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Abstract— This paper proposes a new way to achieve feature
point tracking using the entropy of the image. Sum of Squared
Differences (SSD) is widely considered in differential trackers
such as the KLT. Here, we consider another metric called
Mutual Information (MI), which is far less sensitive to changes
in the lighting condition and to a wide class of non-linear image
transformation. Since mutual-information is used as an energy
function to be maximized to track each points, a new feature
selection, which is optimal for this metric, is proposed. Results
under various complex conditions are presented. Comparison
with the classical KLT tracker are proposed.

I. I NTRODUCTION

Interest point tracking is a considerable domain of re-
search. Such trackers are used in many application domains
such as object tracking, navigation, augmented reality, mo-
tion estimation, etc. These works especially concern image
sequences where displacements between one frame to an
other are small. Indeed, if the motion is small enough then
windows including each interest point can be tracked by
an energy minimization. The earliest studies on this subject
are those performed by Lucas and Kanade [6] that use
images difference as energy. Depending on the information
of the window, each point cannot be tracked with the same
efficiency. Different detectors have been then proposed to
increase efficiency of the tracker. Many corner detectors,
such as [5] [12], are examples of the latter.

The classical LK approach is based on a relation that
links the luminance of a physical point at timet to its
luminance at a later timet + dt due to a relative motion
of the observer with respect to that scene or to other events
like illumination changes. Due to the complexity of this
relation, aforementioned algorithms are most often based on
the temporal luminance constancy hypothesis. However, it is
well known that this constraint can be easily violated. Con-
sequently, many authors have addressed this issue. The basic
assumption of the luminance constancy, can be extended
by the spatial gradient constancy assumption as proposed
in [15]. Dealing with target tracking, under the assumptionof
a Lambertian scene, illumination variations can be taken into
account [4]. This Lambertian hypothesis may be removed
when modeling the illumination changes as a surface that
evolves over time [13]. This latter work can be seen as related
to [2] where the intensity variation betweendt is expressed as
a mixture of causes. A general framework has been proposed
in [9] were local and constant modifications of the image
intensity are estimated numerically.
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Mutual information, especially studied in medical image
registration, tolerates such changes. Therefore it is another
metric well adapted and more robust for the point tracking
problem. Since its derivative form have been recently studied
in many works [14] [8] [3], its application on interest point
tracking is considerable.

In this paper we present a tracker based on mutual
information with its corresponding adapted windows. The
remainder of this paper is organized as follows. In section
II, an overview of the tracking method is tackled followed
by a description of the proposed tracker. Section IV presents
a description of the selection approach for points of interest.
Finally, results are given in section V comparing our method
and Lucas Kanade algorithm.

II. CLASSICAL SSD TRACKER

Using an energy function, the goal is to select and track
points from imagesI0 to It, i.e. track each corresponding
template (small window around a point). Let us consider only
one of these points and name the corresponding template
T . Classically the displacementp betweenT0 and Tt is
computed using SSD:

p̂ = arg min
p

(SSD(T0, w(Tt,p))) (1)

= arg min
p

∑

x∈T0

[Tt(w(x,p)) − T0(x)]
2 (2)

wherew : R
2 → R

2 is the warp function corresponding to
the displacementp applied tox. Here SSD will be replaced
by mutual information.

III. M UTUAL INFORMATION -BASED TRACKER

A. Mutual information

Rather than comparing intensities, mutual information is
the quantity of information shared between two random
variables. Mutual information of two random variablesX
andY is given by the following equation [11]:

MI(X, Y ) = H(X) + H(Y ) − H(X, Y ). (3)

H(X) is the entropy of the signalX and H(X, Y ) is the
joint entropy of the signalX andY . If mutual information is
maximized, then the two signals are aligned. The advantage
of this function compared to SSD is that no linear relation
is needed between the two signals [16].

B. Tracker

Considering mutual information on images, the problem
to solve, previously described in equation (1) becomes:

p̂ = arg max
p

(MI(T0, w(Tt,p))) (4)



Let us notew(Tt,p) as Tt(p). Mutual information can
also be defined by [11]:

MI (T0, Tt(p)) =
∑

r,t

prt(r, t,p) log

(
prt(r, t,p)

pr(r)pt(t,p)

)
(5)

The joint probabilityprt(r, t,p) is the probability that the
couple (T0(x), Tt(w(x,p)) has a value of(r, t) on the
images. It is classically obtained using the joint histogram
h(r, t) betweenT0 andTt:

prt(r, t,p) =
1

Nx

∑

x

h(r, t,p) (6)

=
1

Nx

∑

x

φ [r − T0(x)] φ [t − Tt(w(x,p))] .

In the usual histogram computation,φ is the Kronecker
function. This definition is inappropriate for our problem
sinceTt is warped, resulting in a no more discreteTt(x,p).
To overcome this difficulty, Collignon [7] introduced partial
volume interpolation usingφ as a simple first order B-spline:
φ(x) = B1(x). This means that, for each couple(r, t) ∈ R

2,
the four histogram entriesh(vr , vt), corresponding to the
four neighbouring integer couples(vr, vt), will be increased.

Typically, imagesT0 andTt have256 possible values for
each pixels. Under this form, mutual information is then
computed on a256 × 256 joint histogram. This definition
supposes a very sharp maximum which is interesting for
accuracy but reduces the domain of convergence. As an
exemple, mutual information has been computed on a corner
point using the previous definition with respect to (wrt)
horizontal and vertical translation. As Fig. 1(a) shows, the
domain of convergence is smaller than 1 pixel.
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Fig. 1. Effects of the histogram’s bin size on mutual information wrt
translations . (a) Selected15×15 window, and mutual information with (b)
Nc = 256, (c) Nc = 64, (d) Nc = 8, (e) Nc = 8 andφ(x) = B3(x).

The solution of this problem is to reduce the number
of histogram’s bins. LetNc be the new number of bins.
Equation (6) has to be changed to fit(T0, Tt) ∈ [0, 255]2 in
the histogram of size[0, Nc]2. A simple division is applied
on both images to obtain(T 0, T t) ∈ [0, Nc]2.

T 0(x) = T0(x)
Nc

256
T t(x) = Tt(x)

Nc

256
. (7)

Figure 1 shows the effects of the bin size on the mutual
information computation wrt translation. It is clear that the
convergence of the tracker will increase using a smallerNc
as long as it is not too small to keep enough information.
Even with a smallNc, mutual information, computed using
partial volume interpolation, is still affected by artefacts. The

use of higher B-spline orders smoothes results and reduce
interpolation effects [10] as depicts Fig. 1(e).

A non linear optimisation is used to find the maximum
of the cost function using a Taylor expansion of the mutual
information. Assuming that the shape of the maximum is
parabolic, the optimisation is performed using a Levenberg-
Marquardt like approach. The displacement parameterpt

from the previous frame is iteratively updated by the fol-
lowing equation:

pt+1 = pt − λ(H + µdiagH)−1G⊤ (8)

This algorithm is applied untilp reaches the convergence
i.e., the diplacement parameter corrensponding to the current
frame. Gradient and Hessian are given by [3]:

G =
∂MI(T0, w(Tt,p))

∂p

=
∑

r,t

∂prt

∂p

(
1 + log

(
prt

pr

))
(9)

H =
∂2MI(T0, w(Tt,p))

∂p2
(10)

=
∑

r,t

∂prt

∂p

⊤ ∂prt

∂p

(
1

prt

−
1

pr

)
. (11)

The derivative of the joint probability is then required. Using
the previous definition in (6) and passing derivative through
the sum yields to:

∂prt

∂p
(r, t) =

1

Nx

∑

x

∂φ

∂p
(r − T0(x)φ(t − Tt(w(x,p))) (12)

The partial derivate ofφ is simply calculated by derivation
decomposition: we know the warp function and its derivative
function, as well as the image gradients, and finally the
derivative B-spline is easily obtained by the following B-
splines property:

∂Bn(x)

∂x
= Bn−1

(
x +

1

2

)
− Bn−1

(
x −

1

2

)
(13)

The warp function considered in this work is so thatp is a 4
dimension parameter taking into account a rotation of angle
α, a scaleλ and a translationT:

w(x,p) = λR(α)x + T (14)

IV. FEATURES SELECTION

Since the following tracking method is not based on SSD,
features optimal for other differential trackers (Harris points
as reported in [12]) are not optimal for the presented tracker.
Nevertheless, the method considered here to derive optimal
features adapted to our feature is similar to the approach
presented in [12]: the best features are the ones that, by con-
struction, are “good” for our tracker. This goodness property
is characterized by a well conditioned Hessian matrixH. Let
us consider that the observed transformation is a translation
so thatH is 2 × 2 matrix. H is well conditioned if both of
its eigenvalues are large ie both are above a thresholdλ.

H is computed slightly the same way as defined in
equation (9) using a translation as the warp function. The
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Fig. 2. Interest point selection. 30 best features using the(a) proposed
selection and (b) Harris points selection with17× 17 windows.

difference, compared to the equations used in tracking, is that
the computation of the joint probability and its derivativeis
preformed using a circular Gaussian centered on the interest
point as a weighting functionπ. The joint probability is then
computed as follows:

prt(r, t,p) =
1

Nx

∑

x

π(x)h(r, t,p) (15)

π(x) =
1

σ
√

2π
e

„

−
(x−xc)⊤(x−xc)

2σ
2

«

where xc is the coordinates vector of the center of the
window and σ2 is the variance of the selected gaussian.
Eigenvalues are simply obtained using a singular value de-
composition (SVD). To determine the thresholdλ, measures
on noised uniform regions are done. As it is shown in Fig. 2,
some of the extracted features are near the features extracted
by a Harris detector. Indeed, regions of interest remains
regions of the image that contain information allowing to
distinguish horizontal and vertical motion. But this selection
is optimal for a mutual Information tracker as experiments
will show.

V. EXPERIMENTAL RESULTS

In this section we will firstly compare the tracker using
Harris features and the optimal proposed features to finally
compare results between the KLT algorithm and the Mutual
Information tracker each one with its own optimal features.
To estimate the accuracy of the trackers, a planar object is
tracked, so that the transformation from one frame to the next
one is an homography. When estimating the homography
from teached points using robust techniques (M-estimation)
the number of outliers is a good way to measure the
efficiency of the tracking process.

A. Selection results

The goal of the first experiment is to show benefits of
the optimal feature selection. To compare the effects of the
selection of the initial features points, the proposed tracker
is used on a sequence (see Fig. 3) using both selection
processes. As shown in Fig. 4, the number of outliers using
the proposed method is evolving slowlier than the one with
Harris corner detector. The estimated homography computed
from the initial to the current frame using the tracked points
is then more accurate (See Fig. 3).

B. Window tracking

To validate the efficiency of our tracker, we compare its
efficiency with the KLT tracker. A first experiment presents
the behaviour of this two trackers toward an exemple of

Fig. 3. Effects of the selection on the proposed tracker (frame 1 and50).
The first row is the proposed selection and second row is Harris selection.
The green rectangle in the final image represents the rectangle from the first
image transformed using the estimated homography.
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Fig. 4. Interest point selection. Evolution of the ratio of outliers on the
same sequence using the proposed method and using Harris points.

point. The interest of mutual information in this kind of
problem is that it is able to deal with illumination changes.
To validate this robustness, we considere a corner point
detected from Harris detector and add illumination changes
to compare both energy functions. As Fig. 5 depicts, SSD is
very sensitive to illumination changes, no convexity is visible
on the cost function. However, mutual information is well
adapted for this kind of changes. Using third order B-splines,
the cost function and its gradients (computed using equation
(9)) do not show any artefacts (See Fig. 5 and 6).

This exemple is very representative of the efficiency of
the mutual information tracker compared to KLT toward
illumination changes.
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Fig. 5. Cost functions wrt translation without (first row) and with
(second and third row) illumination changes. First column:templates, second
column: sum of squared differences and third column: mutualinformation.



Fig. 7. Tracking using mutual information on the same image sequence, frame1, 30 and70. Reds dots are the tracked points, red lines represent current
velocity, green dots are outliers and the green rectangle represents the rectangle from the first image transformed using the estimated homography.
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Fig. 6. Computed gradient wrt translations with illumination changes using
the same templates as in Fig. 5. (a) Gradient wrt horizontal translationtx,
(b) gradient wrt vertival translationty

C. Tracker on image sequences

The last experiment applies both tracking methods on a
sequence which contains illumination changes, specularity
and saturation. The present KLT tracker uses the implemen-
tation of Stan Birchfield [1] (with and without illumination
insensitivity). Figure 8 shows the number of outliers with
respect to the sequence’s frames. During all the sequence,
indoor artificial illumination conditions cause oscillation in
global illumination intensity. This variations are sufficient to
cause the failure of the original KLT tracker while MI and
illumination insensitive KLT are still efficient.

From the 50th to the last frame, the sequence is then af-
fected by specularity and then by saturation. Figure 7 shows
some frames of the sequence. Mutual information tracker is
the first method to have outliers. Indeed, convergence domain
of mutual information is smaller than the one of SSD in
nominal conditions. Then, when a displacement is slightly
large without illumination changes, the proposed tracker
diverges whereas KLT keeps converging. However, when
the sequences reaches illumination variations, the proposed
tracker is more robust and the number of outliers of the KLT
is quickly higher than the one of the proposed tracker.

VI. CONCLUSION

In this paper we presented a new feature point tracking
method where features are selected optimaly according to
the specification of the tracker that uses mutual information,
instead of generally used SSD. MI allows to cope with
illumination changes and other non-linear image transfor-
mations. Since the problem statement is similar to the KLT
and that different features are used, an hybrid tracker can be
implemented to take advantages of both solutions.
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