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Continuity
of Varying-Feature-Set Control Laws

Nicolas Mansard, Anthony Remazeilles, Frangois Chaumette

Abstract—Classical sensor-based control laws are based onalso be added to enforce locally the system constraint$y suc
the regulation of a set of features to a desired reference value. gs joint limits [23], occlusion [17] or obstacle avoidan@2].
In this paper, we focus on the study of control laws whose | these papers, the properties of the obtained control

feature set varies during the servo. In that case, we first h tudied b basis. | ticular b
show that the classical control laws that use an iterative least- SC'€ME are studied on a case-by-case basis, In particular by

square minimization are discontinuous. We then show that these USiNg some hypqtheses specific_to the studied system. The
discontinuities are due to the pseudo-inverse operator, which is results are thus difficult to generalize. In the following thes

not continuous at matrix rank change. To solve this problem, propose to study such control laws as a generic control sehem
we propose a new inversion operator. This operator is equal t0 .gjjed varying-feature-set control scheme. In particulee

the classical pseudo-inverse operator in the continuous casesica ill prove that the control laws computed directly from the
ensures the continuity everywhere. This operator is then used to will prov W pu ! y

build a new control law. This general control scheme is applied vVarying feature set are not continuous in the general case.

to visual servoing, in order to ensure the continuity of the contré  From this observation, a solution that ensures the comyinui

law when some visual features leave the camera field of view. Thewill be proposed.

experiments prove the interest and the validity of our approach.  gome classical control laws are firstly recalled and unified

in Section Il. Based on this unification, the varying-featur

Index Terms—Sensor-based control - velocity control - control set control scheme is defined in Section Ill. We then prove

continuity - linear algebra - least-square inverse - visual senvoing j Section IV that the classical control laws coming from

- visibility constraint this definition are unable to ensure the continuity everyehe

To remove these discontinuities, a new inverse operator is

proposed in Section V. Some visual-servoing experiments

finally presented in Section VI, as an experimental comparis

generic task function may be defined by a set of featureé the classical control laws and the proposed solution.

A computed from the sensor output that should be regulated

to a desired value. Various control laws have been propased t [l. STATE OF THEART

regulate such tasks to zero. For example, a generic approacth this section, we quickly recall some classical controlda

to build stable control laws is proposed in [25]. Usuallye thwhose feature set is varying during the servo. An effort is

number and the type of features in the set are constant. Thade here to homogenize the different notations used by each
continuity of the control law and the stability of the systam author.

then generally obtained outside some singularities thet ka
be avoided [21]. A. Classical control law

In this paper, we focus on task-based control schemes WhosEet us consider an error functionsuch that:
input set is not constant. Some works have already been '
proposed that consider servo schemes based on such a varying é=1Jq 1)
feature set. In [12], the features are removed from the Senwmvhereq is the system configuration anHl = de/dq is the
they can not be computed anymore due tq Sensor'ViSibi”jyacobian ofe. The Jacobiad is a k x n-matrix, wheren is
lost. Slmllarly, the features detepted as outliers are xemo th(? number of degrees of freedom (DOF) of the systes:(
from the set in [8]. On the opposite, a feature can be removed q) andk is the size of the error functiork (= dim e). The

when it is close enough from its desired value, in order 19k of J is denotedm. In (1), it is implicitly supposed that

give more freedom to the robotic system [6], [24]. In [3]?(q) is derivable everywhere and does not depend on the time

the system is controlled from learning-based joint CORtrQ. ariable but through the configuratien A classical controller

and half-plane constraints are temporarily added to eefor@ then:

situation-dependent constraints. Some specific featuags c 4= e @)

I. INTRODUCTION

Manuscript submitted October 15, 2007; revised Jully, 1508@nd where \ is a positive parameter used as a gain to tune the

accepted January, 29, 2009, under reference number 07-401. convergence velocityA™ stands for the pseudo inverse (or
At the time of writting, the authors were all with the INRIA Regs,

Campus de Beaulieu - 35 042 Rennes cedex, Fraricelgs.mansard@laas.fr, |?aSt'Square inverse) of matri [2], and A is an approxima-
francois.chaumette @irisa.fr,anthony.remazeilles @igowan) tion of A.
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Control law (2) ensures an exponential decrease of eaghis &, = He + He. In [8], it is assumed thaH is varying
component ofe until regulatione = 0 if JJ+ = I,, (since slowly. The second term of the derivative is thus neglelcted
in that caseé = —A\JJte = —)\e). The global asymptotic and the control law is computed by analogy with (2):
stability can be obtained as soon.handJ are full-rank {.e. . +
k=m) andJJ+ >0 [25]. In all other cased.e.k > m), only 4= —A(HI) He @)
the local asymptotic stability can generally be demonsttat When the confidence in a feature decreases, it is smoothly
This classical control scheme has been widely used for sengemoved from the control law by decreasing the value of the
based control [11], [26], [13], [19], [16]. corresponding vector componehte;. Simultaneously, it is

In the following, all the computations will be realized ugin also smoothly removed from the feature set by nullifying the
the hypothesis thal is perfectly known. We will show in the corresponding line of the matriidJ. The weighting matrix
experiments that the obtained control scheme is robustigo tH is thus used to smoothly remove or add a feature to the

hypothesis. task. It will be proved in Section IV-C3 that this is enough to
ensure the control law continuity as long @J)*H is full
B. Evidence of discontinuities rank.

We now underline the discontinuities that can occur wh%n 2) Continuous wsyal servoing despite changes of visjbilit
o . . n [12], the authors directly address the problem of the raint
modifying the feature set. Let us consider a tagkcontrolling

11 f e, DOF o e syste. At mé e ncrease the tasky 7 1LY Wher e Tumberof eaures v, 1 e
by adding a termes, controlling ms DOF. The task is now

. . T . When a feature leaves the camera field of view (fov), it has
o . If the feature set is abruptly modified, is it possible t@o be removed from the feature set, which thereof causes
keep the control law continuity? I, < n, then, obviously, the con'Frol _Iaw to be discontinuous. As previously, the use
the DOF not controlled by, and that are now controlled by ©f a weighting matrix enables to.takel care of these features
e, are subject to a discontinuity (passing from a zero contraving the fov. The error vector is writtas, = We where
input to a non-zero control input). i1, = n, the problem W = Diag(wi,...,w;) is the weighting matrix used to

is the same, whatever the valueof,. Before timet, all the Smoothly remove a feature that is going to be non visible.
DOF of the system are controlled only ley. After time ¢, The weightw; is null when the feature is out of the fovZ and

a trade-off is realized by the pseudo inverse to fulfill at th§ €qual tol when the feature is at the center of the image
same timee; and ez, which produces a discontinuity in theffame.

general case. It is possible to show [18] that the control law used in [12]
For example, when realizing a visual servoing based éheduivalentto: .
a multi-point target, the control law is different when con- q=—-\HJ) He (4)

siderjng a four-point .target or a fiye—point target. .There_fo whereH = W is a diagonal matrix whose coefficients vary
passing from four points to five points causes a disconyinuit,niin,ously between and 1. This control law is identical to
(an example of such a discontinuity is given in Section VI).the one obtained in [8].

In the following, we will present several works where the 3) Region reaching controlin [6] the main purpose is to

classical control scheme (2) has been modified to take "Hﬂng the end-effector of the robot to a region instead of a

account tf|1|e var)r/]ing dimhensioln .Of thehtaik[S], EZ]’ [24], gaint. The goal region is defined as the intersection of a set
,[6]' we wi emphasize the so gt|or_13 t a,t ave been proposgfl simple regions, each one being analytically defined by an
in these articles to prevent this discontinuity to happerd ainequality'

unify these works in an unique mathematical formulatione Th
common idea is to smooth the discontinuity that happens at
feature activation and inactivation by introducing at teéva- where X is the position of the end effector in the Cartesian
tion border a buffer area where the feature is partiallyvacti space. The control aims at reducing the value of the leftqfart
This buffer area is defined by introducing a smooth activatieach inequality until they are all negative. When an inegyali

Vi=1.k e(X)<0 (5)

function H, as explained in the following paragraphs. is respected, the corresponding part of the control is stdpp
If the control law was developed to ensuse = 0, the
C. Some varying-feature-set control laws robot would be controlled toward the intersection of all the

. . . contours of the regions (5). In order to bring the robotic
1) Robust visual servoingtn [8], the problem of outliers stem inside this region, the task vector is defined to be

. . . - S
in the input set is addressed by associating to each featureya_ H(%eﬁ, N %ekg), whereH is a diagonal matrix whose

. . . . Cy —
weight computed from the confidence that this feature is not . . .
. o components are null if the corresponding regions have been
an outlier. The proposed error function ég = He, where . . ) )
o : reached, and equal tb otherwise. Using these notations, it
e = (s — s*) is the error between current and desired featuré
values, andl = Dlag(hl, ) hk‘) IS a Welghtlng matrix used INeglectingH is a classical approximation that is also found in [12], [6],

to remove the outliers from the feature set. The weightare [24]. In practice, wherH ande decrease in the same directidre(when the

computed from a robust estimation algorithm. They vary frogfadient of bothe anddiag(H) are in the same half-space, which is typically
h h b . . . full fid h the case when the minimum ef is inside the area defined d = 0, as

1 when the robust estimation gives full confidencedtwhen done in [6], Section 1I-C3 or in [24], Section II-C4) this apgimation does

the feature is doubtlessly an outlier. The derivative oftdek not disturb the stability of the control.
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can be shown [18] that the control law proposed in [6] is However, the pseudo inverse operator is not continuous
equivalent to: at rank change. This means that these control laws are not
q= —A(HJ)THe (6) continuous if the number of features decrease below a npertai

L . .. level (which is not considered in [8], [12], [24]). In [6], ith
The form is similar to the two previous control laws, but W'thcase can haopen. The continuity of the control law is then
the transpos¢HJ) " instead of the pseudo inverselJ)™. ppen. y

4) Qualitative servoing:The main objective of the quali- obtained by using the transpose operator instead of thelpseu

. . : inver rator (the tran is alw ntin en
tative servo control proposed in [24] is to enlarge the conve erse operator (the transpose is always continuous, ave

- . matrix-rank change). However, using the transpose can lead
gence area, by explicitly requiring that the ereoconverges

toward a confident interval, instead of a particular desiretg avery non-opt.|mal contrql, and the pseudo inverse isnofte
a much more efficient solution [11].

value as it is usually performed. In this sense, the system'i ; : . .
. o n the following sections, the generic control law (8) will
thus required to perform qualitative convergence . .
) : . - _ be proved to be continuous as long as the number of active
The error functiore, is defined byeq, = H(e—¢€), wheree : - . . , .
. . ) . features is sufficient (in a sense that will be defined précise
is the limit of the convergence area: when a componetisf . . . 2
. . . the following). It will also be shown that strong discontities
below its corresponding threshodd the associated part of the . . -
can appear when the number of active features is not sufficien

control is inactivated. The activation matrH is a diagonal . : : ) )
. - : Based on this observation, we will build a new matrix oparato
matrix whose coefficients vary continuously betwéeto 1 as . : : ) .
that is continuous in all cases, and acts like the pseudoseve

the system enters or leaves the convergence area. . o R )
- , outside of its discontinuities. From this new operator, atam
The control law that regulates the erginto the confidence . - .
. ; . law with a similar form will be proposed and proved to be
interval proposed in [24] is: ; ;
continuous in all cases.

q=—-\NHJ)"H(e — &) @)
[1l. DEFINITIONS
In this section, we define all the notions that are required
for the following study. We firstly propose a global definitio
to refer to the tasks whose form is similar to those presented

in the previous section. Then we propose formal definitions

Several control laws that deal with varying feature set hayg characterize some classical notions of the redundaney of
been presented in the previous subsections. All have begatem with respect to a given task.

written using an equivalent framework, with similar nobais,
as a matter of comparison. A common control law equatio Varying-feature-set task
can be noticed: '

Once more, we recognize the same form of the previous
control laws.

D. Synthesis

Definition 3.1 (Varying-feature-set tasklet e be any fea-
4 = —\(HJ)"He (8) ture vector which is called task in the following. Its Jacobi
supposed to be of constant rank. The tagkis a varying-

where ® is a matrix operator (the pseudo inverse or th'fé o
eature-set taskased ore if it respects:

transpose).
The control law is a composition of three parts: the matrix eq = He 9)

HJ, the matrix operatoﬁ, and the vectoHe. The diagonal . . . . .

activation matrixH is used to smoothly remove or add feature¥N€reH is a diagonal matrix whose coefficients continuously

of e and also to nullify the corresponding lines of the Jacobigff™y Within the interval0, 1].
matrix. When® is the pseudo inverse, this second point i emark 3.1: The four control schemes (3), (4), (6) and (7)

fundamental. Indeed, if the Jacobian line is not nullifie. {f '€c@lled in the previous section are based on a varyingifeat

q = —M\JTHe is used), then the feature is taken into accoufift task.

into the least-square minimization, and the control laestitio

minimize the motion of the inactivated feature, by imposing- Input redundancy and decoupling

the velocityé; = 0 (which is a control in itself, and the result Definition 3.2 (Full-rank matrix): The matrixA is full row

is very different to not constraip; at all). rank (FRR)iff the number of its rows is equal to its rank. It is
To ensure the continuity of the control law, the simplestll-column rank (FCR)ff the number of its columns is equal

solution is to ensure the continuity of each of the compamento its rank.

In particular, it is not sufficient to ensure the continuitytdJ Definition 3.3 (Non-redundant input)_et e be any task.

andHe if the matrix operatof® is not continuous. Thanks to The taske is said to be non redundant in input (or to have a

a correct definition oH, both the task vector and the Jacobianon-redundant input) if its Jacobian matrix is FRR.

matrix are continuous at feature activation or inactivati®o Definition 3.4 (Redundant input)On the opposite, a task

ensure the control law continuity, it is then enough to easuhas a redundant input if its Jacobian is not FRR.

the continuity of the matrix operatdf. The pseudo inverse Remark 3.2: If the matrix J is not FRR, it is possible to

operator is continuous when the rank of the matrix is coristaseparate its lines into a generator $gtand a redundant sdf

It is very important to notice that this is the basic hypotbesthat can be defined as a linear combinatiordgf J; = xJo.

in the three control laws presented above. This is a sufficiefhe couple(Jy, x) is calledfactorization Its formal definition

condition to ensure the continuity of the control law. is the following.
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Definition 3.5 (Matrix factorization):Let J be a non-FRR
matrix. Let P be a permutation matrix]lo a FRR matrix and
x a matrix such that:

then the se(P,Jo, x) is calledfactorizationof the matrixJ
by Jo. Jo is the generatormatrix of J, and x is the multi-

Jo

Jo (10)

i-v|

R(J1") € N(Jg). Since R(J1 ")
(13a).

Reciprocally, if (13a) is true, the®(J; ") = R(J;T) C
N(J3). SinceR(J2") = R(J2") = N(J2)*, then R(J])
is orthogonal toR(J3 ). The dual equation is obtained by the
same way. [

R(J; ), this proves

Remark 3.4: If all the features ofe are decoupled, then it
is easy to show that has a non-redundant input. Moreover,

permutationP will be often omitted. Thereby, a factorizationjnpyt.

of J is denoted(Jo, x) (P is easily deduced frond,Jo and

X)-
Remark 3.3: If some columns of the multipliex are null,
the factorization can be developed:

Ja
JB
xBJB

J= (11)

Ja

B

and x = [0 xg]. Features corresponding

to Jg and ygJg are the redundant part of the input vector.
J A corresponds to the non-redundant part, because none of the
features can be defined as a linear combination of the feature

associated td 5 . On the opposite, if the multipliey does not
have any null column, then the factorization is said to bé/ful
redundant.

Definition 3.6 (Full-redundant input)The task e has a
full-redundant input if all partitions of its Jacobiah of the
form (11) result inJa = 0.

Corollary 3.1 (Characterization of a full-redundant input
The taske has a full-redundant inpuff its JacobianJ can

be writtenJ = P

Jo
. xJo
Jo is FRR and none o
null.

, whereP is a permutation matrix,
the columns of the multipligris

Proof: The proof is given is [18]. |
Definition 3.7 (Decoupled input feature)et e be a fea-
ture set. The feature, is distinguished from the other
features denoted;. Let J; andJ, be the Jacobians af;
ande, respectively. The feature, is said decoupled from the
other features; of e if:

Intuitively, the behavior of the control law when progres-
sively inactivating a feature will differ if a redundant tege,

a non-redundant or a decoupled one is considered. The four
characterizations of the features that have been defineer upp
(redundant, non redundant, full redundant and decouplea) c
be enlarged to the varying-feature-set tasks.

Definition 3.8 (Charasteristics of a varying-feature-sak):
Let eq be a varying feature set. The corresponding active
taskea is constructed by considering only the input features
whose weight inH is not null. Furthermore:

The varying-feature-set tasky has a non-redundant

active input if the associate active tagly has non-

redundant input.

The varying-feature-set task, has a redundant active

input if the associate active tasl has a redundant input.

o The varying-feature-set task, has a full-redundant
active input if the associate active taslk has a full-
redundant input.

o An active featuree, is decoupled from the other active

features ifey is decoupled from the other features be-

longing to the associate active task .

Using these definitions, we will now study the control
laws based on varying feature set (such as those recalled in
Section Il) in the general case.

IV. VARYING-FEATURE-SET CONTROL SCHEME

This section considers the continuity of different control
laws derived from Definition 3.1, and presented in Sec-

tion IV-A. It will be shown in Sections IV-B to IV-D that

when the Jacobian of the task is not fully redundant, none of

R(J]) L R(J3) (12)

where R(A) is the range of matribA.

these control laws is continuous.

Corollary 3.2: Two feature sets; ande, are decoupled A. Control laws based on a varying-feature-set task

iff:
J2Ji =0

and
JJi =0

(13b)

Let eq be a task characterized by a varying feature set such

(132) thate, = He. Its derivative is:

éq = Hé + He (15)

Proof: A well-known result concerning the kernel and the

range of a matrixA is:
R(AT)=N(A)* (14)

where N(A) is the kernel of A, and E+ is the orthogo-
nal complementary of subspade. Using (12), we obtain

2Denoted with bold font are the vectomsg.e; and matricese.g.J, and
with non-bold font the scalar variables.g. es.

As seen above, it is usually considered tkhivaries slowly.
With the approximationH = 0, we obtain the simple ex-

pressionJ., = HJ whereJ and J., are respectively the

Jacobians ot andeg.

Knowing J.,, it is possible to apply directly the classical
control scheme (2), obtaining thus:

a=-

M eq = —A(HI) He (16)
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Several choices can be considered Q. Apart from the 1) Non-redundant input signal:
classical approximation aof (see [15] for a review), we will ~ Theorem 4.1:Let e, be a varying-feature-set task whose
focus on five possible choices concerniHy in order to try active input is non redundant. The two control laws (17) and

to get the global continuity of the control law: (18) are equal.
R R Proof: Let us first introduce another inverse of matax
a= -X( J)+He (17) the generalized inverse [2]. It has been introduced in tinea
— —)\(HJ)+He (18) feedback control in [27], and vwdely used since [4], [1]. A
; very good analysis of such an inverse can be found in [10].
—\(HJ) He (19) LetW be a full-rank square matrix. The weighted generalized
q= —/\(AJ)JFHe (20) ?nvers.e matrix ofA weighted on the left by the weightev
PA is defined to be [10]:
g= -\(HJ) He (21)
AVH# — (WA)TW (22)
H is an approximation of H defined as:H = 1o yil.rank) weight matrixH ; is defined fromH by:
1 ifh; #0 . I
Diag( . ) and AT is the damped least .
0 otherwise H. — Di h; if hy #0 23
square inverse ofA [20], [9] (the interest of this inverse = lag< 1 otherwise) (23)

operator will be given in Section IV-D). It is trivial to olita . . o .
(18), (19) and (20) from the general relation (16). SincgSlng this definition, we can write:
H+H = H, Eg. (17) and (21) are respectively obtained by (HJ)™H = (HfﬁJ)+Hfﬁ — (ﬁJ)Hf#ﬁ (24)
approximatingJd, by (}AIJ)JFHJr and (HJ)+H+. Even if

these two derivations do not seem to be intuitive, their ﬁngy a simple feature reordering, we suppose that the Jacobian

can be written:

formulations correspond to easily understandable sdnosafi
e : ; H.Jy
e.g. a full approximation and a partial one. In particular, HJ = 0 (25)
the use of bothH and H in (20) and (21) is explained in ) ) o )
Section IV-E. whereJ, is FRR since the active input ef; is non redundant.

The following sections study the behavior of these differe®n€ ©f the major results oL[lOE] Is to‘;rgfveAthat the weighted
control laws, and especially their continuity at Jacohiank |nverse+(22) Is Invariant to the choice W | s FRR. Since

change. ‘8‘ = [AT0], this result can easily be generalized to the

case (25). Thus, sincH;J; is FRR {J; is FRR andH; is
invertible), it is possible to write using (24):

+H = (ADNEAH = (HI)TH
This first control law corresponds to the naive way to (HJ)"H = (HI)"7H = (HI)"H (26)
consider a task with a varying feature set: a componentngettiThis last result proves that if the active input featuresrame
inside the activation area is directly considered withie thredundant, the two control laws (17) and (18) are equal.df th
minimization scheme, without any progressive activation. active input is not redundant, the weightsKfare not taken
course, this kind of control law is not continuous [12], amto account. The discontinuities are thus the same thamwhe
explained in Section 1I-B. The importance of the discoritinu using the simple matris. |
depends on the valug, and also on the way the addition of 2) Redundant input signal:The previous result can be
the lineJ, modifies the singular values of the Jacobian. easily extended to the case of a redundant input as long as
the input is not fully redundant.
Theorem 4.2 (Weighted least square invariance):
C. No approximation (18) Let J be any matrix, andW be a diagonal and invertible

To solve the discontinuity of (17), a logical solution is toW’alght matrix. LetJ be a factorization such that:

B. Full approximation (17)

use an activation matriH. When a feature gets inside the Jo

activation area, it is thus progressively (or smoothly) extld J=P J1 27)
within the control scheme, until full activation. The caitr X1J1

law (18) can be found in [12], [8], [24], as presented 'there(Jo,Jl) is FRR. The same factorization can also be ap-

Sectpn . _ _ _ _ plied to the weighting matri?v = P Diag(Wo, W1, W3).
This section shows that this control law is continuous as Then the non-redundant pa, of J is invariant to the

long as enough features are activated so that the inputyj§ighis W when computing the weighted general inverse
fully redundant. It is also shown that the smoothness brougjw.
by H is not effective when the number of active features is W# _ (W#

-~ . L J =J (28)
not sufficient. More precisely, it will be shown that control .
laws (18) and (17) are surprisingly equivalent when the taskhere W = P Diag(I, W1, W).
is non redundant. Three cases are separately studied,avhethThis result can be proved by using a full-rank decompo-
the task is not redundant, redundant or fully redundant.  sition of the Jacobiad. The demonstration is technical and
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fastidious, and is thus not given here. The interested rdade This operator can be used instead of the pseudo inversion

referred to [18] for additional details. in the classical control laws (2). As proposed in [7], the
Using the Theorem 4.2, the following corollary is immedidamped least square inverse reduces the effect of the tontro
ate. singularities. On the opposite, it also reduces the pracist

Corollary 4.1: Let e, be a varying-feature-set task whosg¢he control. In particular, when the damped least squares ar
active input is redundant but not fully redundant. Then thie-n used with (2), the effect is not the nice decoupled decrease
zero weightsh; corresponding to the non-redundant features= —\e sinceJJ' is not the identity. The higher the value
are not taken into account in the control law (18), that is tf 7, the better the smoothing, but the more the reference
say apartially active featureh # 0 is taken into account as abehaviour will be disturbed.
fully active featureh = 1. In the control law (19), the damping factor acts as a

Let us consider a tasky whose first feature is non re-smoothing of the discontinuity. The smoothing is effectate
h } Using rank changes (when a singular value passes from non zero
0 H;, | to zero), that is to say at activation or inactivation of a non

dundant. The activation matrix B = L
ull: redundant feature. In theory, the introduction of the damgpi

Corollary 4.1, we can write ifs is not n

1 o 1 o factor thus solves the problem of the discontinuity encered
+ _ . . . . . .
(HI)™H = ( J) in (18). However this is not the case in practice. Practcall
0 H; 0 H; L .
1 o 1 o (29) the damping is only effective around the threshgld
h—0 |: 0 H1 ]J) |: 0 H1 ]

Let us consider the activation of a non-redundant feature
from H),_o = [ to H;—; = I. The matrix(HJ)'H

0
0 I

is numerically equal tqHyJ) H, when the corresponding

(H))™H = ({ 8 Ig }J)ﬂL { 8 Ig } (30) singular value is very small compared tg typically in

! ! [0, 1e~3n)]. It is numerically equal tqH,J) H, = J* when

The matrix (HJ)*H is not continuous wher, — 0. The the singular value is very large compared #p typically
control law is thus not continuous when some features tHBt [le™*7,1]. In practice, the matriXHJ)'H passes from

are non redundant are inactivated. (HoJ)'H, to J* in the very small intervalle?y, 1e®y].

3) Full-redundant input signal:On the opposite, it is easy FOr example, ify = 1e~° as classically done, the smoothing
to show that (18) is continuous when the activated input & effective into the intervalle=?,1e~?], that is to say on
fully redundant. In this case, the activation or inactivatof an interval whose length is onlg0~*. On the opposite,
any feature will not modify the rank oflJ. The pseudo- when removing a redundant feature, the variatioldf ) ' H
inverse operator is continuous when the rank of the matfik smooth into[0, 1], whose length isl. The smoothing is
is constant [2]. SincdIJ is continuous, this proves that theeffective on a large interval. The comparison between the
control law is continuous. smoothness is shown on Fig. 1. As shown by Fig. 1-(a), the

In conclusion, the behavior of the system controlled by (1§Pntrol law (19) is smooth in theory. However, as shown by
is continuous when enough features are activated so that kg 1-(b), both control laws (18) and (19) are equivalent in
input is fully redundant, and discontinuous when the inp@¥actice, and discontinuous.
is only redundant or non redundant. The discontinuity of the The direct consequence is that the damping parameter
classical solution (18) is due to to the discontinuity of thBas to be set very high which in turn reduces significally the

pseudo-inverse operator when the rank of the Jacobianxmafigrformances of the control. The damped least squares are
changes [2]. thus not a relevant solution to smooth the irregularitieshef

varying feature set.

However, if h is null:

D. Using the damped least square inverse (19)

To compensate the discontinuities of the pseudo-inverSe Partial approximations (20) and (21)
operator, it has been proposed to use the damped-leasesquawe have shown in the previous sections that the classical
inverse [20], [14], [9]. This operator is defined by: control laws (17) and (18) are unable to ensure the conyinuit
AT vsiuT (31) of the c.ontrollla\(v. when the input is not fu.IIy redundgqt.
These discontinuities can be understood naively by writing
where (U, 2, V) is the singular-value decomposition (SvDjhat (HJ)*H = J*H*H = J* (if H is invertible andJ is
of A and EWT is a diagona| matrix whose CoefﬁcierﬁgT are FRR) The use oH both inside and outside the pseudO'inVErse
computed from the singular values by: operator induces intuitively a simplification that canc#éis
o smoothing. To prevent this simplification, a logical proitios
Z’T = — ! 5 (32) is to use the true activation matrikl only once and its
o7+ approximationH elsewhere. Two possibilities arise then: we
Theoretically, the introduction aof does not bring any new can use the approximatioH inside the pseudo inverse and
parameter to tune, since it only replaces a threshold usesk the exact matriil outside of the inverse, in factor of the
when computing the pseudo inverse to bound the singuléaske (this solution corresponds to (20)) ; or we can Ufe
value inversion. We thus deno#”’ = At in the following. inside the inverse, anH outside (this gives then (21)).
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- Deco‘upled (18) ‘ ‘ ‘ ‘ can be written:
E 35 Eiﬁﬂﬁﬂfiﬁﬁ% 1 JF hJt X1, X2 it A
i«g ol Redundant (19) (ﬁJ)+H _ 1 2} + [ 12 12} ' #0
Z 3} o] if h=0
‘§ 25 (35)
2F — ‘ ‘ ] The discontinuity clearly appears in this formulation ginc
107" 10° 10" 107 10° N
(a EbngSéale QTO(<HJ)+H) = [Jir O} + [Xiz 0} (36)
which is different from|J] 0| whenh = 0 and if X,, is
§3-5’ N not null. To prove the equivalence between decoupling and
T sl 1 continuity, we thus just have to prove th&t , is null iff eq
g el -- Bzﬁﬁﬁg:zﬂ ggg | is decoupled. Let us suppose tBaf, = 0, thatis to say ™ =
g Redundant (18) [J733]. The definition of the pseudo inverse givésJJ* =
N T J*. By developing the value af in this equality, we obtain
0 02 04 06 B8 b 12416 s J3J2J] = 0and finallyJ2J5 J2J1 = J2J7 = 0. We obtain
(b) Linear scale similarly J;J3 = 0. Using Corollary 3.2, this proves thag

. . n and e, are decoupled. Reciprocally, i is decoupled, then
oo e 1) b — (1} 31+ 01 12) {35 [2). Corollary 3.2 finaly proves
when adding a redundant feature. The graph is shown twidh,leg X-scale thatJ* = [JTJJ] and thusX,, = 0. |
(a), and with linear X-scale (b). Parametgis set tole™°. In fact, (20) manages to smooth the part of the control

corresponding to the minimization ef. However, it is unable
to smooth the parK}, of the control that corresponds to the
Control law (20) smoothly nullifies the feature values thq{coup”ng betweere, and the other features. Whenis not
are getting close to the activation frontier, but abrupgijnoves |, the space corresponding to the coupling maki, is
the corresponding part of the Jacobian matrix. The Jacobigged as a trade-off to realize both and e,. As soon ash
matrix is thus not continuous, but it is hoped to obtain gally becomes nullX1, becomes instantaneously available
continuous control law by correcting the discontinuitieBhw for e, alone, which results in a strong discontinuity in the
smoothed input features. The following theorem proves thgbntrol law.
the continuity is obtained only in the very particular case o
a perfect decoupling. Finally, control law (21) may not be realizable due to
Theorem 4.3:Let eq be a varying-feature-set task baseill conditioning. Indeed, when some components Kf are
on e. Control law (20) is continuous at feature activation ogsmall, the matrixiIJ can be very ill conditioned. Its pseudo
inactivationiff the activated features are decoupled from thaverse(HJ)" is thus very large. In (18), the large coefficients
other ones. of (HJ)" are diminished when multiplied witfH. If the
Proof: Let us first consider a taskwhere all the features approximationH is used instead, no correction is brought
but one are fully activated. This last feature is denated_et since the small coefficients &l are approximated by. The

J2 be its Jacobian. The Jacobian of the taskan then be matrix coefficients of(HJ)"H can thus be very large, and
written J = jl , whereJ, is single line. Since all the the result on the control is unpredictable.
features corresponding th are fully activated, the activation

matrix can be written: F. Conclusion

In this section, several control laws have been proposed,
based on the classical methods in the state of the art. The
continuity of these control laws has been investigated when
the number of visual features varies, and the general char-
The pseudo inverse of can be decomposed usingdavide acteristics observed are summarized on Table 1. None of
and conquerapproach: these control laws is continuous when the task is not fully
redundantj.e. when at least one feature can not be expressed
as a combination of the others. Indeed, when this feature is
activated or inactivated, the system earns or looses a elegre
of freedom. In this situation, the nice properties of couitiyn
where[J] J3] is the least-square minimization of each Jac@r stability demonstrated in [25] can not be obtained diyect
bian J; and J, taken separately, ank,, is the part of the anymore.
least squares corresponding to the coupling between the two
Jacobians. To simplify the notations in the following,, is V. BUILDING A NEW INVERSE OPERATOR

written X5 = {Xiz X%z]’ whereX3, is simple column. Since the classical control schemes based on the pseudo-
Using this decomposition and (33), the inverse used in (2ibiverse operator are not able to ensure the continuity, a

H:[(I) H (33)

J*—{Jlr—[ﬁﬁhx (34)
- J2 - 1 2 12
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NON REDUNDANT CASE REDUNDANT CASE

CONTROL Non Full

LAW Decoupled Redundant vy
redundant redundant
a7 (AJ)+IA{ discontinuous| discontinuous| discontinuous | discontinuous
(18) (HJ)*H discontinuous| discontinuous| discontinuous | continuous
(29) (HJ)TH discontinuous| discontinuous| discontinuous | continuous
(20) (AJ)JFH discontinuous| continuous discontinuous | discontinuous

(1) | (HJ)'H ill conditioned
TABLE |

SUMMARY OF THE CONTROL LAW BEHAVIORS

control law based on a new inversion operator is proposediere3(k) = B(1..k) = {P| P C 1..k; are all the subsets
in this section. We first propose a formal specification of théomposed of the: first integers, andl» = HJ whereh; is
continuity properties that this operator should fulfill tosere  equal tol if i € P, and to0 otherwise {e. J» is the Jacobian
the control-law continuity. We propose then an implemeaiat matrix J whose only activated lines are those7y.

that respects the_se specifications, aqd we use it tp buildva NEemark 5.1: J1 ), then the
control law that is proved to be continuous. We finally prove Ja
that the obtained control law has similar properties of locgefinition of the coupling matrixX,, corresponds to the

stability than the classical pseudo-inverse-based cblatnes.  Notation given in (34).
Using this definition, it is now easy to build an inverk&™
that respects the specification given in Definition 5.1.
Definition 5.3 (Continuous inverst®): Let J be a ma-
In a first time, let us properly define the properties of th@iy of size (k x n) andH the corresponding activation matrix
operator we are looking for. This operator should be egeival \hose componentgh;,) belong to the intervald, 1]. The
to the classical pseudo-inverse operator when all the fegitucontinuous inverse szgé't'ﬁ,ated byH is defined by:
are fully active or inactiveife. whenVi = 1..k, h; € {0,1}).
The operator should also maintain the continuity whegoes JOH — Z ( H th) Xp
smoothly from0 to 1. This is formalized through the following PeP(k) i€P
definition:

If J has two lines { =

A. Formal definition

(40)

o , ) , Remark 5.2: The continuous inverse of a double-line Jaco-
Definition 5.1 (Continuous inverse)l:et A be a matrix of bianJ — Jq tivated by is:
size (k x n) and H be a diagonal activation matrix of size lanJ = Jo |’ activated byl 1s.

(k x k), whose components belong @, 1]. The continuous
inverseA tH of a matrix A subject to an activatioH respects
the two following properties:

o if Vi=1.k, h;e{0,1}, then:
A — (HA)" = (HA)™H

JoH  _ hlh;QX.{l)z} + th{l} + hQX{Z}

= [hlJ]L th;r] + h1hoXq2 ()

This last equation matches exactly the preliminary goattermi
in (38).
) ) ) _ Definition 5.3 proposes a new operator to inverse a matrix
« The function(A, H) — A* is continuous with respect y activated by a diagonal activation matiif. This operator
to H. will now be proved to respect the specification given in
Definition 5.1.
B. Construction of a continuous inverse Theorem 5.1 (Continuity af ® ): The inverseJ®H of J

We now propose an implementation of this definition, baséad:tivated byH fulfills the specifications of a continuous

on the study of (20) and particularly on the discontinuit)Vérse given in Definition 5.1. ,
observed in (36). The goal is to build an inverse of the Proof: Two points have to be proved. First of all, we prove
following form: that J®H is equal to the classical pseudo inverdJ)*H

when the components &1 are binary i.e. no feature is within
the transition region). LeP be the set of non-zero components
of H. Using the notations of Definition 5.2, we have thus to

The generalization of such relation requires a more genefbye thatJ ®H = J:5. Using (40), it is possible to write:
definition of the coupling matrices.

Definition 5.2 (Coupling matrices of a matrik): The
coupling matrices of ak x n-matrix J are indexed by
the subspace® of the k first integers. They are deﬁnedFrom (39),
recursively:

(37)

JOH _ [hlJI’ hQJ;} ¥ hihaXaz (38)

T =Xp+ ) Xo (42)

oCP
it is known thalX» = JF — >, Xo. Intro-
ducing (39) in (42), it is finally possible to obtaih”™ = J3.
The second point to prove is the continuity of the inverse
with respect to the variation dfi. All the coupling matrixX,,

if P=g, Xg=0unxk

otherwise VP € B(k), X, =I5 > gcpXo (39)
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Algorithm 1 CalculateJ ® Algorithm 2 Calculate the coupling matriXp

Parameters: JacobianJ, activation H, coupling matrices Parameters: JacobianJ, subsetP
o ... X1k Ensure: Xp is computed

Ensure: R = J9H ;; k jz%);:kd'm']
. . X
;I ki x %) < dimJ 3: for all 7 in P do
v Onsk 4 H(i,i) < 1
3: forPaIIdP cll..k: do 5. end for
4. roa <= . +
5. forall i in P do 6: Xp < (HJ)
6: Prod < Prod x H(i,1) 7: for all Q C P do
7. end for 8: p<Xp—Xog
8. R <R+ Prodx Xp 9: end for
9: end for
10: return R

particular, if all the features are active at the desiredtjpos

are independent tH (by Definition 5.2). Thus the inverse (40)the control law (43) is locally asymptotically stable atkas
is simply a polynomial form of thé;. Since a polynomial is Completion.

always continuous, the continuity of the inverse with respe

to the variations ol is demonstrated. B E. Stability of the control law

Theorem 5.2 (Asymptotical statibility at binary activatjo
C. Computation of the continuous inverse Let e be a task whose activation is denoted by the diagonal

As given by (42), the continuous inverse operator is basgtatrix H and whose Jacobiad = de/dq is full rank.
on a sum of the coupling matrices. Algorithm 1 details thket eq denote the equivalent active tasi,(= He) whose
computation of the continuous inverse based on the valuesJagobian is denotedy. Then, when all the components of
all the coupling matrices. The computation of the couplingl are binary (e. Vi = 1.k, h; = 0 or h; = 1), Control
matrices is then detailed in Algorithm 2. Law (43) has the same local properties of stability than the
To perform the scan of all the members @f(k) (as €quivalent active task functioeq:
expressed in Line 3 of the algorithm), two solutions are o it is stable in the sense of Lyapunov.
possible. The first one is to exhaustively describe off-lifle  « it is asymptotically stable in the sense of Lyapunoy if
the subparts of..k, and to store the result in a list, which can s full rank.
then be scanned during the control. The exhaustive deseript Proof: The control law associated to the task is
is costly, but has to be done only once. The second solution
is to use the binary representation of the integers as a eniqu q=-A\(HJ) He (44)
representation of each subpartloft by defining the following
bijective associationz = Zf:o bi2" — {i, so thatb; = 1},
where (bg...bx) is the binary representation of Using this
bijection, the set of all subparts can be scanned directly B
covering all the integers fro to 2*. On the opposite, the scan,
of P expressed by Line 5 of the algorithm is simply realizepz

by expressingP as a list. Corollary 5.1: (Local asymptotical stability around the-de

As already said, each specific coupling matly can be _. AN . :
computed as detailed in the recursive Algorithm 2. As prevEred position): Consider the tasi(e, H, J), whose desired

From the first point of Definition 5.1, control law (43) is edua
to (44) when the components ®f are 0 or 1. Then locally it
as the same properties of stability as given by [25]. &
YThis last result is particularly interesting when the aatiion
binary around the desired position, as formalized by the
llowing corollary.

v the | Line 7 i rformed b ing th val tosition is a submanifold of the activation area. for all
ously, the loop Line 715 performed by using the equivale onfigurationsq, if e(q) = 0, thenH(q) = I. Then the

integer representation of the subset. The computation df €& ntrol law (43) is asymptotically stable in a neighborhood

matrix Xp has to be pe_rformed only_ once, by storing th(glround the desired position if the matiJ is full rank at
already-computed value in an appropriate structure. the desired position

Proof: Let D* = {q : e(q) = 0} denote the goal

D. Continuous control law position, andV = le'He. V is a positive continuous
Based on this new inversion operator, it is possible fonction of the configuratiory. In the manifoldD*, we have
propose the following control law: H = H? and H = 0: thus the derivativel’ is equal to

V = —xeTHI(HJ) He = —eq JoJqeq < 0 (with eq
the equivalent active task function whose Jacobiard 3.
Thanks to the nice properties of the continuous inverse, tB&ce V' is continuous with respect to the configuration in
control law (43) is continuous everywhere. Moreover, whethe closed seD*, there exists an open neighborhoad of

all the features are fully active or fully inactive.€. Vi = D* such thatV’ < 0 inside . In A, the control law (43) is
1.k, h; € {0,1}), the control law (43) is equivalent to theasymptotically stable in the sense of Lyapunov. ]
classical control law (2)i€. ¢ = —\Jfea, wheree, is the Remark 5.3: The case of Corollary 5.1 is the one considered
active part ofe). As shown in the following paragraph, (43)in the experiments presented in Section VI: as explaineden t
has thus the same stability property of the equivalent task. following, at the desired position, all the visual featuags in

q=-\J%He (43)
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the fov of the camera and are thus active in the control |

On the opposite, it has not been possible yet to demons or T

the stability of the system whefh < h < 1. In particular, 20 ,j"

when the desired position is inside the activation border, MO o e e e e e e e e e ;.«_*"_ ______ .
have only be able to verify experimentally that the behay so Pred

of the system seems appropriate. o*

80

Remark 5.4: (Bounded-input bounded-output Stabilitylf
the Jacobiad is considered constant, the continuous inve > %

OH o o ; . i s
J is simply a polynomial form: 120 J
oH _ _ § . 1401 £ Image border
J o POlyn(hl’ Y hn) o monomp [hl] XP 160- o"/ -—— Actigation border
PeP(k) s L1 +  Initial position
(45) 180 « ° * Final postion
== Control law =
where monomplh;] is a product of the subpart of the;. Control law (18
! 200 Control law §433

Since theh, are bounded by0, 1], the polynomial form is S E— w
80 100 120 140 160 180 200 220 240 260 280
X

k-Lipschitz continuous, with a constahtthat depends on thi
coupling matricesXp. It is therefore possible to prove therig 2. Experiment 1: points trajectories in the image. At tegibning of
bounded-input bounded-output (BIBO) stability. Howevbg the servo, Point 2 is out of the image. The two desired positame within
better bound that we have found for the constaigt2*. where the full-activation area. Control law (19) using a too largdue of, even

. L. J . if the velocity is continuous, is unable to converge and ttmschieve the
k is the number of features, which is not relevant in practicask. on the opposite, control laws (18) and (43) manage thré desired

position. Control law (18) provides an image trajectory whis quite abrupt
VI. EXPERIMENTAL RESULTS when the points enter the activation area. On the opposite trajectories
using control law (43) are smooth.
We present in this section several experiments that study

the behavior of the system running the new control la@inimum. However, due to this approximation, some points
presented in the previous sections. The experiments h&yay leave the camera fov during the servo [5]. These points
been realized in simulation, using the classical visualaing are then removed from the feature set as proposed in [12]. The
scheme based on feature points [13], which is first recalle®ffor task is a varying-feature-set task based on (46), eféfin
Three typical experiments are then presented in detailinju Py eq = He. H is the activation matrix whose coefficients
the execution, some points may leave the camera fov. Theyare defined byho; = hoi1 = min(hy(2:), hy(vi)) The

are then removed from the feature set. As done in [12], &frizontal activation functior, is defined by:

activation buffer is defined at the image border to smoothly 1 if 2= +e, <x <zt —e,
inactivate the feature that are leaving the fov. 0 if 2 >7Torax <z~
ho(r) =9 f(2—(at—€)) fat—e<z<zt

A. Visual servoing implementation

The work presented above is general and could be applied to
any robotic task defined by a derivable ereorin the follow-
ing, the error function is computed from visual features]|

fe @ H+e)—a) F2-<x<T +e
(48)
13Where[z~, z*]is the horizontal range of the image, tunes
the length of the transient interval and the transient fioncf,
e=s—s" (46) is defined byf. () = L (1+ tanh(< — =7)). The vertical
where s is the current value of the visual features for tasfctivation functionhy is defined similarly.H defines around
e ands* their desired value. In the experiments, the visu#ie image amctivation bufferwhere the feature that is leaving
features are the 2D positiong = (z;, ;) of a set of points, the fov is progressively and smoothly inactivated.
whose 3D positions within the camera frame are denBted
(X:,Yi, Z;). $; = Lg, v, wherev is the instantaneous camerdB. First experiment: non-redundant task
velocity. For one poinp;, Ly, is the well-known matrix given  The first experiment has been realized using a two-point
in [11]. The interaction matrix of the task is finally L = target. The dimension and the rank of the task are thus both
(Lpys---» Lp,,»). From (46), it is clear that the interactionequal to4 at full activation: the task is always non redundant.
matrix L and the task Jacobiah are linked by the relation: At the initial position, one point is out of the fov. We mainly
J — LMJ (47) consider the continuity of the control law when the poineest
4 the fov. The experiment is summed up in Figures 2 and 3.
where J is the robot Jacobiani(= Jqq4) and M is the The continuity of control laws (17), (18), (19) and (43)
matrix that relates the variation of the camera velosityo are compared in Fig. 3. As shown in Section IV-C, (17)
the variation of the camera pose parametrizatior=(Mr).  and (18) are equivalent in this case. An acceleration peak
As already said in II-A, an approximatiah has to be used appears at rank change (see Fig 3-(a) and (b)). An inflection
in practice. In particular, different choices are possilBeL.  point (corresponding to a discontinuity of the derivatieégo
[15]. We choosel = L*MJ,, whereL" is the interaction appears in the point trajectories (see Fig. 2).
matrix computed at the desired position. This choice is fre- Control law (19) is able to ensure the continuity jf
qguently done since it reduces the risk of falling in a locas properly set. However, Fig 3-(c) and (e) point out the
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(c) Control law (19)n =1e-9 (d) Control law (19),n =1e-3 Fig. 4. Experiment 2: image point trajectories. The main regLiimotion is
a rotation around the optical axis. With the classical aanfaw (18), Point
P, leaves the image. Due to discontinuities in the control lasgilations
appear then in the control, arfds oscillates around the image border. The
point is stuck up at the border and the servo is even unablenwecge.
~ With an appropriate tuning of control law (19) or with the tanous control

vio law (43), the servo converges.
[}
()

10

Accelerations
Accelerations
5

0 100 200 300 400 500 0 100 200 300 400 500

(e) Control law (19),n=1 (f) Control law (43) of dimension and rank. The required displacement is mainly
a large rotation around the optical axis. During the rotati®,
Fig. 3. Experiment 1: Comparison of the acceleration peaksnwiging gets close to the activation border (see Fig. 4). At this fpdin
control laws (17) on (a), (18) on (b), (19) with several tunm graphs (c) 0 the two points are considered in the feature set, the comdpute

(€) @ = 1e7?, 1e~2 and1) and (43) on (f). The acceleration is measured at - :
the robot end effectoi,e. at the camera focal point. Since the main relevan©@Ntrol makesP, leave the camera fov. On the opposite, if

situation occurs when the second point enters the camera feraion200, considering only the poirf?; remaining in the fov, the control
the plots have been limited to the intery@ 500]. Control laws (17) and (18) becomes maimy a pan—tilt motion that terls to enter again

are unable to ensure the continuity. Concerning (19), tleatgr the tuning L S .

parametem, the smaller the acceleration peaks are. A good compromiseﬂge activation zone. The oscillation observed is thus due to
obtained for this experiment with = 1e~3 (with = 1, the behavior seems this dilemma: if P, is inactivated, it enters the image which
to be correct while looking the continuity, but Fig. 2 sholattit is not when  5-tivates it. which makes it leaves the image ete

considering the overall task). Control law (43) also pregé smooth control, M e -
with no peak of acceleration. The oscillation occurs due to the control law discontinuity

Control laws (17), (18) and (19) with too small oscillate,

importance of the threshold) of the damped-least-square(Se€e Fig. 5). Moreover, (18) is unable to leave the osaltati
operator. When; is too small (Fig. 3-(c)), the same peak ofirea: the servo does not converge. On the opposite, usijig (43
acceleration as with (18) is obtained. The marincreases, the control is smooth, and no oscillation appears (see fig. 6
the more the acceleration peak decreases (until disapgeari
see Fig. 3-(d)). However, ify is too large, the convergenceD. Third experiment: redundant task
becomes very slow (like if using the transpose operator). INhs |ast experiment points out the discontinuities that ca
some particular cases, the robot is unable to converge (3eeyr with a redundant task when a non-redundant feature is
Fig. 2). A good trade-off hgas to be carefully selected (it i 5ctivated. The target is composed of eight points. Theajlo
obtained here with) = 1e™). This experiment emphasizesagy is thus fully redundant. The desired motion is mainly
thatl|t is very d|ff|c_ul_t to find a correct value for any conaiis. o oiation around the optical axis. While performing this
Finally, the original control law (43) provides a goodyiion, a large amount of points initially close to the image
behavior. The control law is continuous (see Fig. 3-(f))d an,q qers leaves the camera fov. Due to the point inactivation
the acce_leratlon is similar to the one obtained with (19):"_:@ the task becomes redundant, then not redundant (between
best tuning ofy. The good properties of (43) are also Visible ations 150 and 500, only two points remain within the
on Fig. 2: the point trajectories are smooth and continuous; mera fov). Finally, when the robot achieves the required
) o motion at the end of the execution, all the points enter
C. Second experiment: oscillations at rank change the image frame again and the global task converges. The
This experiment illustrates the problems that may occur éxperiment is summed up on Figures 7, 8 and 9. The behavior
the control law is discontinuous. In the case presentedabelds equivalent when using (17), (18), (20) or (19) with a low
the classical control laws oscillate when a point leaves tlgain 7. Therefore, we only give the graphics for (19) with
camera fov, which could even prevent the convergence. Thiéferent values fom.
problem is solved when using a continuous control law. The The point trajectories obtained with control law (19) are
experiment is summed up in Figures 4, 5, and 6. given in Fig. 7-(a). They are very abrupt, showing large
The target used in this experiment is the same as fiflection points when a point enters the image. WH&n
Experiment 1. Two points are considered, which gives a taskters back in the active area, it is temporarily stuck on the



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTRO 12
’ TS pae | N | Ranse
. X1 ~ finiiai position | sop [ ffrt- - - -3Q- - -1 Ll Besion
4 T “r | o5 oo Ny o -] _tbmalposiion | T8 —Paint ajector
= gL i 100 | 7 | —pP3 trajecjtory 100 /I# 5 !
é’ ,,,,, /"* 6 : 150 : 6
g o= 5 150 ' 1 > ' 4t
- ‘ s s s s ‘ ‘ ‘ ‘ I 4, ! '
100 200 300 400 500 600 700 800 900 1000 % Y3 . ! “ 3 :
Control law (17) wp i = L —
o ~—_ N/
S ‘ ‘ N \\/ " u
g 0 50 100 150 XZDO 250 300 350 o 50 100 150 XZUQ 250 300 350
2 J
e}
E 1 (a) Control law (18) (b) Control law (43)
B 100 200 300 400 500 600 700 800 900 1000 Fig. 7. Experiment 3: point trajectories (a) using (19) (bjngscontrol law
Control law (18) (43). Using (18),P3 then oscillates around the activation border. Using (43),
n X 10° ‘ ‘ ‘ ‘ - 'P( the trajectories are smooth. The general form of the trajestas similar to
2 5 —T)z/ (a) but smoother, an#3; does not oscillate when it is activated again.
EE T- ==RX
% 0= - == Ry x10° x 10°
> L Rz 1
B 100 200 300 400 500 600 700 800 900 1000 @ @
Control law (19) %0.5 205
[
Fig. 5. Experiment 2: The six components of the camera velscitgng % o o Al % o 2
control laws (17) without approximation, (18) with a partegbproximation § 'f 3.(3 ‘."
and (19) with the damped least square inverse operator.|@gris appear ok ‘ 08 ‘
whenP» reaches the image border (at IteratibdD). ’ ' ' J
|
- | -
< 10° ® 100 200 300 400 500 b 100 200 300 400 500
%] = — = —
1 g o Control law (19), eta=1e-6 x10° Control law (19), eta=1e-3
=1 \ J)
©
= - - - TX
3 e 4 T, 4
Q 14 Tz >
g --- R
- /i
100 200 300 400 Rz 100 200 300 400 500

Control law (19), eta=1e-2 Control law (43)

Velocities

Fig. 8. Experiment 3: comparison of the accelerations obdemlen using
control law (19) with different values af and using control law (43).

30

Computation time|
——Features in buffer |

>

N
Nb of features in the buffer

600 800 1000 1200

Iterations

0 200 400 1400

w

Fig. 6. Experiment 2: velocities of the camera using contral (43). The
control law is continuous.

=
o
o
[y

al
o
o

activation border, causing oscillation in the control |avhis

is due to a similar phenomena as in the previous experime
The point is finally detached from the border whHen enters 0
the activation area (the task becomes then fully redund@mt)

the opposite, the trajectories using (43) are smooth, witharig. 9. Experiment 3: Cost of the control law computation. Thstdirectly
any inflection point nor oscillation. depends on the number of features inside the activation (ifle whose

The required accelerations are shown on Fig. 8. Wigs 2ctvation parameteh is such thal </ < 1.

small, (19) produces strong peaks of acceleration (see8Fig. = . . , )
(a)). We can notice the peak at iteration 250. At this tirmg)’ptlmlzatlon on a classical desktop computer (Pentium BBG

three points are active. The task is fully redundant. Howev&0n0core). Moreover, all the computations are done onfine:

it is still ill conditioned [5], which finally also produces aSPeCial pre-process is perform beforehand. The cost isesea

discontinuity. While increasing the damping parametethe with the qumber of featurg; inside the .actlvatlon _buffer_e_Th

accelerations peaks are reduced (Fig. 8-(a) and (b)). Fer fotal co;t |s.far below the milisecond, which makes it sudiiti

experiment, thegood value of7 is 1e~2. This emphasizes the fOF application on a real robot.

difficult choice of#, that has to be tuned differently for each

experiment. On the opposite, Fig. 8-(d) shows that the obntr VII. CONCLUSION

law (43) is continuous. No acceleration peak appears, weate This paper has considered tasks defined by a set of features

the rank of the conditioning of the task is. whose dimension is varying along the time. Such tasks have
Finally, the computation cost of the control law (43) is give been addressed in the literature for several applicatiOles-

in Fig. 9. The computations have been realized without sppecsically, the variation of the size of the feature set is penied

Computation time (micro secs)
&
o

1500 2000 2500

Iterations

500 1000 3000



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTRO 13

by using an activation matrix whose value varies between[20] Y. Nakamura and H. Hanafusa. Inverse kinematics solatiwith
and 1. Within this context, a natural interrogation concerns singularity robustness for robot manipulator controllrans. ASME

the behavior of the resulting control law at the critical moi [»q

of activation or inactivation of a feature. We have studieid t
situation, through several combinations and approximatiuf
the Jacobian associated to such varying feature set.

The main point of this theoretical study is that unsing an In ACM symposium on Virtual reality software and technologgges
activation matrix with a classical pseudo inverse is ingffit 23]
to ensure the continuity when the input signal is not full§/ Robot. Autom. (ICRA'07)pages 4414—4419, Roma, ltaly, Apr. 2007.
redundant. It has been proved that the pseudo inverse ig@lw@4] A. Remazeilles, N. Mansard, and F. Chaumette. Qualiatiisual
discontinuous at the activation of a non redundant feature Servoing: application to the visibility constraint. IREE/RSJ Int. Conf.
except in the particular case of a perfect decoupling.

To deal with this problem, an original inverse operator has Function Approach Clarendon Press, Oxford, United Kingdom, 1991.
been introduced. It insures the continuity even when thé ral?6] B. Siciliano and J-J. Slotine. A general framework for rmgimg multiple

Dynamic Sys. Measures and ContrdD8:163-171, Sep. 1986.

] B. Nelson and P. Khosla. Strategies for increasing theking region
of an eye-in-hand system by singularity and joint limits aawice.Int.
Journal of Robotics Research4(3):255-269, June 1995.

[22] M. Peinado, D. Meziat, D. Maupu, D. Raunhardt, D. Thalmaand

R. Boulic. Accurate on-line avatar control with collisiomteipation.

89 — 97, Newport Beach, USA, Nov. 2007.
D. Raunhardt and R. Boulic. Progressive clampinglHEE Int. Conf.

Int. Rob. Sys. (IROS'06pages 4297-4303, Beijing, China, Oct. 2006.
[25] C. Samson, M. Le Borgne, and B. EspiaiRobot Control: the Task

tasks in highly redundant robotic systems. IBEE Int. Conf. on

of the Jacobian c_hanges. This new inversion operator has the  p4yanced Robotics (ICAR'9Ipages 1211-1216, Pisa, Italy, June 1991.
been used to define a new control law, continuous everywheps] D. Whitney. The mathematics of coordinated control of fiiesc arms

The good properties of this control law have finally been and manipulatorsTrans. ASME Journal of Dynamic System, Measures
verified through several visual-servoing experiments.
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