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Abstract— This paper presents a method to determine the
rough shape of an object. This is a step in the development of
a ”One Click Grasping Tool”, a grasping tool of everyday-life
objects for an assistant robot dedicated to elderly or disabled.
The goal is to determine the quadric that approximates at
best the shape of an unknown object using multi-view mea-
surements. Non-linear optimization techniques are considered
to achieve this goal. Since multiple views are necessary, an
active vision process is considered in order to minimize the
uncertainty on the estimated parameters and determine the
next best view. Finally, results that show the validity of the
approach are presented.

I. M OTIVATIONS

Much technology remains to be developed to assist people
with disabilities. Robotic assistance may help these people to
recover some manipulation capabilities by achieving actions
such as carrying, grabbing, picking up and moving objects
[11]. As the severity of the patient’s handicap increases, the
complexity of the devices to use increases. This requires
significant efforts to simplify the interactions between the
patient and these devices.

This paper presents our work and results produced on a
”One Click Grasping Tool”, a solution for grasping everyday
life objects which only requires one click from the user.
The aim of this work is to provide an intuitive tool able
to seize objects presented in an unstructured manner and
with no previously known shape [4]. The robotic system is
a manipulator that can be mounted either on a wheelchair
or on a mobile robot. It is equipped with a gripper and
two cameras. One camera is mounted on the effector. The
other one is mounted on the top of the wheelchair or on the
mobile base and observes the scene. In a previous work [4]
we have proposed a method that allows the user, through
a single click, to select the object of interest in the remote
camera view. After a search step, the effector camera is then
automatically focused on the object.

However the system needs more information to achieve a
relevant grasp of an unknown object in an unknown pose.
This is the goalt of this paper. It is assumed that a convex
rigid object can be grasped by aligning the gripper with its
minimal dimension while being perpendicular to its major
axis. These are the features that have to be recovered from
a set of images of the object. Let us advocate that our goal
is not to build an accurate 3D object reconstruction but to
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gather enough information to allow a manipulator to grasp
it using visual servoing techniques.

Our approach is based on contour analysis and implicit 3D
reconstruction methods. In this paper, the considered objects
are modeled by quadratic functions. They have the property
to project as conics that may be tracked over an image
sequence. Then, the parameters of the quadric that fits the
image data are estimated using non-linear minimization tech-
niques. Depending of the taken views, some ambiguity may
remain on the estimated parameters of the quadric. Hence,
an active vision step is considered in order to minimize the
uncertainty on the parameters estimation and determine the
next best view.

II. RELATED WORK

In the past decades grasping of unknown objects has been
investigated. This kind of application raises several issues.
The first one is the selection of the information that is
used to perform the grasping. The second one deals with
an “exploration” task that allows sensors to get relevant
information.

Regarding image based methods for grasping an unknown
object, [7] proposes to use stereo vision information to
determine the grasping points. The object to grasp lies in
a known scene. The object segmentation is performed by a
simple image difference between the current view and the
known background. Then the 3D skeleton of the object is
computed and used to determine the grasping points. In [12]
a method to seize unknown plane dark objects on a white
table is proposed. The grasping points are determined using
the 2D moments. In [6] the ellipsoid that best fits an object
set on a textured background is found. A parametric motion
estimation algorithm [10] is used to detect the object that is
not in the major plane of the scene. Then, using a proba-
bilistic scheme, the ellipsoid that is inside the intersection of
all cones generated by the image contours is computed.

In [13] the grasping points of an object of unknown
shape are defined by using a learned model data base. Five
categories of object shapes and their grasping points are
learnt. When a new object has to be grasped, it is associated
to a category which determines its grasping points. Given
these five models, a huge variety of objects are grasped in
unstructured environments.

In [15] the object is represented by a set of super-
ellipsoids. A laser sensor is servo in such a way to reduce the
uncertainty on the estimated 3D functions. Even if it deals
with the different field of object recognition, this approach
can be related to ours. While this technique is based on the
3D points provided by a laser range finder, our technique



used 2D information extracted from a set of views of the
object.

Our method uses no a priori knowledge about the object
except that it is roughly convex. We assume that the neces-
sary features to perform a proper grasp are the following:
the object major axis, its centroid position and its rough
size. These features are contained by the quadric that best
fits the object. To solve the first problem the parameters of
this quadric are estimated in a determinist way using the 2D
apparent contours extracted from the views of the object.
The exploration problem is solved in a similar way to the
solution proposed by [15]. The camera is controlled to reduce
the uncertainty of the estimated parameters.

III. M ODELING ISSUE

This section proposes a method to describe an object using
a compact representation based on the computation of the
quadratic function that best fits 3D shape of the object. The
aim is to find the major object axis orientation, the position
of its centroid and its approximate scale. Such information
is critical for a grasping task.

A. The quadric representation

Let h(wX,w Q) be the quadric wherewX is a 3D point
expressed in the world frameRw andwQ = (wq0, . . . ,

w q9)
>

its parameters. Let us note that in the reminder of the paper
Q is expressed, if not specified, inRw. The equation of a
quadrich has the following expression:

h = X>Γ X, (1)

whereΓ is the symmetric positive matrix associated to the
quadric:
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B. Computation of the object features

Given the parametersQ of the quadric inRw, the features
needed for the grasping can be computed (see Fig. 1). The
centroid of a quadric is the pointXc where all the partial
derivative ∂h

∂X , ∂h
∂Y , ∂h

∂Z are null. The inertia axes of the object
can be found by considering the eigen space associated with
wΓq. The major axis direction is the eigen vector related to
the largest singular value and the small axis is related to the
smallest singular value.
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Fig. 1. Quadric Frame

C. Projection in the image plane

Using the perspective projection equations (x = X/Z, y =
Y/Z) and given that the contour generator is a set of points of
the quadric surface at which rays are tangent to the surface,
it can be shown that the projection of a quadric in the image
plane is a conic:

g(x,c) = x>γ x (3)

where the parametersc= (k0,k1,k2,k3,k4,k5)
> are related

to the parameters of the quadric expressed in the camera
frame as follows:
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Hence, we can compute thec parameters of the projection
of a quadric in the image plane knowing the position of the
camera and theQ quadric parameters. At the opposite, if we
know a set of positions and the set ofc parameters of some
conics measured for these positions of the camera, we can
infer the parametersQ of the corresponding quadric in the
world frame.

IV. ROUGH SHAPE ESTIMATION FROM MULTIPLE VIEWS

Given some views of an object and the positions from
which they have been taken, we aim to find which quadric
best fits the shape of the object. Figure 2 presents the
general fitting scheme. The yellow ellipsoid is the quadric
that best fits the real object, whereas the red ellipsoid is
the currently estimated quadric. In each view, an image
processing algorithm gives us a set of 2D pointsx (in green)
that are on the apparent contour of the object. Thus the fitting
process consists in fitting the projection of the reel quadric
with the green measured conic.

Extracted Contour Points

Estimated quadric

Real Object

Estimated conic

Mobile camera views 

...

...

Fig. 2. Quadric fitting scheme

A. Conic parameters from 2D measurements

From a general point of view, given a set of pointsx(x,y,1)
detected on the object apparent contour (see section VI), it
is possible to estimate the parameters of the conic that best
fits this set of points by solving a least square problem [16].

In every object view, we measure the best fitting conic of
parametersc and we store it along with the position from
which the view has been taken as data set.



B. Cost function

Given a set of initial estimated parametersQ̂ and a set of
positions, we compute the estimated projectionĉ. We try to
fit the real measurementc with the estimated projection̂c.
The cost function to minimize is thus:

f (Q̂) = χ2(Q̂,x) = ∑
i j

(ĉi j −ci j)
2

σi
(5)

where i ∈ [0,5] is the index of theith parameter andj ∈
[0,N] the index of thejth view. The cost function can also
be written in a matrix form as the matrixF of dimension
dim(F) = (6N,1) which rows i are ˆci − ci and whereN is
the number of views we took. The corresponding Jacobian
matrix is J = ∂c

∂Q of dimension dim(J) = (6N,10).

CoefficientsQ̂ are estimated solving a non-linear system.
Considering non noisy data, the cost function is quadratic
in the neighborhood ofQ∗ and its minimum value can be
obtained using least square estimation techniques. To ensure
the uniqueness of the solution we set thex axis related
coefficient toq0 = 1, i.e., we normalize all the coefficients
by q0 6= 01.

There are several methods to update the estimated parame-
ters during the optimization, among them, let us focus on the
Gauss-Newton and the Levenberg-Marquardt approaches:

• Gauss-Newton:

Q̂k+1 = Q̂k −αkHk(Q̂k)
−1∇ f (Q̂k) (6)

• Levenberg-Marquardt:

Q̂k+1 = Q̂k − (Hk(Q̂k))+ vkDk)
−1∇ f (Q̂k) (7)

In both casesHk(Q̂(k)) = J(Q̂k)
>J(Q̂k) is the Hessian

of the cost function and∇ f (Q̂k) is defined by∇ f (Q̂k) =
J(Q̂k)

>F(Q̂k).
On one hand, the Gauss-Newton step needs a linear

estimation, in the downhill direction, of a criterionα that can
be time consuming while, on the other hand, the Levenberg-
Marquardt method requires the computation of the parame-
ter vk.

When dealing with noisy data, computing the downhill
direction given byH−1JTF of the Gauss-Newton method be-
comes a real issue as soon as the Hessian matrix becomes ill
conditioned and lead to a divergence of the minimization. For
its part, Levenberg-Marquardt algorithm may require many
iterations leading to a slower convergence. Thus we propose
to use a mixed method between Levenberg-Marquardt and
Gauss-Newton. It uses a step of Levenberg-Marquardt when
the matrix is ill conditioned otherwise a Gauss-Newton step
is considered.

An estimation error may also arise from the 2D conics
measured in the views. To cope with the views for which the
conics are ill measured, due to the noise, we propose either to
use a robust estimation technique [9] to give a higher weight
for the ”good views” and a lower weight for the ”outliers

1This can be done without loss of generality because the caseswhere
q0 = 0 are degenerate quadric that cannot represent a real 3D object.

views” or to remove the views that are the more ambiguous
at the end of the estimation process.

[15] shows that at a given camera position, and for some
estimated parameterŝQ, the uncertaintyU(wM c,Q̂) on the
parametersQ is:

U(wM c,Q̂) ∝
√

JTCJ ∝
√

JTH−1J (8)

Hence, we can use theU value either to remove the views
that are the more ambiguous or use a robust estimation over
all the views.

V. CLOSING THE LOOP:
COMPUTING OPTIMAL CAMERA MOTIONS

We have shown that thêQ parameters of the currently
estimated quadric can be inferred from several views of an
object. However it can happen that the current views do
not provide enough information to accurately compute the
parameters. For example, when the successive positions of
the camera are too close to each other, the information on
the object depth is not reliable and the parameters related to
it may be ill estimated although the measured and estimated
conics fit perfectly in each image plane.

Thus, in order to refine the estimation of the parameters,
more views need to be taken. The issue is then to find a
criterion that can help us to compute the best direction for
the camera motion. We now look into active reconstruction
methods.

As shown in [15], it is possible to use the uncertainty
on the estimated parameters as a criterion to control the
camera displacement. The Shannon entropy can be related
to covariance matrixC of the estimated parameters. In [15]
the authors show that the best next direction can be obtained
by minimizing det(C), i.e.by finding the view where the
uncertainty decrease the more or the parameters vary the
more.

The determinant of the covariance matrix for the iteration
k in the optimisation process can be defined as:

det(Ck) = det(Hk)
−1 (9)

Besides, [15] shows that the Hessian matrix can be computed
as the sum of the Hessian for each view:

Hk+1 = Hk +JT
k+1Jk+1 (10)

where Jk+1 is the Jacobian matrix associated to the next
tried view. It is directly related to the positionwM ck+1 and
the currently estimated parametersQ̂.

Then the next best location is

wM ck+1 = argmax
wM c

(det(Hk +J>k+1Jk+1)) (11)

The relation betweendet(C) and the uncertainty is true in
the neighborhood of the current sensor position, where the
linear approximation of the function is true [15]. The mobile
camera velocity is computed so as to move in the direction of
the next best view. Yet it can be noticed that as soon as one
parameter is well estimated its related eigen value is zero.
Consequently the determinantdet(C) is also zero even if the



other parameters are badly estimated. Hence we propose to
use an other criterion that is the Froebenius norm ofC, that is
the sum of the squared eigen values of the positive symetric
C matrix. Besides, computing this criterion is less time
consuming than computing the determinant. Some results
are shown in the next section. The determination of the
next camera location is a non linear minimization problem
without analytic Jacobian computation. To tackle this issue,
we have chosen to use the Simplex method of Nelder and
Mead. This method only requires some evaluations of the
cost function at some points that are the vertices of the
current Simplex. Using this approach, only the translational
velocity is computed. The rotational velocity is computed so
as to keep the projection of the centroid of the estimated
quadric in the center of the image plane by using a visual
servoing scheme [5].

VI. D ETECTION OF THE OBJECT CONTOUR IN THE IMAGE

PLANE

We proposed here to use active contours to extract the
points required to compute the 2D conics as described in
section IV-A. Indeed, since their first introduction [8], active
contours have proven to be very powerful in various contexts,
including edge detection and target tracking.

They are deformable curves which are defined in an
image domain and move under the influence of internal
forces coming from the curve itself and external forces
generated from the image (typically gradient information for
edge detection). We consider here a curve parameterized
by a vectora: Ca(x(u)). This curve moves according to
the evolution of the components ofa [14], [1], [2] while,
with traditional methods (i.e.points-based), the curve directly
moves from points, then these latter approaches are local.
Conversely, using a parametric formulationCa implicitly
introduces global constraints. Consequently, they are usually
more robust, especially when dim(a) is low. They are also
more suitable for control issue. Indeed, the computation
duration is greatly reduced.

We defineCa(x(u)) by a polar description:

Ca(u) : x(u) = xc +ρa(u)

(
cosu
sinu

)
(12)

with u ∈ [0, 2π], xc being a point inside the contour. Besides,
we perform a Fourier expansion of the radiusρa(u):

ρa(u) = a0 +
k=h

∑
k=1

ak cosku+bk sinku (13)

where h is the number of harmonics. Thus, we have here
a = (a0, · · · ,ah,b1, · · · ,bh).

To derive the evolution equations ofa, the problem is set as
the minimization of the curve energyE(a) with respect to the
parametersa, leading to the following simplified associated
Euler-Lagrange equation:

γi
dai

dt
+

∂E
∂ai

= 0 (14)

where the curve is supposed to be massless and embedded
in a viscous medium of viscosityγi.

In our case, we only consider an external energy term
E(a) = Eext(a), that we write:

Eext = −

∫

Ca

∇∇∇I(x(u))>n(u)du. (15)

wheren(u) is the outward unit normal ofCa in u. Note that
∇∇∇I(x(u)) must also be computed as an outward vector. To be
more robust against the initialization ofCa, we also consider
a similar pressure force as described in [3]:fp = k1n(u) (with
k1 a scalar).

VII. E XPERIMENTAL RESULTS

This section presents a typical execution of the application
presented above. The experimental set up is shown in Figure
3. The mobile camera is mounted on the end effector of
a 6-DoF robot arm. Although we do not use any a priori
knowledge about the object or about the scene, the method
uses some heuristics. Firstly, the object is assumed to be
roughly convex. Secondly, the object can be segmented from
the background using an active contour.

Fig. 3. Experimental set up: a mobile manipulator equipped withan eye
in hand camera. An object which shape is a priori unknown lies in a scene
with a textured background.

A. Object segmentation and conic feature in 2D image.

The object is segmented from the background using the
method presented in Section VI. One of the main issue when
using active contours to detect an object is the initialisation
step. For the purpose of our application, the aim would be to
initialise the snake using only the user click on the image of
the remote view. In a previous work [4], we have shown how
to estimate the position of an object in the world frame from
one click of the user. Using this estimation and the current
position of the camera, the estimated position of the object
can be projected in the mobile view and the neigborhood of
this projection can be used as the initialisation for the snake.

Figure 4 shows that the segmentation is robust even in
the case of a cluttered background. The two images of the
top show the snake itself and the two other images show the
conic fit. Even if the object is not an exact quadric, we can
notice that the long axis of the conic is approximately the
object long axis and that the size can be roughly estimated.



Fig. 4. Some results of contour extraction and conic fitting using active
contours

B. Quadric estimation

Assuming an initial rough estimation of the position of
the object using the approach described in [4], the initial set
of Q̂ parameters are those of a sphere of radius the width
of the gripper (8cm) and centered on the estimated position
of the object. The projection of the estimated location can
also be used to create the seed for the active contour in the
effector camera view.

Considering a motion of the camera on a view sphere
around the object, images are acquired, conics are extracted
and finally a set ofQ̂ parameters is computed.

Fig. 5. a) Evolution of the quadric parameter estimation over the time
for simulation data. b) Initial state: The camera positions are represented as
small pyramids, the initial guess is represented in blue and real object in
represented in red. c) Final state. The final estimation (in blue) fits the real
object.

Figure 5 shows the evolution of thêQ parameters over the
time for simulation data. It shows the initial guessed stateand
the final state computed using the projection of the real object
in the camera views surrounding the object. The curves are
smooth and the parameters of the quadric converges towards
the real values. The left part of Figure 8 wrt the dotted
line shows the estimation of the parameters of the quadric
for real data. Because of the measurement noise, there is
more overshoot before the optimisation process converges
to the best values. Table I shows some results for different
optimisation methods. The Levenberg-Marquardt method and
our method give better results than the Gaussian estimation
process.

Method final cost # iteration norm of error
Levenberg-Marquardt 7.35e-13 7 0.089

Gauss-Newton 2.87e-10 101 0.126
GN robust 8.64e-06 101 0.034
LM robust 5.20e-06 101 0.191

Considered approach 5.60e-13 27 0.081

TABLE I

RESULTS OBTAINED ON QUADRIC PARAMETER ESTIMATION FROM6

VIEWS USING VARIOUS MINIMIZATION TECHNIQUES

Although correctly estimated from the available data, some
ambiguities may remain on the quadric parameters especially
when the views are close to each other, the object depth may
be ill defined.

C. Selection of the next best direction

In order to reduce the remaining ambiguities in the quadric
parameters estimation, we need to take more measurements,
and to move the camera as described in section V. The next
camera motion is computed in order to reduce the entropy
on the parameters set. To do so, the camera is controlled
toward the region where the parameters are the most likely
to changei.e.region where the ambiguity is high.

Fig. 6. The object has been seen from several views and a quadric that best
fits its 3D shape has been estimated. However some ambiguities remain on
the parameters and another view need to be taken. Those two vision spheres
show the location where the ambiguities are the highest in hotcolour. the
left vision sphere is obtained by using the determinant criterion whereas the
right one is obtained using the sum criterion.

Figure 6 highlights the regions on a view sphere where
the ambiguity of the parameter set is high (hot colors) and
those where the ambiguity is low (cold colors). The left
sphere depicts the determinant of the estimated Hessian if
the camera were moved on this position at the next step,
i.e.the product of the eigen values ofH. The right sphere
represents the Frobenius norm of the eigen values ofH if
the camera were moved to these locations. We can see that
many regions are in dark blue in the left sphere. This is due
to the fact that a view is considered to have a low uncertainty
as soon as one eigen value comes to zero whereas the other
can still be high. Using the sum of the eigen values instead
of the products tackles this issue.

Figure 7 illustrates the motion of the camera using both
criteria. The use of the determinant results in an eratic path
whereas the use of the sum results in a smooth path on the
view sphere. The parameters of the quadric are found within
approximately 10 views.

Figure 8 shows the evolution of the cost function and
parameters over the time when adding new views. Adding



Fig. 7. Camera motion along the reconstruction process. The red path is
the one found using the determinant criterion and the green path is the one
found while using the sum of the eigen values criterion

Fig. 8. Evolution of the quadric parameters estimation over the time for
real data. The dotted line represents the time where an additional view has
been taken. Every parameter changes until a minimum is reached.

new views leads to find a better estimation of the parameters
Q̂. If some ambiguity remains new views may be taken until
the Q̂ parameters do not vary any more.

Along with the estimation of the quadric parameters,
the object frame can be computed. Figure 9 shows some
results obtained for different objects. The blue array is the
major object axis, while the red array is the small object
axis. The estimated quadric is projected in the view as the
yellow conic. The red ellipse is the currently measured conic.
Knowing the object frame we can perform a 3D servoing to
align the gripper with the object frame and grasp it.

VIII. C ONCLUSION

In this paper, we have proposed an efficient solution to
estimate the shape of an unknown object in order to grasp
it with a robotic system. The object shape is approximated
by a quadric surface whose parameters are estimated using
multiple views of the scene. During the acquisition phase,
the robot motions are continuously optimized in order to
minimize the uncertainty on the estimated parameters by
selecting the next best view. Wrt many classical solutions,
our reconstruction process is directly based on the contours
of the object in the image. The solution is thus very fast,
allowing to compute the object shape in real time and to use
it in a closed-loop grasping task with the robot. The proposed
solution is fully generic and works for any roughly convex

Fig. 9. Results of the optimisation process. The object framesare projected
in the last view along with the currently measured conic (in red) and the
estimated conic in yellow. The blue array is the major axis and the red array
is the minor axis of the object.

object.
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