired image and the
current one are given respectively in Figures 5.b and 8.a. The
obtained results are given in Figures 8.b, 8.c and 8.d. From
these figures, it can be noticed that the translational velocity
computed using the invariants to rotations are almost null,
as for the conventional camera. The obtained results for the
rotational velocities as well as for the feature errors is also
similar to those obtained using the conventional camera.

In the last experiment, a generic motion combining rota-
tional motion and translational one is considered between the
initial and the desired positions. The image corresponding
to the desired position is given in Figure 5.b. The image
corresponding to the initial position is given in Figure
9.a. From Figures 9.b, 9.c and 9.d, it can be seen that a
satisfactory behavior is obtained using the proposed features.
As with the conventional camera, a nice decrease of the
features errors as well as of the velocities is also obtained
using a fisheye camera.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a generic decoupled image-based control
using the projection onto the unit sphere was proposed. More
precisely, the surface of the projections of objects onto the
sphere were used to independently control the translational
motion from the rotational motion. Firstly, the proposed
decoupled control is valid for all cameras obeying the unified
camera model. Further, it is also valid for objects defined
by closed contours (3 contours at least) as well as by a
set of points. The proposed features allows also to decrease
significatively the variations of the interaction matrix with
respect to the camera positions. Finally, the controller has
been experimentally validated and results presented using
two kinds of camera: conventional and fisheye. Both planar
and non planar target have been used for validations results.
Future works will be devoted to extend these results to the
pose estimation problem.
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