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Continuity
of Varying-Feature-Set Control Laws

Nicolas Mansard, Anthony Remazeilles, François Chaumette

Abstract—Classical sensor-based control laws are based on
the regulation of a set of features to a desired reference value.
In this paper, we focus on the study of control laws whose
feature set varies during the servo. In that case, we first
show that the classical control laws that use an iterative least-
square minimization are discontinuous. We then show that these
discontinuities are due to the pseudo-inverse operator, which is
not continuous at matrix rank change. To solve this problem,
we propose a new inversion operator. This operator is equal to
the classical pseudo-inverse operator in the continuous cases, and
ensures the continuity everywhere. This operator is then used to
build a new control law. This general control scheme is applied
to visual servoing, in order to ensure the continuity of the control
law when some visual features leave the camera field of view. The
experiments prove the interest and the validity of our approach.

Index Terms—Sensor-based control - velocity control - control
continuity - linear algebra - least-square inverse - visual servoing
- visibility constraint

I. I NTRODUCTION

A generic task function may be defined by a set of features
computed from the sensor output that should be regulated

to a desired value. Various control laws have been proposed to
regulate such tasks to zero. For example, a generic approach
to build stable control laws is proposed in [25]. Usually, the
number and the type of features in the set are constant. The
continuity of the control law and the stability of the systemare
then generally obtained outside some singularities that have to
be avoided [21].

In this paper, we focus on task-based control schemes whose
input set is not constant. Some works have already been
proposed that consider servo schemes based on such a varying
feature set. In [12], the features are removed from the set when
they can not be computed anymore due to sensor-visibility
lost. Similarly, the features detected as outliers are removed
from the set in [8]. On the opposite, a feature can be removed
when it is close enough from its desired value, in order to
give more freedom to the robotic system [6], [24]. In [3],
the system is controlled from learning-based joint control,
and half-plane constraints are temporarily added to enforce
situation-dependent constraints. Some specific features can
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also be added to enforce locally the system constraints, such
as joint limits [23], occlusion [17] or obstacle avoidance [22].

In these papers, the properties of the obtained control
scheme are studied on a case-by-case basis, in particular by
using some hypotheses specific to the studied system. The
results are thus difficult to generalize. In the following wethus
propose to study such control laws as a generic control scheme
called varying-feature-set control scheme. In particular, we
will prove that the control laws computed directly from the
varying feature set are not continuous in the general case.
From this observation, a solution that ensures the continuity
will be proposed.

Some classical control laws are firstly recalled and unified
in Section II. Based on this unification, the varying-feature-
set control scheme is defined in Section III. We then prove
in Section IV that the classical control laws coming from
this definition are unable to ensure the continuity everywhere.
To remove these discontinuities, a new inverse operator is
proposed in Section V. Some visual-servoing experiments
finally presented in Section VI, as an experimental comparison
of the classical control laws and the proposed solution.

II. STATE OF THE ART

In this section, we quickly recall some classical control laws
whose feature set is varying during the servo. An effort is
made here to homogenize the different notations used by each
author.

A. Classical control law

Let us consider an error functione such that:

ė = Jq̇ (1)

whereq is the system configuration andJ = ∂e/∂q is the
Jacobian ofe. The JacobianJ is a k×n-matrix, wheren is
the number of degrees of freedom (DOF) of the system (n =
dimq) andk is the size of the error function (k = dim e). The
rank of J is denotedm. In (1), it is implicitly supposed that
e(q) is derivable everywhere and does not depend on the time
variable but through the configurationq. A classical controller
is then:

q̇ = −λĴ+e (2)

where λ is a positive parameter used as a gain to tune the
convergence velocity,A+ stands for the pseudo inverse (or
least-square inverse) of matrixA [2], andÂ is an approxima-
tion of A.
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Control law (2) ensures an exponential decrease of each
component ofe until regulatione = 0 if JĴ+ = Im (since
in that caseė = −λJĴ+e = −λe). The global asymptotic
stability can be obtained as soon asJ and Ĵ are full-rank (i.e.
k = m) andJĴ+ > 0 [25]. In all other cases (i.e.k > m), only
the local asymptotic stability can generally be demonstrated.
This classical control scheme has been widely used for sensor-
based control [11], [26], [13], [19], [16].

In the following, all the computations will be realized using
the hypothesis thatJ is perfectly known. We will show in the
experiments that the obtained control scheme is robust to this
hypothesis.

B. Evidence of discontinuities

We now underline the discontinuities that can occur when
modifying the feature set. Let us consider a taske1, controlling
m1 of then DOF of the system. At timet, we increase the task
by adding a terme2, controlling m2 DOF. The task is now[

e1

e2

]
. If the feature set is abruptly modified, is it possible to

keep the control law continuity? Ifm1 < n, then, obviously,
the DOF not controlled bye1 and that are now controlled by
e2 are subject to a discontinuity (passing from a zero control
input to a non-zero control input). Ifm1 = n, the problem
is the same, whatever the value ofm2. Before timet, all the
DOF of the system are controlled only bye1. After time t,
a trade-off is realized by the pseudo inverse to fulfill at the
same timee1 and e2, which produces a discontinuity in the
general case.

For example, when realizing a visual servoing based on
a multi-point target, the control law is different when con-
sidering a four-point target or a five-point target. Therefore,
passing from four points to five points causes a discontinuity
(an example of such a discontinuity is given in Section VI).

In the following, we will present several works where the
classical control scheme (2) has been modified to take into
account the varying dimension of the taske [8], [12], [24],
[6]. We will emphasize the solutions that have been proposed
in these articles to prevent this discontinuity to happen, and
unify these works in an unique mathematical formulation. The
common idea is to smooth the discontinuity that happens at
feature activation and inactivation by introducing at the activa-
tion border a buffer area where the feature is partially active.
This buffer area is defined by introducing a smooth activation
function H, as explained in the following paragraphs.

C. Some varying-feature-set control laws

1) Robust visual servoing:In [8], the problem of outliers
in the input set is addressed by associating to each feature a
weight computed from the confidence that this feature is not
an outlier. The proposed error function iseq = He, where
e = (s − s∗) is the error between current and desired feature
values, andH = Diag(h1, ..., hk) is a weighting matrix used
to remove the outliers from the feature set. The weightshi are
computed from a robust estimation algorithm. They vary from
1 when the robust estimation gives full confidence to0 when
the feature is doubtlessly an outlier. The derivative of thetask

eq is ėq = Hė + Ḣe. In [8], it is assumed thatH is varying
slowly. The second term of the derivative is thus neglected1

and the control law is computed by analogy with (2):

q̇ = −λ(HJ)+He (3)

When the confidence in a feature decreases, it is smoothly
removed from the control law by decreasing the value of the
corresponding vector componenthiei. Simultaneously, it is
also smoothly removed from the feature set by nullifying the
corresponding line of the matrixHJ. The weighting matrix
H is thus used to smoothly remove or add a feature to the
task. It will be proved in Section IV-C3 that this is enough to
ensure the control law continuity as long as(HJ)+H is full
rank.

2) Continuous visual servoing despite changes of visibility:
In [12], the authors directly address the problem of the control-
law continuity when the number of features varies, in the
particular case where this variation is due to visibility loss.
When a feature leaves the camera field of view (fov), it has
to be removed from the feature set, which thereof causes
the control law to be discontinuous. As previously, the use
of a weighting matrix enables to take care of these features
leaving the fov. The error vector is writteneq = We where
W = Diag(w1, ..., wk) is the weighting matrix used to
smoothly remove a feature that is going to be non visible.
The weightwi is null when the feature is out of the fov, and
is equal to1 when the feature is at the center of the image
frame.

It is possible to show [18] that the control law used in [12]
is equivalent to:

q̇ = −λ(HJ)+He (4)

whereH =
√

W is a diagonal matrix whose coefficients vary
continuously between0 and1. This control law is identical to
the one obtained in [8].

3) Region reaching control:In [6] the main purpose is to
bring the end-effector of the robot to a region instead of a
point. The goal region is defined as the intersection of a set
of k simple regions, each one being analytically defined by an
inequality:

∀i = 1..k, ei(X) ≤ 0 (5)

whereX is the position of the end effector in the Cartesian
space. The control aims at reducing the value of the left partof
each inequality until they are all negative. When an inequality
is respected, the corresponding part of the control is stopped.

If the control law was developed to ensuree = 0, the
robot would be controlled toward the intersection of all the
contours of the regions (5). In order to bring the robotic
system inside this region, the task vector is defined to be
eq = H( 1

2e 2
1 , ..., 1

2e 2
k ), whereH is a diagonal matrix whose

components are null if the corresponding regions have been
reached, and equal to1 otherwise. Using these notations, it

1NeglectingḢ is a classical approximation that is also found in [12], [6],
[24]. In practice, whenH ande decrease in the same direction (i.e. when the
gradient of bothe anddiag(H) are in the same half-space, which is typically
the case when the minimum ofe is inside the area defined byH = 0, as
done in [6], Section II-C3 or in [24], Section II-C4) this approximation does
not disturb the stability of the control.
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can be shown [18] that the control law proposed in [6] is
equivalent to:

q̇ = −λ(HJ)⊤He (6)

The form is similar to the two previous control laws, but with
the transpose(HJ)⊤ instead of the pseudo inverse(HJ)+.

4) Qualitative servoing:The main objective of the quali-
tative servo control proposed in [24] is to enlarge the conver-
gence area, by explicitly requiring that the errore converges
toward a confident interval, instead of a particular desired
value as it is usually performed. In this sense, the system is
thus required to perform aqualitative convergence.

The error functioneq is defined byeq = H(e−ē), whereē
is the limit of the convergence area: when a component ofe is
below its corresponding threshold̄e, the associated part of the
control is inactivated. The activation matrixH is a diagonal
matrix whose coefficients vary continuously between0 to 1 as
the system enters or leaves the convergence area.

The control law that regulates the errore into the confidence
interval proposed in [24] is:

q̇ = −λ(HJ)+H(e − ē) (7)

Once more, we recognize the same form of the previous
control laws.

D. Synthesis

Several control laws that deal with varying feature set have
been presented in the previous subsections. All have been
written using an equivalent framework, with similar notations,
as a matter of comparison. A common control law equation
can be noticed:

q̇ = −λ(HJ)⊞He (8)

where ⊞ is a matrix operator (the pseudo inverse or the
transpose).

The control law is a composition of three parts: the matrix
HJ, the matrix operator⊞, and the vectorHe. The diagonal
activation matrixH is used to smoothly remove or add features
of e and also to nullify the corresponding lines of the Jacobian
matrix. When⊞ is the pseudo inverse, this second point is
fundamental. Indeed, if the Jacobian line is not nullified (i.e. if
q̇ = −λJ+He is used), then the feature is taken into account
into the least-square minimization, and the control law tries to
minimize the motion of the inactivated feature, by imposing
the velocityėi = 0 (which is a control in itself, and the result
is very different to not constraiṅei at all).

To ensure the continuity of the control law, the simplest
solution is to ensure the continuity of each of the components.
In particular, it is not sufficient to ensure the continuity of HJ

andHe if the matrix operator⊞ is not continuous. Thanks to
a correct definition ofH, both the task vector and the Jacobian
matrix are continuous at feature activation or inactivation. To
ensure the control law continuity, it is then enough to ensure
the continuity of the matrix operator⊞. The pseudo inverse
operator is continuous when the rank of the matrix is constant.
It is very important to notice that this is the basic hypothesis
in the three control laws presented above. This is a sufficient
condition to ensure the continuity of the control law.

However, the pseudo inverse operator is not continuous
at rank change. This means that these control laws are not
continuous if the number of features decrease below a certain
level (which is not considered in [8], [12], [24]). In [6], this
case can happen. The continuity of the control law is then
obtained by using the transpose operator instead of the pseudo-
inverse operator (the transpose is always continuous, evenat
matrix-rank change). However, using the transpose can lead
to a very non-optimal control, and the pseudo inverse is often
a much more efficient solution [11].

In the following sections, the generic control law (8) will
be proved to be continuous as long as the number of active
features is sufficient (in a sense that will be defined precisely in
the following). It will also be shown that strong discontinuities
can appear when the number of active features is not sufficient.
Based on this observation, we will build a new matrix operator
that is continuous in all cases, and acts like the pseudo inverse
outside of its discontinuities. From this new operator, a control
law with a similar form will be proposed and proved to be
continuous in all cases.

III. D EFINITIONS

In this section, we define all the notions that are required
for the following study. We firstly propose a global definition
to refer to the tasks whose form is similar to those presented
in the previous section. Then we propose formal definitions
to characterize some classical notions of the redundancy ofa
system with respect to a given task.

A. Varying-feature-set task

Definition 3.1 (Varying-feature-set task):Let e be any fea-
ture vector which is called task in the following. Its Jacobian
is supposed to be of constant rank. The taskeq is a varying-
feature-set taskbased one if it respects:

eq = He (9)

whereH is a diagonal matrix whose coefficients continuously
vary within the interval[0, 1].
Remark 3.1: The four control schemes (3), (4), (6) and (7)
recalled in the previous section are based on a varying-feature-
set task.

B. Input redundancy and decoupling

Definition 3.2 (Full-rank matrix):The matrixA is full row
rank (FRR)iff the number of its rows is equal to its rank. It is
full-column rank (FCR)iff the number of its columns is equal
to its rank.

Definition 3.3 (Non-redundant input):Let e be any task.
The taske is said to be non redundant in input (or to have a
non-redundant input) if its Jacobian matrix is FRR.

Definition 3.4 (Redundant input):On the opposite, a task
has a redundant input if its Jacobian is not FRR.
Remark 3.2: If the matrix J is not FRR, it is possible to
separate its lines into a generator setJ0 and a redundant setJ1

that can be defined as a linear combination ofJ0: J1 = χJ0.
The couple(J0, χ) is calledfactorization. Its formal definition
is the following.
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Definition 3.5 (Matrix factorization):Let J be a non-FRR
matrix. LetP be a permutation matrix,J0 a FRR matrix and
χ a matrix such that:

J = P

[
J0

χJ0

]
, (10)

then the set
(
P,J0, χ

)
is calledfactorizationof the matrixJ

by J0. J0 is the generatormatrix of J, andχ is the multi-
plier of the factorization. In order to simplify notations, the
permutationP will be often omitted. Thereby, a factorization
of J is denoted

(
J0, χ

)
(P is easily deduced fromJ,J0 and

χ).
Remark 3.3: If some columns of the multiplierχ are null,
the factorization can be developed:

J =




JA

JB

χBJB


 (11)

with J0 =

[
JA

JB

]
andχ = [0 χB]. Features corresponding

to JB and χBJB are the redundant part of the input vector.
JA corresponds to the non-redundant part, because none of the
features can be defined as a linear combination of the features
associated toJA. On the opposite, if the multiplierχ does not
have any null column, then the factorization is said to be fully
redundant.

Definition 3.6 (Full-redundant input):The task e has a
full-redundant input if all partitions of its JacobianJ of the
form (11) result inJA = 0.

Corollary 3.1 (Characterization of a full-redundant input):
The taske has a full-redundant inputiff its JacobianJ can

be writtenJ = P

[
J0

χJ0

]
, whereP is a permutation matrix,

J0 is FRR and none of the columns of the multiplierχ is
null.

Proof: The proof is given is [18].
Definition 3.7 (Decoupled input feature):Let e be a fea-

ture set. The featuree2 is distinguished2 from the other
features denotede1. Let J1 and J2 be the Jacobians ofe1

ande2 respectively. The featuree2 is said decoupled from the
other featurese1 of e if:

R(J+
1 ) ⊥ R(J+

2 ) (12)

whereR(A) is the range of matrixA.
Corollary 3.2: Two feature setse1 and e2 are decoupled

iff :
J2J

+
1 = 0 (13a)

and
J1J

+
2 = 0 (13b)

Proof: A well-known result concerning the kernel and the
range of a matrixA is:

R(A⊤) = N(A)⊥ (14)

where N(A) is the kernel ofA, and E⊥ is the orthogo-
nal complementary of subspaceE. Using (12), we obtain

2Denoted with bold font are the vectors,e.g.e1 and matrices,e.g.J, and
with non-bold font the scalar variables,e.g.e2.

R(J1
⊤) ⊂ N(J2). Since R(J1

⊤) = R(J1
+), this proves

(13a).
Reciprocally, if (13a) is true, thenR(J1

⊤) = R(J1
+) ⊂

N(J2). SinceR(J2
+) = R(J2

⊤) = N(J2)⊥, then R(J+
1 )

is orthogonal toR(J+
2 ). The dual equation is obtained by the

same way.

Remark 3.4: If all the features ofe are decoupled, then it
is easy to show thate has a non-redundant input. Moreover,
if one feature is decoupled,e can not have a full-redundant
input.

Intuitively, the behavior of the control law when progres-
sively inactivating a feature will differ if a redundant feature,
a non-redundant or a decoupled one is considered. The four
characterizations of the features that have been defined upper
(redundant, non redundant, full redundant and decoupled) can
be enlarged to the varying-feature-set tasks.

Definition 3.8 (Charasteristics of a varying-feature-set task):
Let eq be a varying feature set. The corresponding active
taskeA is constructed by considering only the input features
whose weight inH is not null. Furthermore:

• The varying-feature-set taskeq has a non-redundant
active input if the associate active taskeA has non-
redundant input.

• The varying-feature-set taskeq has a redundant active
input if the associate active taskeA has a redundant input.

• The varying-feature-set taskeq has a full-redundant
active input if the associate active taskeA has a full-
redundant input.

• An active featuree2 is decoupled from the other active
features ife2 is decoupled from the other features be-
longing to the associate active taskeA.

Using these definitions, we will now study the control
laws based on varying feature set (such as those recalled in
Section II) in the general case.

IV. VARYING-FEATURE-SET CONTROL SCHEME

This section considers the continuity of different control
laws derived from Definition 3.1, and presented in Sec-
tion IV-A. It will be shown in Sections IV-B to IV-D that
when the Jacobian of the task is not fully redundant, none of
these control laws is continuous.

A. Control laws based on a varying-feature-set task

Let eq be a task characterized by a varying feature set such
that eq = He. Its derivative is:

ėq = Hė + Ḣe (15)

As seen above, it is usually considered thatH varies slowly.
With the approximationḢ = 0, we obtain the simple ex-
pressionJeq

= HJ where J and Jeq
are respectively the

Jacobians ofe andeq.
Knowing Jeq

, it is possible to apply directly the classical
control scheme (2), obtaining thus:

q̇ = −λĴ+
eq

eq = −λ
̂(
HJ

)+
He (16)
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Several choices can be considered for̂J+
eq

. Apart from the
classical approximation of̂J (see [15] for a review), we will
focus on five possible choices concerningH, in order to try
to get the global continuity of the control law:

q̇ = −λ
(
ĤJ

)+
Ĥe (17)

q̇ = −λ
(
HJ

)+
He (18)

q̇ = −λ
(
HJ

)†
He (19)

q̇ = −λ
(
ĤJ

)+
He (20)

q̇ = −λ
(
HJ

)+
Ĥe (21)

Ĥ is an approximation of H defined as: Ĥ =

Diag
({

1 if hi 6= 0
0 otherwise

)
, and A† is the damped least

square inverse ofA [20], [9] (the interest of this inverse
operator will be given in Section IV-D). It is trivial to obtain
(18), (19) and (20) from the general relation (16). Since
H+H = Ĥ, Eq. (17) and (21) are respectively obtained by

approximatingĴ+
eq

by
(
ĤJ

)+
H+ and

(
HJ

)+
H+. Even if

these two derivations do not seem to be intuitive, their final
formulations correspond to easily understandable situations,
e.g. a full approximation and a partial one. In particular,
the use of bothH and Ĥ in (20) and (21) is explained in
Section IV-E.

The following sections study the behavior of these different
control laws, and especially their continuity at Jacobian-rank
change.

B. Full approximation (17)

This first control law corresponds to the naive way to
consider a task with a varying feature set: a component getting
inside the activation area is directly considered within the
minimization scheme, without any progressive activation.Of
course, this kind of control law is not continuous [12], as
explained in Section II-B. The importance of the discontinuity
depends on the valuee2 and also on the way the addition of
the lineJ2 modifies the singular values of the Jacobian.

C. No approximation (18)

To solve the discontinuity of (17), a logical solution is to
use an activation matrixH. When a feature gets inside the
activation area, it is thus progressively (or smoothly) added
within the control scheme, until full activation. The control
law (18) can be found in [12], [8], [24], as presented in
Section II.

This section shows that this control law is continuous as
long as enough features are activated so that the input is
fully redundant. It is also shown that the smoothness brought
by H is not effective when the number of active features is
not sufficient. More precisely, it will be shown that control
laws (18) and (17) are surprisingly equivalent when the task
is non redundant. Three cases are separately studied, whether
the task is not redundant, redundant or fully redundant.

1) Non-redundant input signal:
Theorem 4.1:Let eq be a varying-feature-set task whose

active input is non redundant. The two control laws (17) and
(18) are equal.

Proof: Let us first introduce another inverse of matrixA,
the generalized inverse [2]. It has been introduced in linear-
feedback control in [27], and widely used since [4], [1]. A
very good analysis of such an inverse can be found in [10].
Let W be a full-rank square matrix. The weighted generalized
inverse matrix ofA weighted on the left by the weightsW
is defined to be [10]:

AW# = (WA)+W (22)

The (full-rank) weight matrixHf is defined fromH by:

Hf = Diag
( {

hi if hi 6= 0
1 otherwise

)
(23)

Using this definition, we can write:

(HJ)+H = (HfĤJ)+HfĤ = (ĤJ)Hf#Ĥ (24)

By a simple feature reordering, we suppose that the Jacobian
can be written:

HJ =

[
H1J1

0

]
(25)

whereJ1 is FRR since the active input ofeq is non redundant.
One of the major results of [10] is to prove that the weighted
inverse (22) is invariant to the choice ofW if A is FRR. Since[

A

0

]+

= [A+0], this result can easily be generalized to the

case (25). Thus, sinceH1J1 is FRR (J1 is FRR andH1 is
invertible), it is possible to write using (24):

(HJ)+H = (ĤJ)Hf#Ĥ = (ĤJ)+Ĥ (26)

This last result proves that if the active input features arenon
redundant, the two control laws (17) and (18) are equal. If the
active input is not redundant, the weights ofH are not taken
into account. The discontinuities are thus the same than when
using the simple matrix̂H.

2) Redundant input signal:The previous result can be
easily extended to the case of a redundant input as long as
the input is not fully redundant.

Theorem 4.2 (Weighted least square invariance):
Let J be any matrix, andW be a diagonal and invertible
weight matrix. LetJ be a factorization such that:

J = P




J0

J1

χ1J1


 (27)

where(J0,J1) is FRR. The same factorization can also be ap-
plied to the weighting matrixW = P Diag

(
W0,W1,W2

)
.

Then the non-redundant partJ0 of J is invariant to the
weights W when computing the weighted general inverse
JW#:

JW# = J
fW# (28)

whereW̃ = P Diag(I,W1,W2).
This result can be proved by using a full-rank decompo-

sition of the JacobianJ. The demonstration is technical and
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fastidious, and is thus not given here. The interested reader is
referred to [18] for additional details.

Using the Theorem 4.2, the following corollary is immedi-
ate.

Corollary 4.1: Let eq be a varying-feature-set task whose
active input is redundant but not fully redundant. Then the non-
zero weightshi corresponding to the non-redundant features
are not taken into account in the control law (18), that is to
say apartially active featureh 6= 0 is taken into account as a
fully active featureh = 1.

Let us consider a taskeq whose first feature is non re-

dundant. The activation matrix isH =

[
h 0

0 H1

]
. Using

Corollary 4.1, we can write ifh is not null:

(HJ)+H = (

[
1 0

0 H1

]
J)+

[
1 0

0 H1

]

−→
h→0

(

[
1 0

0 H1

]
J)+

[
1 0

0 H1

] (29)

However, ifh is null:

(HJ)+H = (

[
0 0

0 H1

]
J)+

[
0 0

0 H1

]
(30)

The matrix (HJ)+H is not continuous whenh → 0. The
control law is thus not continuous when some features that
are non redundant are inactivated.

3) Full-redundant input signal:On the opposite, it is easy
to show that (18) is continuous when the activated input is
fully redundant. In this case, the activation or inactivation of
any feature will not modify the rank ofHJ. The pseudo-
inverse operator is continuous when the rank of the matrix
is constant [2]. SinceHJ is continuous, this proves that the
control law is continuous.

In conclusion, the behavior of the system controlled by (18)
is continuous when enough features are activated so that the
input is fully redundant, and discontinuous when the input
is only redundant or non redundant. The discontinuity of the
classical solution (18) is due to to the discontinuity of the
pseudo-inverse operator when the rank of the Jacobian matrix
changes [2].

D. Using the damped least square inverse (19)

To compensate the discontinuities of the pseudo-inverse
operator, it has been proposed to use the damped-least-square
inverse [20], [14], [9]. This operator is defined by:

Aη† = VΣη†U⊤ (31)

where(U,Σ,V) is the singular-value decomposition (SVD)
of A andΣη† is a diagonal matrix whose coefficientsση†

i are
computed from the singular valuesσi by:

ση†
i =

σi

σ2
i + η2

(32)

Theoretically, the introduction ofη does not bring any new
parameter to tune, since it only replaces a threshold used
when computing the pseudo inverse to bound the singular-
value inversion. We thus denoteAη† = A† in the following.

This operator can be used instead of the pseudo inversion
in the classical control laws (2). As proposed in [7], the
damped least square inverse reduces the effect of the control
singularities. On the opposite, it also reduces the precision of
the control. In particular, when the damped least squares are
used with (2), the effect is not the nice decoupled decrease
ė = −λe sinceJJ† is not the identity. The higher the value
of η, the better the smoothing, but the more the reference
behaviour will be disturbed.

In the control law (19), the damping factor acts as a
smoothing of the discontinuity. The smoothing is effectiveat
rank changes (when a singular value passes from non zero
to zero), that is to say at activation or inactivation of a non-
redundant feature. In theory, the introduction of the damping
factor thus solves the problem of the discontinuity encountered
in (18). However this is not the case in practice. Practically,
the damping is only effective around the thresholdη.

Let us consider the activation of a non-redundant feature

from Hh=0 =

[
0 0

0 I

]
to Hh=1 = I. The matrix(HJ)†H

is numerically equal to(H0J)†H0 when the corresponding
singular value is very small compared toη, typically in
[0, 1e−3η]. It is numerically equal to(H1J)†H1 = J+ when
the singular value is very large compared toη, typically
in [1e+3η, 1]. In practice, the matrix(HJ)†H passes from
(H0J)†H0 to J+ in the very small interval[1e−3η, 1e3η].
For example, ifη = 1e−6 as classically done, the smoothing
is effective into the interval[1e−9, 1e−3], that is to say on
an interval whose length is only10−3. On the opposite,
when removing a redundant feature, the variation of(HJ)†H
is smooth into[0, 1], whose length is1. The smoothing is
effective on a large interval. The comparison between the
smoothness is shown on Fig. 1. As shown by Fig. 1-(a), the
control law (19) is smooth in theory. However, as shown by
Fig. 1-(b), both control laws (18) and (19) are equivalent in
practice, and discontinuous.

The direct consequence is that the damping parameterη
has to be set very high which in turn reduces significally the
performances of the control. The damped least squares are
thus not a relevant solution to smooth the irregularities ofthe
varying feature set.

E. Partial approximations (20) and (21)

We have shown in the previous sections that the classical
control laws (17) and (18) are unable to ensure the continuity
of the control law when the input is not fully redundant.
These discontinuities can be understood naively by writing
that (HJ)+H = J+H+H = J+ (if H is invertible andJ is
FRR). The use ofH both inside and outside the pseudo-inverse
operator induces intuitively a simplification that cancelsthe
smoothing. To prevent this simplification, a logical proposition
is to use the true activation matrixH only once and its
approximationĤ elsewhere. Two possibilities arise then: we
can use the approximation̂H inside the pseudo inverse and
use the exact matrixH outside of the inverse, in factor of the
taske (this solution corresponds to (20)) ; or we can useH

inside the inverse, and̂H outside (this gives then (21)).
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Fig. 1. Comparison between the smoothness of(HJ)+H (control law (18))
and (HJ)†H (control law (19)) when adding a non-redundant feature, and
when adding a redundant feature. The graph is shown twice, with log X-scale
(a), and with linear X-scale (b). Parameterη is set to1e−6.

Control law (20) smoothly nullifies the feature values that
are getting close to the activation frontier, but abruptly removes
the corresponding part of the Jacobian matrix. The Jacobian
matrix is thus not continuous, but it is hoped to obtain a
continuous control law by correcting the discontinuities with
smoothed input features. The following theorem proves that
the continuity is obtained only in the very particular case of
a perfect decoupling.

Theorem 4.3:Let eq be a varying-feature-set task based
on e. Control law (20) is continuous at feature activation or
inactivation iff the activated features are decoupled from the
other ones.

Proof: Let us first consider a taske where all the features
but one are fully activated. This last feature is denotede2. Let
J2 be its Jacobian. The Jacobian of the taske can then be

written J =

[
J1

J2

]
, whereJ2 is single line. Since all the

features corresponding toJ1 are fully activated, the activation
matrix can be written:

H =

[
I 0

0 h

]
(33)

The pseudo inverse ofJ can be decomposed using adivide
and conquerapproach:

J+ =

[
J1

J2

]+

=
[
J+
1 J+

2

]
+ X12 (34)

where [J+
1 J+

2 ] is the least-square minimization of each Jaco-
bian J1 and J2 taken separately, andX12 is the part of the
least squares corresponding to the coupling between the two
Jacobians. To simplify the notations in the following,X12 is

written X12 =
[
X1

12 X2
12

]
, whereX2

12 is simple column.

Using this decomposition and (33), the inverse used in (20)

can be written:

(ĤJ)+H =





[
J+
1 hJ+

2

]
+

[
X1

12 hX2
12

]
if h 6= 0[

J+
1 0

]
if h = 0

(35)
The discontinuity clearly appears in this formulation since:

lim
h→0

(
(ĤJ)+H

)
=

[
J+
1 0

]
+

[
X1

12 0
]

(36)

which is different from
[
J+
1 0

]
when h = 0 and if X12 is

not null. To prove the equivalence between decoupling and
continuity, we thus just have to prove thatX12 is null iff e2

is decoupled. Let us suppose thatX12 = 0, that is to sayJ+ =
[J+

1 J+
2 ]. The definition of the pseudo inverse givesJ+JJ+ =

J+. By developing the value ofJ in this equality, we obtain
J+
2 J2J

+
1 = 0 and finallyJ2J

+
2 J2J

+
1 = J2J

+
1 = 0. We obtain

similarly J1J
+
2 = 0. Using Corollary 3.2, this proves thate1

and e2 are decoupled. Reciprocally, ife2 is decoupled, then
J+ = (J+

1 J1+J+
2 J2)[J+

1 J+
2 ] [2]. Corollary 3.2 finally proves

that J+ = [J+
1 J+

2 ] and thusX12 = 0.
In fact, (20) manages to smooth the part of the control

corresponding to the minimization ofe2. However, it is unable
to smooth the partX1

12 of the control that corresponds to the
coupling betweene2 and the other features. Whenh is not
null, the space corresponding to the coupling matrixX1

12 is
used as a trade-off to realize bothe1 and e2. As soon ash
really becomes null,X1

12 becomes instantaneously available
for e1 alone, which results in a strong discontinuity in the
control law.

Finally, control law (21) may not be realizable due to
ill conditioning. Indeed, when some components ofH are
small, the matrixHJ can be very ill conditioned. Its pseudo
inverse(HJ)+ is thus very large. In (18), the large coefficients
of (HJ)+ are diminished when multiplied withH. If the
approximationĤ is used instead, no correction is brought
since the small coefficients ofH are approximated by1. The
matrix coefficients of(HJ)+Ĥ can thus be very large, and
the result on the control is unpredictable.

F. Conclusion

In this section, several control laws have been proposed,
based on the classical methods in the state of the art. The
continuity of these control laws has been investigated when
the number of visual features varies, and the general char-
acteristics observed are summarized on Table I. None of
these control laws is continuous when the task is not fully
redundant,i.e. when at least one feature can not be expressed
as a combination of the others. Indeed, when this feature is
activated or inactivated, the system earns or looses a degree
of freedom. In this situation, the nice properties of continuity
or stability demonstrated in [25] can not be obtained directly
anymore.

V. BUILDING A NEW INVERSE OPERATOR

Since the classical control schemes based on the pseudo-
inverse operator are not able to ensure the continuity, a
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NON REDUNDANT CASE REDUNDANT CASE
CONTROL

Non Decoupled Redundant Fully
LAW

redundant redundant

(17)
` bHJ

´+ bH discontinuous discontinuous discontinuous discontinuous

(18)
`
HJ

´+
H discontinuous discontinuous discontinuous continuous

(19)
`
HJ

´†
H discontinuous discontinuous discontinuous continuous

(20)
` bHJ

´+
H discontinuous continuous discontinuous discontinuous

(21)
`
HJ

´+ bH ill conditioned

TABLE I
SUMMARY OF THE CONTROL LAW BEHAVIORS

control law based on a new inversion operator is proposed
in this section. We first propose a formal specification of the
continuity properties that this operator should fulfill to ensure
the control-law continuity. We propose then an implementation
that respects these specifications, and we use it to build a new
control law that is proved to be continuous. We finally prove
that the obtained control law has similar properties of local
stability than the classical pseudo-inverse-based control laws.

A. Formal definition

In a first time, let us properly define the properties of the
operator we are looking for. This operator should be equivalent
to the classical pseudo-inverse operator when all the features
are fully active or inactive (i.e.when∀i = 1..k, hi ∈ {0, 1}).
The operator should also maintain the continuity whenh goes
smoothly from0 to 1. This is formalized through the following
definition:

Definition 5.1 (Continuous inverse):Let A be a matrix of
size (k × n) and H be a diagonal activation matrix of size
(k × k), whose components belong to[0, 1]. The continuous
inverseA‡H of a matrixA subject to an activationH respects
the two following properties:

• if ∀i = 1..k, hi ∈ {0, 1}, then:

A‡H = (HA)+ = (HA)+H (37)

• The function(A,H) → A‡H is continuous with respect
to H.

B. Construction of a continuous inverse

We now propose an implementation of this definition, based
on the study of (20) and particularly on the discontinuity
observed in (36). The goal is to build an inverse of the
following form:

J⊕H =
[
h1J

+
1 h2J

+
2

]
+ h1h2X12 (38)

The generalization of such relation requires a more general
definition of the coupling matrices.

Definition 5.2 (Coupling matrices of a matrixJ): The
coupling matrices of ak × n-matrix J are indexed by
the subspacesP of the k first integers. They are defined
recursively:

if P = ∅, X∅ = 0n×k

otherwise ∀P ∈ P(k), Xp = J+
P − ∑

Q(P XQ
(39)

whereP(k) = P(1..k) =
{
P| P ⊂ 1..k

}
are all the subsets

composed of thek first integers, andJP = HJ wherehi is
equal to1 if i ∈ P, and to0 otherwise (i.e. JP is the Jacobian
matrix J whose only activated lines are those ofP).

Remark 5.1: If J has two lines (J =

[
J1

J2

]
), then the

definition of the coupling matrixX12 corresponds to the
notation given in (34).

Using this definition, it is now easy to build an inverseJ⊕H

that respects the specification given in Definition 5.1.
Definition 5.3 (Continuous inverseJ⊕H): Let J be a ma-

trix of size (k×n) andH the corresponding activation matrix
whose components

(
hi

)
i∈1..k

belong to the interval[0, 1]. The
continuous inverse ofJ activated byH is defined by:

J⊕H =
∑

P∈P(k)

( ∏

i∈P

hi

)
XP (40)

Remark 5.2: The continuous inverse of a double-line Jaco-

bian J =

[
J1

J2

]
, activated byH is:

J⊕H = h1h2X{1,2} + h1X{1} + h2X{2}

=
[
h1J

+
1 h2J

+
2

]
+ h1h2X12

(41)

This last equation matches exactly the preliminary goal written
in (38).

Definition 5.3 proposes a new operator to inverse a matrix
J activated by a diagonal activation matrixH. This operator
will now be proved to respect the specification given in
Definition 5.1.

Theorem 5.1 (Continuity ofJ⊕H ): The inverseJ⊕H of J

activated byH fulfills the specifications of a continuous
inverse given in Definition 5.1.

Proof: Two points have to be proved. First of all, we prove
that J⊕H is equal to the classical pseudo inverse(HJ)+H

when the components ofH are binary (i.e. no feature is within
the transition region). LetP be the set of non-zero components
of H. Using the notations of Definition 5.2, we have thus to
prove thatJ⊕H = J+

P . Using (40), it is possible to write:

J⊕H = XP +
∑

Q(P

XQ (42)

From (39), it is known thatXP = J+
P − ∑

Q(P XQ. Intro-
ducing (39) in (42), it is finally possible to obtainJ⊕H = J+

P .
The second point to prove is the continuity of the inverse

with respect to the variation ofH. All the coupling matrixXp



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL 9

Algorithm 1 CalculateJ⊕H

Parameters: JacobianJ, activation H, coupling matrices
X∅ . . .X1..k

Ensure: R = J⊕H

1: (k × n) ⇐ dimJ
2: R ⇐ 0n×k
3: for all P ⊂ 1..k do
4: Prod ⇐ 1
5: for all i in P do
6: Prod ⇐ Prod × H(i, i)
7: end for
8: R ⇐ R + Prod × XP
9: end for

10: return R

are independent toH (by Definition 5.2). Thus the inverse (40)
is simply a polynomial form of thehi. Since a polynomial is
always continuous, the continuity of the inverse with respect
to the variations ofH is demonstrated.

C. Computation of the continuous inverse

As given by (42), the continuous inverse operator is based
on a sum of the coupling matrices. Algorithm 1 details the
computation of the continuous inverse based on the values of
all the coupling matrices. The computation of the coupling
matrices is then detailed in Algorithm 2.

To perform the scan of all the members ofP(k) (as
expressed in Line 3 of the algorithm), two solutions are
possible. The first one is to exhaustively describe off-lineall
the subparts of1..k, and to store the result in a list, which can
then be scanned during the control. The exhaustive description
is costly, but has to be done only once. The second solution
is to use the binary representation of the integers as a unique
representation of each subpart of1..k by defining the following
bijective association:x =

∑k
i=0 bi2

i →
{
i, so thatbi = 1

}
,

where (b0...bk) is the binary representation ofx. Using this
bijection, the set of all subparts can be scanned directly by
covering all the integers fro0 to 2k. On the opposite, the scan
of P expressed by Line 5 of the algorithm is simply realized
by expressingP as a list.

As already said, each specific coupling matrixXP can be
computed as detailed in the recursive Algorithm 2. As previ-
ously, the loop Line 7 is performed by using the equivalent
integer representation of the subset. The computation of each
matrix XP has to be performed only once, by storing the
already-computed value in an appropriate structure.

D. Continuous control law

Based on this new inversion operator, it is possible to
propose the following control law:

q̇ = −λJ⊕He (43)

Thanks to the nice properties of the continuous inverse, the
control law (43) is continuous everywhere. Moreover, when
all the features are fully active or fully inactive (i.e. ∀i =
1..k, hi ∈ {0, 1}), the control law (43) is equivalent to the
classical control law (2) (i.e. q̇ = −λJ+

AeA, whereeA is the
active part ofe). As shown in the following paragraph, (43)
has thus the same stability property of the equivalent task.In

Algorithm 2 Calculate the coupling matrixXP

Parameters: JacobianJ, subsetP
Ensure: XP is computed

1: (k × n) ⇐ dimJ
2: H ⇐ 0k×k
3: for all i in P do
4: H(i, i) ⇐ 1
5: end for
6: XP ⇐

(
HJ

)+

7: for all Q ( P do
8: XP ⇐ XP − XQ
9: end for

particular, if all the features are active at the desired position,
the control law (43) is locally asymptotically stable at task
completion.

E. Stability of the control law

Theorem 5.2 (Asymptotical statibility at binary activation):
Let e be a task whose activation is denoted by the diagonal
matrix H and whose JacobianJ = ∂e/∂q is full rank.
Let eq denote the equivalent active task (eq = He) whose
Jacobian is denotedJq. Then, when all the components of
H are binary (i.e. ∀i = 1..k, hi = 0 or hi = 1), Control
Law (43) has the same local properties of stability than the
equivalent active task functioneq:

• it is stable in the sense of Lyapunov.
• it is asymptotically stable in the sense of Lyapunov ifJq

is full rank.

Proof: The control law associated to the taskeq is

q̇ = −λ
(
HJ

)+
He (44)

From the first point of Definition 5.1, control law (43) is equal
to (44) when the components ofH are 0 or 1. Then locally it
has the same properties of stability as given by [25].

This last result is particularly interesting when the activation
is binary around the desired position, as formalized by the
following corollary.

Corollary 5.1: (Local asymptotical stability around the de-
sired position):Consider the task

(
e,H,J

)
, whose desired

position is a submanifold of the activation area,i.e. for all
configurationsq, if e(q) = 0, thenH(q) = I. Then the
control law (43) is asymptotically stable in a neighborhood
around the desired position if the matrixHJ is full rank at
the desired position.

Proof: Let D∗ =
{
q : e(q) = 0

}
denote the goal

position, andV = 1
2e

⊤He. V is a positive continuous
function of the configurationq. In the manifoldD∗, we have
H = H2 and Ḣ = 0: thus the derivativeV̇ is equal to
V̇ = −λe⊤HJ

(
HJ

)+
He = −eq

⊤JqJq
+eq < 0 (with eq

the equivalent active task function whose Jacobian isJq).
Since V is continuous with respect to the configuration in
the closed setD∗, there exists an open neighborhoodN of
D∗ such thatV̇ < 0 insideN . In N , the control law (43) is
asymptotically stable in the sense of Lyapunov.
Remark 5.3: The case of Corollary 5.1 is the one considered
in the experiments presented in Section VI: as explained in the
following, at the desired position, all the visual featuresare in
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the fov of the camera and are thus active in the control law.
On the opposite, it has not been possible yet to demonstrate
the stability of the system when0 < h < 1. In particular,
when the desired position is inside the activation border, we
have only be able to verify experimentally that the behavior
of the system seems appropriate.
Remark 5.4: (Bounded-input bounded-output Stability)If
the JacobianJ is considered constant, the continuous inverse
J⊕H is simply a polynomial form:

J⊕H = Polyn(h1, . . . , hn) =
∑

P∈P(k)

monomP [hi] XP

(45)
where monomP [hi] is a product of the subpart of thehi.
Since thehi are bounded by[0, 1], the polynomial form is
k-Lipschitz continuous, with a constantk that depends on the
coupling matricesXP . It is therefore possible to prove the
bounded-input bounded-output (BIBO) stability. However,the
better bound that we have found for the constantk is 2k, where
k is the number of features, which is not relevant in practice.

VI. EXPERIMENTAL RESULTS

We present in this section several experiments that study
the behavior of the system running the new control law
presented in the previous sections. The experiments have
been realized in simulation, using the classical visual servoing
scheme based on feature points [13], which is first recalled.
Three typical experiments are then presented in details. During
the execution, some points may leave the camera fov. They
are then removed from the feature set. As done in [12], an
activation buffer is defined at the image border to smoothly
inactivate the feature that are leaving the fov.

A. Visual servoing implementation

The work presented above is general and could be applied to
any robotic task defined by a derivable errore. In the follow-
ing, the error function is computed from visual features [13]:

e = s − s∗ (46)

where s is the current value of the visual features for task
e and s∗ their desired value. In the experiments, the visual
features are the 2D positionspi = (xi, yi) of a set of points,
whose 3D positions within the camera frame are denotedPi =
(Xi, Yi, Zi). ṡi = Lsiv, wherev is the instantaneous camera
velocity. For one pointpi, Lpi

is the well-known matrix given
in [11]. The interaction matrix of the taske is finally L =
(Lp1

, . . . ,Lpk/2
). From (46), it is clear that the interaction

matrix L and the task JacobianJ are linked by the relation:

J = LMJq (47)

where Jq is the robot Jacobian (ṙ = Jqq̇) and M is the
matrix that relates the variation of the camera velocityv to
the variation of the camera pose parametrization (v = Mṙ).

As already said in II-A, an approximation̂J has to be used
in practice. In particular, different choices are possiblefor L̂

[15]. We choosêJ = L∗MJq, whereL∗ is the interaction
matrix computed at the desired position. This choice is fre-
quently done since it reduces the risk of falling in a local
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Fig. 2. Experiment 1: points trajectories in the image. At the beginning of
the servo, Point 2 is out of the image. The two desired positions are within
the full-activation area. Control law (19) using a too largevalue of η, even
if the velocity is continuous, is unable to converge and thusto achieve the
task. On the opposite, control laws (18) and (43) manage to reach the desired
position. Control law (18) provides an image trajectory which is quite abrupt
when the points enter the activation area. On the opposite, the trajectories
using control law (43) are smooth.

minimum. However, due to this approximation, some points
may leave the camera fov during the servo [5]. These points
are then removed from the feature set as proposed in [12]. The
error task is a varying-feature-set task based on (46), defined
by eq = He. H is the activation matrix whose coefficients
hi are defined byh2i = h2i+1 = min(hx(xi), hy(yi)) The
horizontal activation functionhx is defined by:

hx(x) =





1 if x̄− + ǫx ≤ x ≤ x̄+ − ǫx

0 if x ≥ x̄+ or x ≤ x̄−

fǫx

(
x − (x̄+ − ǫx)

)
if x̄+ − ǫx ≤ x ≤ x̄+

fǫx

(
(x̄− + ǫx) − x

)
if x̄− ≤ x ≤ x̄− + ǫx

(48)
where[x̄−, x̄+] is the horizontal range of the image,ǫx tunes
the length of the transient interval and the transient function fǫ

is defined byfǫ(x) = 1
2

(
1 + tanh( ǫ

x − 1
1−x/ǫ )

)
. The vertical

activation functionhy is defined similarly.H defines around
the image anactivation bufferwhere the feature that is leaving
the fov is progressively and smoothly inactivated.

B. First experiment: non-redundant task

The first experiment has been realized using a two-point
target. The dimension and the rank of the task are thus both
equal to4 at full activation: the task is always non redundant.
At the initial position, one point is out of the fov. We mainly
consider the continuity of the control law when the point enters
the fov. The experiment is summed up in Figures 2 and 3.

The continuity of control laws (17), (18), (19) and (43)
are compared in Fig. 3. As shown in Section IV-C, (17)
and (18) are equivalent in this case. An acceleration peak
appears at rank change (see Fig 3-(a) and (b)). An inflection
point (corresponding to a discontinuity of the derivative)also
appears in the point trajectories (see Fig. 2).

Control law (19) is able to ensure the continuity ifη
is properly set. However, Fig 3-(c) and (e) point out the
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(c) Control law (19), η =1e−9
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(d) Control law (19), η =1e−3
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(f) Control law (43)

 

 

Tx
Ty
Tz
Rx
Ry
Rz

Fig. 3. Experiment 1: Comparison of the acceleration peaks when using
control laws (17) on (a), (18) on (b), (19) with several tuning on graphs (c) to
(e) (η = 1e−9, 1e−3 and1) and (43) on (f). The acceleration is measured at
the robot end effector,i.e. at the camera focal point. Since the main relevant
situation occurs when the second point enters the camera fov at iteration200,
the plots have been limited to the interval[0, 500]. Control laws (17) and (18)
are unable to ensure the continuity. Concerning (19), the greater the tuning
parameterη, the smaller the acceleration peaks are. A good compromise is
obtained for this experiment withη = 1e−3 (with η = 1, the behavior seems
to be correct while looking the continuity, but Fig. 2 shows that it is not when
considering the overall task). Control law (43) also provides a smooth control,
with no peak of acceleration.

importance of the thresholdη of the damped-least-square
operator. Whenη is too small (Fig. 3-(c)), the same peak of
acceleration as with (18) is obtained. The moreη increases,
the more the acceleration peak decreases (until disappearing,
see Fig. 3-(d)). However, ifη is too large, the convergence
becomes very slow (like if using the transpose operator). In
some particular cases, the robot is unable to converge (see
Fig. 2). A good trade-off has to be carefully selected (it is
obtained here withη = 1e−3). This experiment emphasizes
that it is very difficult to find a correct value for any conditions.

Finally, the original control law (43) provides a good
behavior. The control law is continuous (see Fig. 3-(f)), and
the acceleration is similar to the one obtained with (19) forthe
best tuning ofη. The good properties of (43) are also visible
on Fig. 2: the point trajectories are smooth and continuous.

C. Second experiment: oscillations at rank change

This experiment illustrates the problems that may occur if
the control law is discontinuous. In the case presented below,
the classical control laws oscillate when a point leaves the
camera fov, which could even prevent the convergence. This
problem is solved when using a continuous control law. The
experiment is summed up in Figures 4, 5, and 6.

The target used in this experiment is the same as for
Experiment 1. Two points are considered, which gives a task
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Fig. 4. Experiment 2: image point trajectories. The main required motion is
a rotation around the optical axis. With the classical control law (18), Point
P2 leaves the image. Due to discontinuities in the control law, oscillations
appear then in the control, andP2 oscillates around the image border. The
point is stuck up at the border and the servo is even unable to converge.
With an appropriate tuning of control law (19) or with the continuous control
law (43), the servo converges.

of dimension and rank4. The required displacement is mainly
a large rotation around the optical axis. During the rotation,P2

gets close to the activation border (see Fig. 4). At this point, if
the two points are considered in the feature set, the computed
control makesP2 leave the camera fov. On the opposite, if
considering only the pointP1 remaining in the fov, the control
becomes mainly a pan-tilt motion that tendsP2 to enter again
the activation zone. The oscillation observed is thus due to
this dilemma: ifP2 is inactivated, it enters the image which
activates it, which makes it leaves the image, etc.

The oscillation occurs due to the control law discontinuity.
Control laws (17), (18) and (19) withη too small oscillate,
(see Fig. 5). Moreover, (18) is unable to leave the oscillation
area: the servo does not converge. On the opposite, using (43),
the control is smooth, and no oscillation appears (see Fig. 6).

D. Third experiment: redundant task

This last experiment points out the discontinuities that can
occur with a redundant task when a non-redundant feature is
inactivated. The target is composed of eight points. The global
task is thus fully redundant. The desired motion is mainly
a rotation around the optical axis. While performing this
motion, a large amount of points initially close to the image
borders leaves the camera fov. Due to the point inactivations,
the task becomes redundant, then not redundant (between
iterations 150 and 500, only two points remain within the
camera fov). Finally, when the robot achieves the required
motion at the end of the execution, all the points enter
the image frame again and the global task converges. The
experiment is summed up on Figures 7, 8 and 9. The behavior
is equivalent when using (17), (18), (20) or (19) with a low
gain η. Therefore, we only give the graphics for (19) with
different values forη.

The point trajectories obtained with control law (19) are
given in Fig. 7-(a). They are very abrupt, showing large
inflection points when a point enters the image. WhenP3

enters back in the active area, it is temporarily stuck on the
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Fig. 5. Experiment 2: The six components of the camera velocities using
control laws (17) without approximation, (18) with a partialapproximation
and (19) with the damped least square inverse operator. Oscillations appear
whenP2 reaches the image border (at Iteration100).
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Fig. 6. Experiment 2: velocities of the camera using control law (43). The
control law is continuous.

activation border, causing oscillation in the control law.This
is due to a similar phenomena as in the previous experiment.
The point is finally detached from the border whenP1 enters
the activation area (the task becomes then fully redundant). On
the opposite, the trajectories using (43) are smooth, without
any inflection point nor oscillation.

The required accelerations are shown on Fig. 8. Whenη is
small, (19) produces strong peaks of acceleration (see Fig.8-
(a)). We can notice the peak at iteration 250. At this time,
three points are active. The task is fully redundant. However,
it is still ill conditioned [5], which finally also produces a
discontinuity. While increasing the damping parameterη, the
accelerations peaks are reduced (Fig. 8-(a) and (b)). For this
experiment, thegoodvalue ofη is 1e−2. This emphasizes the
difficult choice ofη, that has to be tuned differently for each
experiment. On the opposite, Fig. 8-(d) shows that the control
law (43) is continuous. No acceleration peak appears, whatever
the rank of the conditioning of the task is.

Finally, the computation cost of the control law (43) is given
in Fig. 9. The computations have been realized without special
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Fig. 7. Experiment 3: point trajectories (a) using (19) (b) using control law
(43). Using (18),P3 then oscillates around the activation border. Using (43),
the trajectories are smooth. The general form of the trajectories is similar to
(a) but smoother, andP3 does not oscillate when it is activated again.
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Fig. 8. Experiment 3: comparison of the accelerations observed when using
control law (19) with different values ofη and using control law (43).
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Fig. 9. Experiment 3: Cost of the control law computation. The cost directly
depends on the number of features inside the activation buffer (i.e. whose
activation parameterh is such that0 < h < 1.

optimization on a classical desktop computer (Pentium 2.3GHz
monocore). Moreover, all the computations are done online:no
special pre-process is perform beforehand. The cost increases
with the number of features inside the activation buffer. The
total cost is far below the milisecond, which makes it sufficient
for application on a real robot.

VII. C ONCLUSION

This paper has considered tasks defined by a set of features
whose dimension is varying along the time. Such tasks have
been addressed in the literature for several applications.Clas-
sically, the variation of the size of the feature set is performed
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by using an activation matrix whose value varies between0
and 1. Within this context, a natural interrogation concerns
the behavior of the resulting control law at the critical point
of activation or inactivation of a feature. We have studied this
situation, through several combinations and approximations of
the Jacobian associated to such varying feature set.

The main point of this theoretical study is that unsing an
activation matrix with a classical pseudo inverse is inefficient
to ensure the continuity when the input signal is not fully
redundant. It has been proved that the pseudo inverse is always
discontinuous at the activation of a non redundant feature
except in the particular case of a perfect decoupling.

To deal with this problem, an original inverse operator has
been introduced. It insures the continuity even when the rank
of the Jacobian changes. This new inversion operator has then
been used to define a new control law, continuous everywhere.
The good properties of this control law have finally been
verified through several visual-servoing experiments.
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