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Abstract— Image-based visual servoing has been found to
give satisfactory accurate and robust results. However, sin-
gularity and local minima may appear causing stability and
convergence problems. In this paper, we present new control
schemes based on Halley’s method as a temptative to obtain a
robust system even when the desired configuration is singular.
The new control scheme use the first and the second order
derivatives of the error to be regulated to zero. Hessian matrices
of an image point are thus determined to be used in the control
schemes. Preliminary experimental results obtained on a 6 dof
eye-in-hand system shows that a more accurate positioning can
be obtained compared with classical methods.

I. I NTRODUCTION

As pointed out in [2], convergence and stability problems
may occur in some cases in image-based visual servoing.
This happens when the system reaches a local minimum
or when it crosses or reaches a singular configuration.
Such singular configurations correspond to a loss of rank
of the Jacobian matrix that relates the features used as
input of the control scheme to the control parameters. That
Jacobian matrix is named the interaction matrix [15], [3]
when the control parameters are the six components of the
instantaneous sensor velocityv (to recall that the considered
working space is the Special Euclidean groupSE 3 in which
Lie algebra properties can be applied).

Several singular configurations in image-based visual ser-
voing have been exhibited in the litterature. The most well
known one appears for a target composed of three points.
Indeed, for that target, when the camera optical axis lies
on the surface of a cylinder built from these three points,
the interaction matrix related to the Cartesian coordinates
of the three image points is singular (with rank 5) [11],
while it is of full rank 6 as soon as the camera optical axis
lies outside of this surface. The same singular configurations
exist whatever the image features selected to represent the
three points (cylindrical coordinates of the points, parameters
representing the three straight lines that can be defined from
the three points, etc.) Another singular configuration has been
exhibited in [1]: if the target is a circle, then the interaction
matrix related to any set of parameters that represents the
image of that circle, which is an ellipse, is always of rank 5,
but when the circle appears in the image as a centered circle,
in which case the interaction matrix if of rank 3. More
general singular configurations can be exhibited: whatever
the sets of features selected and its desired values∗, the
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interaction matrix related to‖s − s∗‖ is always of full
rank 1 but whens = s∗, in which case the interaction
matrix is null [6]. This case is extremely problematic since
the singularity occurs at the desired configuration where we
would like the system to be stable and robust, while it is
well known that classical control schemes are unstable and
very sensitive to noise and perturbations around singular
configurations.

Usually, these singular configurations are avoided trivially
by selecting features such that their interaction matrix is
always of full rank, that is by considering a fourth point when
the original target is a set of three points, or by considering
two circles or a circle and a point instead of just a circle,
or by usings instead of‖s − s∗‖. This is not completely
satisfactory from a scientific point of view, and may not be
always possible in practice, when only three points can be
extracted in the image for instance.

When the redundancy framework can be applied, that is
when the main task does not control all the robot degrees
of freedom (dof), a secondary objective can be designed to
try avoid the singular configurations [13], [9]. Once again,
this method can not always be used, typically when the
task constrains all the robot dof. Furthermore, it is not
efficient if the goal is to reach a singular configuration. To
deal with this problem, a classical solution in robotics is
to use the damped-least-squares inverse [16], [12], [5], [4]
instead of the Moore-Penrose pseudo inverse. This method,
which artificially increases the lowest singular values of
the Jacobian matrix, reduces the effect of the singularity
in terms of robustness, but decreases the precision of the
control. Finally, a regularization technique has recentlybeen
introduced in [6]. It also allows reducing the effect of the
singularity, but with the price of decreasing the convergence
speed, which is inefficient if the task consists in tracking a
moving target.

In this paper, we propose new control schemes to try
to reach a singular configuration. It is based on Halley’s
method, which uses a second order minimization step. After
analysing in Section II the behavior of the classical control
schemes in a singular configuration, we present the new
control schemes in Section III. Theu are based on the Hessian
matrices of the selected features. We thus determine in
Section IV the Hessian matrices of the Cartesian coordinates
of an image point. Finally, experimental results are presented
in Section V.



II. A NALYSIS OF CLASSICAL CONTROL SCHEMES

Let s ∈ R
k be the vector of the selectedk visual features,

s∗ their desired value andv ∈ R
6 the instantaneous velocity

of the camera. Most classical control laws have the following
form:

v = −λ L̂s

+
(s − s∗) (1)

where λ is a gain andL̂s

+
is the pseudoinverse of an

estimation or an approximation of the interaction matrix
related tos (defined such thaṫs = Lsv wherev = (v,ω)
with v the translational velocity andω the rotational one).
Different forms for L̂s have been proposed in the past [3].
For simplicity, we consider that all values can be computed
accurately, leading to the following choices

1) : L̂s = Ls∗ (2)

2) : L̂s = Ls(t) (3)

3) : L̂s = (Ls∗ + Ls(t))/2. (4)

In the first case,̂Ls is constant during all the servo since
it is the value of the interaction matrix computed at the
desired configuration. In the second case,L̂s changes at
each iteration of the servo since the current value of the
interaction matrix is used. Finally, in the third case, the mean
of these two values is used [8]. These three usual choices
for L̂s when used with (1) define three distinct control laws,
that we denote D, C and M (for desired, current, and mean
respectively).

In this paper, we are interested in the case where the
interaction matrix is singular at the desired configuration,
that is whenLs∗ is singular. In that case, control law D is
of course inefficient since it is subject to numerous local
minima. Indeed, all configurations such that:

(s − s∗) ∈ N
(
L+

s∗

)

(whereN (A) is the null space of matrixA) correspond
to a local minimum, and such configurations are generally
numerous sinceN

(
L+

s∗

)
is at least of dimension 1. If the

initial error si − s∗ is large andLsi
is not singular, control

law C can be used at the beginning of the servo, but, as soon
ass−s∗ will become small, the system will be unstable since
it nears the singularity. The same comment can unfortunately
be done for control law M, even if we could hope for some
smoothing effects of the singularity thanks to the use of
the constant matrixLs∗ in M. This simple analysis of the
behavior of control laws D, C, and M will be confirmed in
Section V through experimental results.

To avoid the unstability near the singularity of all control
schemes based on the interaction matrix only, we could think
of using second order schemes, such as the one based on the
classical Newton minimization method. It is given by (see [8]
for instance):

v = −λ K+
1 L⊤

s
(s − s∗) (5)

where

K1 = L⊤

s
Ls +

k∑

i=1

Hsi
(si − s∗i )

Hsi
being the Hessian matrix of thei-th component ofs. Un-

fortunately, the convergence domain of this control scheme
is generally very limited due to the fact that the Hessian is
not always positive definite (see Section IV-B). Furthermore,
all configurations such thatLs is singular and

(s − s∗) ∈ N
(
L⊤

s

)

correspond to a local minimum since we have in that case
v = L⊤

s
(s− s∗) = 0. This is also of course the same for the

basic control scheme

v = −λ L⊤

s
(s − s∗)

based on the steepest descent and usually named gradient
method.

All control schemes described above being not satisfactory
when trying to reach a singular configuration, we propose
new control schemes, based on Halley’s method, in the next
section.

III. H ALLEY ’ S METHOD

A. Scalar case

Halley’s method is well known in the numerical analysis
community to find a root of a functionf(x) (that is to findxr

such thatf(xr) = 0) [14]. As classical gradient and Newton
methods, it is an iterative algorithm that can be applied if
functionf is continuous and twice differentiable. It is based
on the second order Taylor expansion off :

f(x) = f(xn) + f ′(xn)(x−xn) +
1

2
f ′′(xn)(x−xn)2 (6)

wherexn is the estimate ofxr at iterationn of the algorithm.
Let xn+1 be the root of (6). It can be written:

xn+1 = xn − f(xn)

2f ′(xn) − 1
2f ′′(xn)(xn+1 − xn)

This equation can not be used directly sincexn+1 appears
both in its left and right sides. However, using on the right
side, the result of the Newton-Raphson step (which is easily
obtained by solving the first order Taylor expansionf(x) =
f(xn) + f ′(xn)(x − xn)), that is

xn+1 = xn − f(xn)

f ′(xn)

we obtain

xn+1 = xn − 2f(xn)f ′(xn)

4 [f ′(xn)]
2 − f(xn)f ′′(xn)

(7)

which is known as the Halley’ rational formula. We can note
that, thanks to the termf(xn)f ′′(xn), there is no inversion
problem whenf ′(xn) = 0 as long asf(xn) 6= 0 and
f ′′(xn) 6= 0.

We now apply exactly the same reasoning for the case
wherex andf(x) are not scalars but vectors.



B. General case

Let p andp∗ be the parameters that represent the current
and the desired camera poses. The first order Taylor expan-
sion of s(p) is given by

s∗ = s + Js∆p

where∆p represents the displacement betweenp∗ and p.
We immediately deduce the following control law using the
Newton-Raphson method:

v1 = −λ1L
+
s
(s − s∗) (8)

whereJs andLs are linked byLs = JsP whereP is defined
such thatṗ = Pv. Note that control law (8) is nothing but
the classical control law C.

Let us now consider the second order Taylor expansion of
s. It is given by

s∗ = s + K2 ∆p (9)

where matrixK2 is

K2 = Js +
1

2




∆p⊤Hs1

. . .

. . .

. . .
∆p⊤Hsk




Solving (9) for∆p, we obtain

∆p = −K+
2 (s − s∗)

from which we deduce the following control law:

v = −λK+
s
(s − s∗) (10)

where the output (8) of control law C is used to go fromK2

to Ks:

Ks = Ls −
λ1

2




(s − s∗)⊤L+⊤

s
Hs1

. . .

. . .

. . .

(s − s∗)⊤L+⊤

s
Hsk




This control law is named K in the following. Let us note
that, if Ls is singular, it does not necessarily imply that
Ks is singular thanks to the Hessian part involved in this
control scheme. Furthermore and contrarily to the control
law (5) based on the Newton method, whenLs is singular,
the configurations such that

(s − s∗) ∈ N
(
L⊤

s

)

does not generally correspond to a local minimum. That are
for good points of K. Unfortunately, some bad points also ex-
ist. First,Ks may be singular for some configurations where
Ls is not singular. Then, fors = s∗, Ks is singular when
Ls∗ is singular (sinceKs = Ls∗ in that case. However, since
we never haves = s∗ in practice, due to unavoidable image
noise, we will never have exactlyKs = Ls∗ , which makes
appealing the use of K whenLs∗ is singular. Furthermore,
near the singularity, the low conditioning ofLs in the first
part ofKs is compensated by the high conditioning ofLs in

its second part. However, we will see in Section V that if the
rank of Ks is indeed improved, it increases the sensitivity
of the control scheme to the image noise.

Following the same idea than going from control law C
to D, we could think of using:

v = −λK+
s∗

(s − s∗) (11)

whereKs∗ is given by:

Ks∗ = Ls∗ − λ1

2




(s − s∗)⊤L+⊤

s∗
Hs∗

1

. . .

. . .

. . .

(s − s∗)⊤L+⊤

s∗
Hs∗

k




However, that is definitively not a good idea since this control
scheme has exactly the same bad properties of D that all
configurations such that

(s − s∗) ∈ N
(
L+

s∗

)

will lead to a local minima (to check that, just note that in
that case(s − s∗)⊤L+⊤

s∗
= 0, which impliesKs∗ = Ls∗).

A last control scheme can be obtained by considering each
feature independently in the second part ofKs, that is using

vi = −λ1L
+
si

(si − s∗i ) (12)

instead of (8). In that case we obtain

v = −λK+
i (s − s∗) (13)

where

Ki = Ls −
λ1

2




(s1 − s∗1)
⊤L+⊤

s1
Hs1

. . .

. . .

. . .

(sk − s∗k)⊤L+⊤

sk
Hsk




This control law will be named Ki in the following. Even if
we are currently unable to give any theoretical explanation,
we will see in Section V that this control law allows improv-
ing the accuracy of the positiong in a singular configuration.

IV. H ESSIAN MATRICES OF AN IMAGE POINT

In the experiments presented in the next section, we will
compare the behavior of the control schemes presented in
this paper in the case of a target composed of three points.
The analytical form of the Hessian matricesHx andHy of
the coordinates(x, y) of an image point are thus needed. Let
us note that these matrices have already been used in [7], but
the analytical form given in that paper contains unfortunately
few typos errors.



A. Modeling

We recall that an image point with coordinates(x, y)
results from the perspective projection of a 3D point such that
x = X/Z andy = Y/Z where(X,Y,Z) are the coordinates
of this 3D point expressed in the camera frame. We also
recall that the velocity(ẋ, ẏ) of an image point is linked to
the camera velocityv = (vx, vy, vz, ωx, ωy, ωz) through the
well known equations:

ẋ = Lxv , ẏ = Lyv (14)

where the interaction matricesLx andLy are given by:

Lx =
[
−1
Z

0 x
Z

xy −(1 + x2) y
]

(15)

Ly =
[
0 −1

Z

y

Z
(1 + y2) −xy −x

]
(16)

The Hessian matricesHx andHy can easily be determined
by differentiating (14). Indeed, for any features, we have:

s̈ = Lsv̇ + v⊤Hsv (17)

whereHs is a symetrix matrix. Using (14), (15) and (16),
we obtain:

ẍ = Lxv̇ +
Ż

Z2
vx +

ẋZ − Żx

Z2
vz +

(ẋy + xẏ) ωx − 2xẋ ωy + ẏ ωz

ÿ = Lyv̇ +
Ż

Z2
vy +

ẏZ − Ży

Z2
vz

+2yẏ ωx − (ẋy + xẏ) ωy − ẋ ωz

By substituting (14) forẋ and ẏ, and knowing that:

Ż = −vz − yZωx + xZωy

we obtain after simple developments:

ẍ = Lxv̇ −
2

Z2
vxvz −

2y

Z
vxωx +

3x

Z
vxωy −

x

Z
vyωx −

1

Z
vyωz

+
2x

Z2
vzvz +

4xy

Z
vzωx −

(1 + 4x2)

Z
vzωy +

2y

Z
vzωz

+x(1 + 2y
2
) ωxωx − y(1 + 4x

2
) ωxωy + (1 + 2y

2
− x

2
) ωxωz

+2x(1 + x
2
) ωyωy − 3xy ωyωz − x ωzωz

ÿ = Lyv̇ +
y

Z
vxωy +

1

Z
vxωz −

2

Z2
vyvz −

3y

Z
vyωx +

2x

Z
vyωy

+
2y

Z2
vzvz +

1 + 4y2

Z
vzωx −

4xy

Z
vzωy −

2x

Z
vzωz

+2y(1 + y
2
) ωxωx − x(1 + 4y

2
) ωxωy + y(1 + 2x

2
) ωyωy

+(1 + 2x
2
− y

2
) ωyωz − y ωzωz

from which we deduce by identification with (17)

Hx =

2

6

6

6

6

6

6

6

6

4

0 0 −1

Z2
−y

Z
3x
2Z

0

0 0 0 −x
2Z

0 −1

2Z
−1

Z2 0 2x

Z2
2xy

Z
−1−4x2

2Z

y

Z

−y

Z
−x
2Z

2xy

Z
x(1 + 2y2) −y( 1

2
+ 2x2) 1−x2+2y2

2

3x
2Z

0 −1−4x2

2Z
−y( 1

2
+ 2x2) 2x(1 + x2) −3xy

2

0 −1

2Z

y

Z

1−x2+2y2

2

−3xy

2
−x

3

7

7

7

7

7

7

7

7

5

and

Hy =

2

6

6

6

6

6

6

6

6

4

0 0 0 0 y

2Z
1

2Z

0 0 −1

Z2
−3y

2Z
x
Z

0

0 −1

Z2
2y

Z2
1+4y2

2Z

−2xy

Z
−x
Z

0 −3y

2Z

1+4y2

2Z
2y(1 + y2) −x( 1

2
+ 2y2) −3xy

2
y

2Z
x
Z

−2xy

Z
−x( 1

2
+ 2y2) y(1 + 2x2) 1−y2+2x2

2

1
2Z

0 −x
Z

−3xy

2

1−y2+2x2

2
−y

3

7

7

7

7

7

7

7

7

5

B. Positiveness of Hx and Hy

Using the determinant test to study the positiveness of
the Hessian matricesHx and Hy, we found that the
determinants of the leading principal minor vectors of
Hx and Hy are Mx = (0, 0, 0, x2

4Z6 , x3(1+x2)
Z6 , 0) and

My = (0, 0, 0, 0, y3(1+y2)
Z6 , 0) respectively, whereMs[i] =

|Hs[1..i, 1..i]|. This means that the necessary and sufficient
condition for bothHx and Hy to be positive semi-definite
is that x and y are positive, which is of course not always
achieved. This may explain the fact that Newton and Halley’s
methods based on image point coordinates have a small
convergence domain.

V. EXPERIMENTAL RESULTS

The experimental results presented in this section have
been obtained on a 6 dof eye-in-hand system (see Figure 1).
All the control schemes have been easily implemented thanks
to the open source ViSP library [10].

Fig. 1. Experimental system

The task consists of positioning the camera with respect
to a target composed of three points (in practice, three white
dots on a black background to avoid any image processing
problem) using the Cartesian coordinates of the perspective
projection of these points in the image. The three points
form a rectangle isosceles triangle whose side lengths are
equal to 0.06 m, 0.06 m and0.06 ×

√
2 m. The interaction

matrix is thus of dimension6 × 6 and of full rank 6 but
for the singularities exhibited in [11] in which case it is of
rank 5. The singularities occur when the optical center of the
camera belongs to the surface of the right circular cylinder
whose basis is defined by the circle to which the three points
belong. From this general result, it is easy to see that if one
of the three points appears at the principal point in the image
(which corresponds to the image of the optical axis), then
the interaction matrix is singular.

The desired pose between the camera and the triangle has
thus been chosen such that they are parallel (at a distance of
0.5 m) and one point appears at the principal point (see Fig-
ure 2). The initial pose has been chosen very near from the



desired one, that ispi = (0.0022, 0.001, 0.501, 0.8, 0.4, 0.6)
where the first three components represent the translation
expressed in meter, and the last three ones represent the
rotation expressed in degree. We are indeed interested in the
behavior near the singularity.

Let us finally note that the depth of the points, which
appears in the translational term of the interaction matrix
and in the Hessian matrix, are estimated at each iteration of
the control scheme using a classical pose estimation method.
Let us also note that the gainλ1 involved in K and Ki has
been set to 1, and the gainλ involved in all the control
schemes has been set to 0.5. This value has voluntarily been
chosen very small to show the effects of the singularity
and to avoid any unstability due to a too high value ofλ.
The very large number of iterations in each experiment is
thus not significant. As for the singular value decomposition
used to compute the pseudo-inverses involved in the different
control schemes, the condition number threshold has been set
to 0.0001. We recall that the condition number is the ratio
between the minimal and the maximal singular values of a
matrix, and the threshold is used to compute its rank and to
consider if a singular value is zero or not. This relatively high
value has been chosen to not damage the robot by forbidding
high values in the outputs of the control scheme.

The results obtained for control laws D, C, M, K and Ki
are given on Figure 2.a, 2.b, 2.c, 2.d and 2.e respectively. As
expected, control law D is always of rank 5. It is thus not
surprising that it reaches a local minimum. Contral law C
is of rank 6 at the beginning of the servo, which allows
the system to near the desired position. It is then of rank 5
due to the high condition number threshold, but for some
iterations where it becomes again of rank 6, due to image
noise, producing high robot velocities at these iterations.
Control law M has not a very satisfactory behavior: even
if it is of rank 6 at the beginning of the servo, it fails, as D,
in a local minimum. As for K, it is almost always of rank 6,
as expected, but it reaches also a local minimum and is quite
unstable due to the fact that it is of rank 6. Finally, control
law Ki provides with the best behavior, similar to the one
of C, but with a better positioning accuracy and less noise.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have been interested by the difficult
problem of reaching a visual singular configuration. Without
any surprise, all classical control schemes have been shown
to be unsatisfactory. Control schemes based on second order
minimization Halley’s method have been proposed to try to
improve the behavior of the system near the desired singular

position. The experimental results obtained have shown that
it is possible to improve the accuracy of the positioning using
one of these control schemes. It would be interesting to see
if it also the case for other singular configurations, such as
the case of the centered circle for instance. It would also
be interesting to see if any improvement can be obtained by
combining Halley’s method with the damped-least-squares
method.

REFERENCES

[1] F. Chaumette, P. Rives, and B. Espiau, “Classification andrealization
of the different vision-based tasks,” inVisual Servoing (K. Hashimoto,
ed.), vol. 7 ofRobotics and Automated Systems, pp. 199–228, World
Scientific, 1993.

[2] F. Chaumette, ”Potential problems of stability and convergence in
image-based and position-based visual servoing”,The Conference of
Vision and Control. LNCIS 237, pp 66-78, 1998.

[3] F. Chaumette, S. Hutchinson, ”Visual servo control Part I: basic
approaches”,IEEE Robotics and Automation Magazine, 13(4):82-90,
Dec. 2006.

[4] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators”, IEEE Trans.
on Robotics and Automation, 13(3):398-410, June 1997.

[5] O. Egeland, M. Ebdrup, S. Chiaverini, “Sensory control in singular
configurations- application to visual servoing”,IEEE Int. Workshop on
Intelligent Motion Control, pp. 401-405, Istanbul, Turkey, Aug. 1990.

[6] M. Fruchard, P. Morin, C. Samson, “A fremawork for the control
of nonholonomic mobile manipulators”,Int. Journal of Robotics
Research, 25(8), Aug 2006.

[7] J.-T. Laprest́e, Y. Mezouar, “A Hessian approach to visual servoing”,
RSJ/IEEE Int. Conf. on Intelligent Robot and Systems, IROS’04, vol. 1,
pp. 998-1003, Sendai, Japan, Sep. 2004.

[8] E. Malis, ”Improving vision-based control using efficient second-order
minimization techniques”,ICRA’04, pp 1843-1848, New Orleans, Apr.
2004.

[9] E. Marchand, F. Chaumette, A. Rizzo, “Using the task function
approach to avoid robot joint limits and kinematic singularities in
visual servoing”, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS’96, vol. 3, pp. 1083-1090, Osaka, Japan, 1996.

[10] E. Marchand, F. Spindler, F. Chaumette, ”ViSP for visualservoing: a
generic software platform with a wide class of robot controlskills”,
IEEE Robotics and Automation Magazine, 12(4):40-52, Dec. 2005,

[11] H. Michel and P. Rives, “Singularities in the determination of the
situation of a robot effector from the perspective view of three points,”
Tech. Rep. 1850, INRIA Research Report, Feb. 1993.

[12] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with
singularity robustness for robot manipulator control” Trans. ASME
Journal of Dynamic System, Measures and Control, 108:163171,Sep.
1986.

[13] B. Nelson, P. Khosla, “Strategies for increasing the tracking region of
an eye-in-hand system by singularity and joint limits avoidance”, Int.
Journal of Robotics Research, 14(3):255-269, 1995.

[14] J. Ortega, W. Rheinboldt,Iterative Solution of Nonlinear Equations in
Several Variables. SIAM. Philadelphia, 2000.

[15] C. Samson, M. Le Borgne, B. Espiau,Robot Control: The Task
Function Approach, Clarendon Press, Oxford, 1991.

[16] C. Wampler, “Manipulator inverse kinematics solutions based on
vector formulations and damped least squares method”,IEEE Trans.
on Systems, Mans and Cybernetics, 16(1):93-101, Jan. 1986.



-0.1

-0.05

 0

 0.05

 0.1
-0.1 -0.05  0  0.05  0.1

Initial
Reached

Desired

-0.1

-0.05

 0

 0.05

 0.1
-0.1 -0.05  0  0.05  0.1

Initial
Reached

Desired

-0.1

-0.05

 0

 0.05

 0.1
-0.1 -0.05  0  0.05  0.1

Initial
Reached

Desired

-0.1

-0.05

 0

 0.05

 0.1
-0.1 -0.05  0  0.05  0.1

Initial
Reached

Desired

-0.1

-0.05

 0

 0.05

 0.1
-0.1 -0.05  0  0.05  0.1

Initial
Reached

Desired

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

v_x
v_y
v_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

v_x
v_y
v_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

v_x
v_y
v_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

v_x
v_y
v_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

v_x
v_y
v_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

w_x
w_y
w_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

w_x
w_y
w_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

w_x
w_y
w_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

w_x
w_y
w_z

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

w_x
w_y
w_z

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  100  200  300  400  500

P0x
P0y
P1x
P1y
P2x
P2y

Total

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  100  200  300  400  500

P0x
P0y
P1x
P1y
P2x
P2y

Total

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  100  200  300  400  500

P0x
P0y
P1x
P1y
P2x
P2y

Total

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  100  200  300  400  500

P0x
P0y
P1x
P1y
P2x
P2y

Total

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  100  200  300  400  500

P0x
P0y
P1x
P1y
P2x
P2y

Total

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Rank ld

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Rank lc

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Rank lm

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Rank LHac

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

Rank LHic

-10

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300  400  500

tx_e
ty_e
tz_e

-10

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300  400  500

tx_e
ty_e
tz_e

-10

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300  400  500

tx_e
ty_e
tz_e

-14
-12
-10
-8
-6
-4
-2
 0
 2
 4

 0  100  200  300  400  500

tx_e
ty_e
tz_e

-10

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300  400  500

tx_e
ty_e
tz_e

-1.2
-1

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6

 0  100  200  300  400  500

TUx_e
TUy_e
THz_e

(a) control law D
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(b) control law C
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Fig. 2. Experimental results. First line: initial and desired images; second line: translational components of the control law (cm/s); third line: rotational
components (dg/s); fourth line: visual features errors; fifth line: rank of the control matrix; sixth line: translationalerror (in mm); last line: rotational error
(in dg)


