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ABSTRACT

This paper proposes an hybrid approach to estimate the 3D pose of
an object. The integration of texture information based on image
intensities in a more classical non-linear edge-based pose estima-
tion computation has proven to highly increase the reliability of the
tracker. We propose in this work to exploit the data provided by an
optical flow algorithm for a similar purpose. The advantage of using
the optical flow is that it does not require any a priori knowledge
on the object appearance. The registration of 2D and 3D cues for
monocular tracking is performed by a non linear minimization. Re-
sults obtained show that using optical flow enables to perform robust
3D hybrid tracking even without any texture model.

Index Terms— Hybrid tracking, robust tracking

1. INTRODUCTION

This paper addresses the problem of robust model-based tracking of
3D objects using a monocular vision system. It proposes to integrate
texture information based on the optical flow estimation in an edge-
based process to obtain a spatio-temporal tracker. The aim is to be
accurate and more robust to textured environments than classical 3D
trackers without adding any knowledge about the object texture.

Among the “classical tracker”, both contour-based trackers
(eg [1, 2, 3]) and textured-based trackers (eg [4, 5]) have comple-
mentary advantages and drawbacks. The idea is then to integrate
both approaches in the same process. Among approaches to cue
integration one can find:

• a sequential use of the available information (mainly motion
and edges) [6, 7, 8]. In these approaches, motion estimation
(dominant motion or optical flow) provides a prediction of
the edge (ie, of the 2D object location) which is helpful for
the contour-based registration step and improves tracking re-
liability.

• probabilistic approaches. Most of these approaches rely on
the well known Kalman filter, its non-linear version the Ex-
tended Kalman Filter (EKF) or particle filter. [9] integrates
the outputs from two trackers (a 3D model-based tracker [2]
and a point of interest tracker) using an EKF. [10] fuses
contour-based tracking and optical-flow estimation within an
Iterated Extended Kalman Filter to update object position.
Let note that many approaches rely on a particle filtering or
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Probabilistic Multiple Hypothesis Tracker (PMHT) but are
usually very slow.

• In [3] the proposed model-based approach considers both 2D-
3D matching against a key-frame that represents a single pose
as in a classical model-based approach but considering mul-
tiple hypothesizes for the edge tracking and 2D-2D temporal
matching (which introduces multiple view spatio-temporal
constraints in the tracking process). A nice extension is pro-
posed in [11] to integrate contribution of a contour-based
tracker similar to [1, 2].

However, adding texture information requires some more
knowledge about the object: keyframe or reference images for
example. Our aim is then to use hybrid technics such that the
only 3D information needed is the 3D model required for the
contour-based 3D tracker while keeping accuracy tracking. Tex-
ture information based on the optical flow provides texture-based
features by using only the images to be processed. Considering op-
tical flow [12, 13, 14, 15], the dense estimation of the motion fields
gives precise point correspondences without need to pay attention
to the feature selection. Using optical flow or dominant motion
estimation in 3D tracking has been already studied but mainly for
edge-based pose estimation initialization [7, 8]. This paper presents
an hybrid 3D tracker that integrates more closely a camera displace-
ment computation based on the optical flow estimation in a classical
edge-based tracker. Camera pose and displacement estimation are
both computed thanks to a unified full scale non-linear minimiza-
tion that consider edge-based information and motion field. To
improve robustness, M-estimator are considered at each level of the
algorithm.

Section 2 describes the general framework of our tracker. The
texture-based features are then described more precisely in Sec-
tion 3. Results on a video sequence are shown in Section 4.

2. HYBRID TRACKER: GENERAL FRAMEWORK

The basic principle of the proposed approach is an adaptation of the
one presented in [16]. The general overview will be briefly summed
up in this section. This paper will focus on the fact that the with-
drawal of the texture model does not lead to a less accurate tracker.

The approach consists of estimating the real camera pose tMo

by minimizing the error ∆ between the observed data s∗ and the
current value s of the same features computed using the model ac-
cording to the current pose:

∆ =

N∑
i=1

ρ
(
si(r)− s∗i

)2
, (1)



where ρ(u) is a robust function introduced in the objective function
in order to reduce the sensitivity to outliers (M-estimation) and r
is a vector-based representation of the pose tMo. A virtual cam-
era, defined by its position r in the object frame, can be virtually
moved in order to minimize this error. At convergence the posi-
tion of the virtual camera will be aligned with the real camera pose.
This can be achieved by considering a simple control law given by
v = −λ(D̂L̂s)

+D
(
s(r)− s∗

)
where v is the velocity screw of the

virtual camera, Ls is the interaction matrix or image Jacobian related
to s and defined such as ṡ = Lsv and D is a diagonal weighting
matrix given by D = diag(w1, . . . , wk). The weights wi reflect
the confidence in each feature and their computation is based on M-
estimators and is described in [1, 2].

s can be a contour-based feature or a texture-based one. De-
pending on the nature of the features, this approach can solve a
pose computation problem or a camera displacement one. As pre-
sented in [16], combining in this framework both approaches allows
to introduce a spatio-temporal constraint in the pose estimation by
considering information in the current and past images and the un-
derlying multi-view geometrical constraints. Equation (1) can be
rewritten as:

∆ = ∆1(
tMo) + ∆2(

tMo) with ∆1 =

M∑
i=1

ρ1

(
d⊥(pi, C(tMo)

)

(2)
that have to be optimized for the pose tMo.

∆1 accounts for the contour-based part of the tracker and rep-
resents the distance in the image between point extracted using a
low-level IP algorithm (local edge tracker) and the projection of the
contour C(.) for a given pose.

∆2 accounts for texture-based part of the tracker and makes
use of two consecutive frames. Rather than estimating directly the
pose it allows to compute the displacement between two successive
frames.

In [16], the texture-based features used in ∆2 are intensity val-
ues, which implies to acquire off-line some key images of the object
representing its texture and to compute the camera pose for each of
them. It may be too restrictive in some situations, as for example
outdoors environments or scenes with many planes. Our goal is
therefore to perform robust registration using a hybrid tracking with
less a priori knowledge or off-line computation as possible. In this
paper, we propose a hybrid tracker without a texture model. The
objective is to obtain a tracker that is based only on a classical 3D
model of the object but that fuses both contour-based and texture-
based features in order to keep the advantages of a hybrid tracker.

Since the contour-based features are similar to the ones used in
our previous work [16] or in a classical model-based tracker [2, 1],
the contour-based features related to ∆1 will not be described in this
paper. In our case we have used the approach fully described in [1].
We will focus in the next section on the texture-based ones.

3. FEATURES BASED ON OPTICAL FLOW ESTIMATION

The basic idea is to use the optical flow to provide information re-
lated to the camera displacement thanks to the relation that links the
position of point in two images acquired by a moving camera. Let
note tx the image points in the image It and t′x their correspondent

in the next image It′ . The optical flow estimation between these suc-
cessive images is performed as described in the next paragraph. The
resulting point correspondence (tx, t′x) is then used in the track-
ing framework to estimate the camera displacement as explained in
paragraph 3.2.

3.1. Optical flow estimation

The most accurate techniques to address the generic problem of esti-
mating the apparent motion from image sequences are based on the
seminal work of Horn and Schunck [12]. These techniques are for-
malized as the minimization of a global cost function H composed
of two terms (H = Hobs + Hreg). The first one is derived from
a brightness constancy assumption and assumes that a given point
keeps the same intensity along its trajectory. It is expressed through
the well known optical flow constraint equation (OFCE):

Hobs(I, v) =

∫∫

Ω

ρ2

[
∇I(p, t) · v(p, t) +

∂I(p, t)

∂t

]2

dp, (3)

where v(p, t) = (u, v)T is the unknown velocity field at time t and
location p = (x, y) in the image plane Ω, I(p, t) being the image
brightness, viewed for a while as a continuous function. Function
Φ is a penalty function that can be quadratic or a so called robust
penalty function to limit the impact of locations where the bright-
ness consistency assumption is violated[13, 14]. The single (scalar)
brightness consistency equation does not allow to estimate the ve-
locity vectors. In order to solve this ill-posed problem, it is com-
mon to employ the additional smoothness constraint Hreg . Usually,
this second term enforces a spatial smoothness coherence of the flow
field. It relies on a contextual assumption which enforces a spatial
smoothness of the solution. This term usually reads:

Hreg(v) = α

∫∫

Ω

ρ3

[|∇u(p, t)|+ |∇v(p, t)|2], (4)

The penalty function f2 is a usually a non quadratic robust penalizer
in order not to smooth out the natural discontinuities of the velocity
field [13, 14, 15]. α > 0 is a parameter controlling the balance
between the smoothness constraint and the global adequacy to the
observation assumption.

To handle large displacements and for a better computational
efficiency, the associated successive minimization are also usually
performed using efficient multigrid iterative methods [14, 15].

3.2. Computing the camera displacement

The displacement vectors vi obtained from the optical flow estima-
tion process enable to get the point correspondences (pi

t,p
i
t′) be-

tween two successive images by selecting the pt
i in the image It′

and computing their correspondent pt′
i following:

pt′
i = pt

i + vi (5)

These pixel correspondences give the texture-based part of the
objective function :

∆2 =

N∑
i=1

ρ2

(t′ trt(
tx

i
)− t′x

i)
, (6)



where t′trt(.) is the transfer function between image It and It′ .
The next paragraphs describe the transfer function t′trt(.) and

the interaction matrix needed in the non-linear minimization step.

3.2.1. Point transfer

Let us note that in the general case (that is a non-planar scene viewed
by a camera which rotates and translates), the point transfer can be
achieved, using multiple images, considering the epipolar geome-
try and the essential or fundamental matrices. In order to handle any
kind of camera displacement, this section will be restricted to the less
general case where point transfer can be achieved using an homog-
raphy. Indeed, some particular cases (planar scene, pure rotational
camera motion) lead the 2D transformation between two images to
be a homography. In that case, a point 1x in image 1 expressed in
homogeneous coordinates 1x = (1x,1 y,1 w), is transfered in image
2 as a point 2x, considering the following relation:

2x = 2tr1(
1x) = α 2H1

1x = α (2R1 +
2t1

1d
1n
>

) 1x (7)

where 2H1 is an homography (defined up to scale factor α) that
defines the transformation between the images acquired by the cam-
era at pose 1 and 2. 1n and 1d are the normal and distance to the
origin of the reference plane expressed in camera 1 frame. 2R1 and
2t1 are the rotation matrix and the translation vector between the two
camera poses.

Let note that this transfer function based on the homography
can be generalized to the general case of a non-planar structure as
in [16] by adding a parallax term that represents the relative depth of
the point with respect to a virtual plane.

3.2.2. Interaction matrix

The interaction matrix Ls is the interaction matrix that links the
variation of the point position 2x = 2tr1(

1x) to the camera mo-
tion [17]:

Ls =

(−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z (1 + y2) −xy −x

)
(8)

The depth information Z is computed at each iteration from the co-
ordinates (x, y) and from the equation of the reference plane updated
from the current camera displacement:

1/Z =
1d− 2t1

1n
2R1

1n 1x
.

4. RESULTS

This Section presents some tracking results to highlight the accuracy
of this hybrid tracker with respect to single cue trackers. Moreover,
we use as ground-truth the hybrid tracker described in [16] that uses
a texture model to show that no loss of accuracy is observed.

The edge locations and texture points used in the minimization
process are displayed in the first image (blue crosses for the texture
sample locations and red crosses for the edge locations). In the next
images, only the forward-projection of the model for a given pose
is displayed in green. For the texture location selection, a regular
sample is done from the center of each face. The number of tex-
ture points tracked by the optical flow and taken into account in the

minimization process by face is proportionnal to its visibility in the
image.

In the video sequence, the object to track is a box. The difficulty
is to deal with the specularities, changes in illumination and faces
apparition/disappearance that occur during the sequence.

Drift is observed when only the optical flow is used to estimate
the object pose. Indeed, the errors due to the spatial constraints in
the optical flow computation and displacement integration are not
corrected since there is no permanent reference image. As far as the
edge-based tracker is concerned, the main reason of failure is the
rotation of the object around itself. When faces appear or disappear,
the geometrical features to be tracked also change which may skew
the low level process that extracts the contours in the image. The
two hybrid trackers, the one presented in this paper using the optical
flow for the texture part and the one presented in [16] using a texture
model, succeed to deal with this problem, despite the fact there are
also strong specularities as shown in Figure 2.

Camera position and orientation parameters are displayed in Fig-
ure 1 for the two hybrid trackers. One can see that the pose estima-
tion is similar in both case though the hybrid tracking based on the
optical flow exploits less a priori knowledge about the object (only
the CAD model). Let us note that the smoothness of the estimated
parameter curves is directly due to the simultaneous fusion of two
complementary cues since no Kalman filter is used as in [10, 9].
This means that this kind of hybrid tracker can be used for applica-
tions where no object motion model is known, augmented reality for
example.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300  350  400

P
o
se

 p
ar

am
et

er
s 

Image

tx
ty
tz
tx
ty
tz

(a)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  50  100  150  200  250  300  350  400

P
o
se

 p
ar

am
et

er
s 

Image

rx
ry
rz
rx
ry
rz

(b)

Fig. 1. Pose parameters evolution for the two hybrid track-
ers. (a) position parameters, (b) orientation parameters. Even
though no texture model is used with the presented hybrid
tracker, the result remains as accurate as the hybrid tracker
based on reference images.

Fig. 2. An exemple of specularities observed during the se-
quence. M-estimators reject the outlier data (green points),
the remaining points being considered as inliers (blue points).

For both hybrid trackers, occlusions or errors in the contour
point tracking due to a textured environment are handled correctly
thanks to the M-estimators. Figure 2 shows an example of specular-
ities that occur during the tracking.



(a) (b) (c)

Fig. 3. Pose estimation. Comparison of the different trackers.
The hybrid tracker (b) presented in this paper, that integrates
the optical flow in the classical edge-based tracker, enables to
improve the pose computation as in the hybrid tracker (c) with
the same 3D knowledge on the object as in the classical edge-
based tracker (a) (while the hybrid tracker(c) uses a texture
model).

5. CONCLUSION

We are interested in hybrid trackers that enable to robustify a clas-
sical edge-based tracker by adding some information based on the
object textureness. The complementarity of the two types of fea-
tures helps to deal with a wider range of situations. In this paper, the
choice of the texture-based features relying on the optical flow esti-
mation enables to perform this integration without adding a texture
model (image templates) contrarly to previous works. We have cho-
sen to estimate motion of the object using a very precise optical flow
estimator. Nevertheless other approaches can be considered within
the same scheme such as dominant motion estimation, point tracker
(eg, KLT) or image-based template registration. A problem of drift
may appear, requiring to handle template update properly, however
this should allows a better computational efficiency.
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