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Abstract— In this paper we address the problem of the pose
estimation based on multiple geometrical features for monoc-
ular endoscopic vision with laparoscopes and for stereotaxy
with CT scanners. Partial and full pose estimation (6 dofs)
are considered with applications to minimally invasive surgery.
At the University of Strasbourg, we have been developing
a set of techniques for assisting surgeons in navigating and
manipulating the three-dimensional space within the human
body. In order to develop such systems, a variety of challenging
visual tracking and registration problems with pre-operative
and/or intra-operative images must be solved. This paper
integrates several issues where computational vision can play a
role. Depth recovery (from the tip of a surgical instrument w.r.t.
living tissue), the Plücker coordinates (4 dofs) of a markerless
cylindrical instrument, the 6 dofs of a needle-holder with an
heterogeneous set of features and stereotaxy are the examples
we describe. Projective invariants with perspective projection,
quadrics of revolution and stereotactic markers are features
which are useful to achieve the registration with uncalibrated
or calibrated devices.
Visual servoing-based tracking methods have been developed
for image-guided robotic systems, for assisting surgeons in
laparoscopic surgery and in interventional radiology. Real-time
endoscopic vision and single-slice stereotactic registration has
been proposed to retrieve the out-of-field of view instruments,
to position a needle and to compensate small displacements like
those due to patient breathing or any small disturbances which
may occur during an image-guided surgical procedure.

I. I NTRODUCTION

The field of vision-based robotics has been widely
growing for more than three decades, and more and
more complex 3-D scenes are within robot reach thanks
to better understanding of the scenes, improvement of
computer capabilities and control theory. The achievement
of applications like medical robotics, mobile robotics,
micro-robotic manipulation, agricultural automation or
the observation by aerial or underwater robots needs the
integration of several research areas in computer vision and
automatic control ( [19], [32]).
For the past two decades, medical robot and computer-
assisted surgery have gained increasing popularity. They
have expanded the capabilities and comfort for both
patients and surgeons in many kinds of interventions
such as local therapy, biopsies, tumors detection and
removal with techniques like multi-modal registration,
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on-line visualization, simulators for specific interventions
or tracking. Medical robots provide a significant help in
surgery, mainly for the improvement of positioning accuracy
and particularly for intra-operative image guidance [36].The
main challenge in visual 3-D tracking for medical robotic
purposes is to acquire the necessary video information from
images acquired with endoscopes [5], ultra-sound probe (
[17], [21]), scanners ( [26], [35])....so as to evaluate the
position and the velocity of the object of interest which
usually are anatomical or artificial landmarks attached to a
surgical instrument.

This paper presents several 3-D pose estimation algorithms
and visual servoing-based tracking with monocular vision
systems such as endoscopes and CT scanners developped
in an attempt to improve the guidance accuracy. These are
intended for the 3-D positioning and guidance of surgical
instruments in the human body. The efficiency of most of
model-based visual servoing approaches relies on correspon-
dences between the position of tracked visual features in the
current image and their 3-D attitude in the world space. If
these correspondences contain errors then the servoing usu-
ally fails or converges towards a wrong position. Overcoming
these errors is often achieved by improving the quality of
tracking algorithms and features selection methods ( [20],
[37]). Following this purpose, the paper integrates several
issues where computational vision can play a role:

1) estimating the distance between the tip of a laparo-
scopic instrument and the pointed organ with collinear
feature points,

2) estimating the 3-D pose of an instrument using mul-
tiple geometrical feature tracking and Virtual Visual
Servoing,

3) positioning a degenerate quadric-based instrument,
4) registering the position of a robot using stereotaxy

and a single CT slice.

The paper is organized as follows. In the next section, the
problem of the pose estimation of surgical instruments with
markers is stated and solved for full or partial dofs. In section
3, we focus on the positioning of the symmetry axis of a
cylindrical-shaped instrument. Applications of both sections
use endoscopic vision. The stereotactic registration witha
single view is studied as a pose estimation problem in section
4. Much of this material is taken from our recent publications
in this area.



(a) (b)

Fig. 1. (a) The laparoscopic experimental setup. The instrument is mounted on the end effector of a surgical robot and inserted through the abdominal
wall while the laparoscope is inserted through another insertion point. (b) An image-guidance with CT scanners feedback control during the percutaneous
insertion of a radio-frequency needle.

II. POSE ESTIMATION OF A LAPAROSCOPIC INSTRUMENT

WITH LANDMARKS

A. Pose estimation with collinear markers

There exist several difficulties when tackling the problem
of estimating the 3-D position of a laparoscopic surgical
instruments with a single endoscopic view. One difficulty
is the use of monocular vision which gives poor depth
information. Another one relies on the highly unstructured
nature of the scene with varying lighting conditions and with
a background moving due to breathing or heart beating. To
solve these problems, we conceived five years ago a special
instrument which projects a laser pattern onto the organ
surface in order to provide the relative orientation of the
instrument with respect to the organ, even if the instrument
is not in the camera field of view. Optical markers have
been added on the tip of the surgical instrument. These
markers (composed of three circular LEDs) were directly
projected onto the image and in conjunction with images
of the laser pattern, they were used to guide the instrument
(see figure 2). We combined image feature points (spots

Fig. 2. A surgical instrument with a laser pointing device (laser beam
- green cross) and three optical markers (blue crosses). Thecross-ratio is
computed and controlled in successive images so as to estimate the distance
and its variations between the tip and the pointed organ surface.

center coordinates) and depth information for positioning
the instrument with respect to the pointed organ [22].

1) Pose estimation with a calibrated endoscope:Recov-
ering the relative orientation (2 dof - the unit vectorr) and
position (3 dof - a vectort) of a set ofn collinear points
such as the optical markers and laser projections in figure 2
with respect to the camera has been previously investigated
by Haralick fifteen years ago [14]. The interpoint distances
(structure) and a focal lengthf of the camera are assumed
to be known. Haralick solved this problem with a linear
algorithm. LetP0 = t, P1 = t + λ1r,..., Pn−1 = t + λn−1r

be n discriminated points whereλi represents the distance
between the(i + 1)th and ith points. The first pointP0

is arbitrarly chosen as the origin (λ0 = 0), hence the
perspective projectionQi = (ui, vi, 1)T of the ith point is
given by

[0 0 1] (λir + t)





ui

vi

1



 = Kc (λir + t) (1)

whereKc is a (3 × 3) upper diagonal matrix containing the
internal parameters of the camera. From the above equation,
Haralick built an homogeneous linear system with an uni-
variate matrixKc = diag (f, f, 1) and vectorst and r as
unknowns
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A is a (2n × 6) real matrix and a closed-form solution can
be found withn ≥ 3 discriminated points. This system may
be reformulated as a classical optimization problem with an
equality constraint:

min ‖Ar r + At t‖ subject to rTr = 1 , (3)



whereAr andAt are two(2n×3) real matrices defined as:
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The solution forr is given by the eigenvector associated with
the smallest eigenvalue of the following symmetric matrix

E = AT

r

(

I − At

(
AT

t At

)−1
AT

t

)

Ar (6)

and the position vectort is straightforwardly given by the
expressiont = −

(
AT

t At

)−1
AT

t Ar r. We end up with two
different estimates forr (a twofold ambiguity in the sign of
r). However, for real objects placed in front of the camera,
the third component of vectort must be strictly positive
assuming that the cameraz-axis (usually, the optical axis)
is pointed towards the scene. This leads to the uniqueness
of the solution for the pose.
It worth pointing out that collinearity is a projective invariant
property which is not fully exploited in this technique for
pose recovery. Moreover, in presence of both noisy data
and close points in the object pattern, matricesAr andAt

are ill-conditioned, which introduces some significant bias
in the results. The use of the least mean squares and the
lack of data normalization in the original algorithm tend
the solution to be sensitive to the condition number. One
has to pay attention to data normalization since the pose
estimation may be computed with points not always well
scattered. This may also lead to numerical problems. To
lower the condition number, it seems advisable to normalize
data coordinates with an affine transformation as in [16].

2) Distance with Collinear landmarks:To perform a 3-D
positioning of an instrument with respect to an organ [22],
we need to estimate the distance between the instrument and
the pointed organ (depthd0 in figure 3). Since the three
optical markers centersP1, P2 and P3 are placed along
the instrument axis, we assumed they are collinear with the
laser spots barycentreP . Under this assumption, a cross-
ratio can be computed from these four points [28]. This
projective invariant can also be computed in the image using
their respective projectionsp1, p2, p3 and p (see figures 2
and 3) and can be used to estimate the depthd0. In other
words, since a 1-D projective basis can be defined either with

{P1, P2, P3} or their respective images{p1, p2, p3}, the-
cross ratio is a projective invariant built with the fourth point
(P or p). Consequently, a 1-D homographyH exists between
these two bases, so that the straight line∆ corresponding to
the instrument axis is transformed, in the image, into a line
δ = H(∆) as shown in figure 3. The cross-ratioτ is given
by:

Fig. 3. The basic geometry involved.

τ =

(
pp2

p1p2

)

(
pp3

p1p3

) =

(
PP2

P1P2

)

(
PP3

P1P3

) (7)

andd0 is obtained as

d0 = PP1 = (1 − τ)
P1P3

τ − P1P3

P1P2

= α
1 − τ

τ − β
(8)

whereα andβ depend only on the known relative position of
P1, P2 andP3. To simplify the computation of the cross-ratio
in the image plane, it’s necessary to characterize the straight
line δ in order to relate the pixels coordinates of an image
point p = (u, v, 1)T and its projective coordinates(sλ, s)T

on δ. Let (−b, a)T be the normalized cosine direction ofδ
andpk = (uk, vk, 1)T a point onδ. This gives:
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where(−c) is the orthogonal distance fromδ to the image
origin. The computation of the cross-ratio is then:

τ =
λ0 + p1p2

p1p2

p1p3

λ0 + p1p3

(12)



From equation (8), it is straightforward thatḋ0 is a func-
tion of τ̇ which, in turn, is a function ofλ̇0, ˙p1p2 and

˙p1p3. Similar computations lead to the same relationship
betweend2 and another cross-ratioµ defined with the points
P1, P2, P3, OQ and their respective projections provided that
oq, the perspective projection of the incision pointOQ (see
figure 3), can be recovered [10]. SinceOQ is generally not
in the camera field of view, this can be achieved by consid-
ering a displacement of the surgical instrument between two
configurations yielding straight linesδ and δ′ in the image.
Then,oq is the intersection of these lines given thatOQ is
invariant. Finally :

µ =

(
p1p3

p2p3

)

(
p1oq

p2oq

) =

(
P1P3

P2P3

)

(
P1OQ

P2OQ

) , (13)

d2 = P1OQ =

α
1−β

µ + β
1−β

. (14)
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Fig. 4. MarkersP1,P2,P3 on the tool axis∆ and their imagesp1, p2, p3

on line δ. Note thatoq = H(OQ) is invariant during surgical procedures.

B. Pose estimation with Multiple Features

1) Objectives and Related work:In many early works,
the images of laparoscopic instruments are segmented, in
order to control the position of the endoscopic camera.
These methods are based on the structure, mainly the
apparent lines of the instrument [1], [6], or on its frequential
features [9], [41]. In order to make the detection more robust
and accurate, instruments can be marked with structuring
markers as described before ( [1], [22], [43]) or frequential
(colour) markers ( [38], [42]). Most of these works use only
the 2-D position of the instrument in the image and the
accuracy of the features extraction is not so important for
aimed applications. On the contrary, the 3-D pose estimation
requires a very accurate features extraction step.

None of the known works have focused on the complete
6 dofs detection. To determine the six degrees of freedom,
the non symmetric part of the instrument has to be used
or the instrument has to be marked. The second solution
avoids using a CAD model and can be applied to any kind
of instrument. We use the marker presented in figure 5,

which is composed of twelve black spots on a white area,
building four ”marker lines” which can be discriminated
from each other by using the cross-ratio invariant. For more
information on the choice of this marker, the interested
reader can refer to [30]. The detection of this marker is
mainly based on the intensity of the white area and the
black spots in the endoscopic images. It can thus be used
in grey level images as well as color endoscopic images.
The results of the detection technique are shown in figure 5
for laboratory endoscopic images. The image features noted
s are n points corresponding to the inertia centers of the
visible spots (generallyn ∈ [0, 6]) and two linesl+ and l−

corresponding to the apparent contours of the shaft in the
endoscopic image and represented by their distanceρ to the
origin of the image and their orientationθ:

s =
(
l+, l−, p1, · · · , pn

)T

. (15)

Depending on the size of the white marker area in the
image, the complete extraction process can take up to200
ms. In order to track the instrument at higher rate, we have
developed techniques based on the moving edges method
due to Bouthemy [3]. The main difficulty is to track the
black spots which can appear and disappear, due to the
rotation of the instrument around its own axis, and possibly
due to occlusions. We have proposed a method based on the
prediction of the spots appearance and disappearance which
allows to track the markers without the need to register
the images of the spots with the real positions [31]. Thus,
the tracking of the instrument can be handled at a rate of
20 Hz as long as one spot is visible in the endoscopic images.

2) Pose Estimation of a Tagged Instrument:Our model-
based pose estimation process requires a calibrated camera.
Endoscopic cameras have a large field of view and include
large radial distortion. As a consequence, the calibration
method must estimate the distortion parameter [2], [39].
Only four degrees of freedom are necessary to estimate
the attitude of the instrument axis (see next section).
Theoretically, the 4 dofs of the pose can be determined
using the contour generator and its image (the apparent
contour) of the cylinder [8]. However, the positions of the
marking spots not only define the proper rotations and
translations, but also give information on the orientation
and position of the axis of the shaft. We then chose to
estimate the 6 dofs of the instrument. This can be done
with analytical methods using both the apparent contours
and one known point at the cylinder’s surface [29]. Other
methods, like those proposed by Horaud [18], Haralick [15],
DeMenthon [7] or Quan [33] for instance can also be used.

However, the full pose estimation is interesting for robustness
considerations only if all the available information given
by the apparent lines and all the spots is used. To this
purpose, the Virtual Visual Servoing (VVS) due to Marchand
and Sundareswaran ( [24], [34]) may handle the informa-
tion redundancy. VVS is a numerical iterative method for
minimizing the error between the extracted features and the



forward projection of the object in the images and based
on the image-based visual servoing (IBVS) schemes. This
process needs the computation of an interaction matrix which
relates the variations of each image feature and the the
camera velocity screwτ . With the image features we use,
the interaction matrixLs has the following form:










l̇+

l̇−

ṗ1

...
ṗn










=










Lline(l
+)

Lline(l
−)

Lpt(p1)
...

Lpt(pn)










(
cV C

c/i
cωc/i

)

︸ ︷︷ ︸

τ

. (16)

The interaction matrices associated to a pointLpt and to a
line Lline can be found in the works of Chaumette [11].
In order to guarantee a fast convergence and a good stability
of the VVS, it is useful to initialize the algorithm close
enough to the real pose. For this purpose, we use either
the DeMenthon iterative method when at least four points
are visible or the analytical 3-D pose estimation mentioned
earlier. From the obtained initial estimate, the following
control law is applied to the virtual camera

τ = −λL̃s
+
(s(r) − sd) (17)

until the control vector becomes smaller than a specified
value. The process converges quickly towards the real pose
of the camera (see figure 5 (c)).

(a)

(b)

(c)

Fig. 5. (a-c) The pose estimation as a virtual visual servoing process
with multiple geometric features (apparent lines, marker-lines and circular
needle). (a) The blue lines are the projections with the initial virtual camera
position. (c) The projections when the error vectors − sd tends to0.
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Fig. 7. A cylinder and its image with the perspective projection P. The
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P
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∆ is the axisls of the harmonic homologyH relating the apparent lines.

III. POSE ESTIMATION OF A LAPAROSCOPIC INSTRUMENT

WITHOUT LANDMARKS

A. Problem statement and perspective projection

The aim of this section is to briefly present a new
algorithm for the determination of the pose of a straight
homogeneous circular cylinders (SHCC) without markers,
that is to say directly from the apparent contour. More details
are provided in [8]. The apparent contour(γ) of a cylinder
is a set of points which intersect the viewline and the image
plane. It is the projection of a 3-D curve on the cylinder’s
surface referred to as the contour generator(Γ).
Given the matrixKc of camera intrinsic parameters, the
cylinder radiusrc and the apparent lines{l−, l+}, we look
for the estimation of the Plücker coordinates(r,w) of the
cylinder axis (see figure 7) satisfying the non-linear equation
rTw = 0. This means that one has to solve a polynomial
equation for a unique (double) solution (see [8]) that is, for
a null discriminant. This one equalsB2 − AC = 0 with







A = mT(Kc)−T[r]× [r]T×m
B = mT(Kc)−T[r]×w

C = ‖w‖2 − r2
c

(18)

and after some computations, it can be expressed as

(
rc B√

C
+wT(Kc)−1m)T (

rc B√
C

−wT(Kc)−1m) = 0 . (19)

If the scalarC ≤ 0, the projection centerCc = (0, 0, 0, 1)T is
located inside the cylinder (or on its surface, ifC = 0) and
yields no real solutions. We do not consider these special
cases in the remainder, we rather focus this work on the
more practical situation with real solutions. In the case ofa
circular cylinder with infinite height and a constant radius,
equation (19) shows that the apparent contour is a set of two
straight lines represented either with the pair of vectorsl−

and l+ satisfying
{

(l−)T m ≡ {(Kc)−T (I− α[r]×) w}T m = 0
(l+)T m ≡ {(Kc)−T (I + α[r]×) w}T m = 0

(20)
with α = rc/

√

‖w‖2 − r2
c , or alternatively with the real

(3×3) matrixC = l− l+T + l+ l−T satisfyingmT C m = 0.



Fig. 6. Segmentation of three endoscopic images of surgicalinstruments in the abdominal cavity. The degenerate conic fitting (in blue) with the overall
apparent contour of the two cylindrical instruments.

The latter is a rank-2 symmetrical matrix defined up to a
scale factor and both representations are equivalent to model
the apparent contour with4 parameters.

B. Direct pose computation

In this paragraph we present a linear algorithm for the pose
estimation. Starting from (20), the matrixC can be related
to the pose parameters since on the one hand, we have

KcT
C Kc ≡ KcT

(
l− l+T + l+ l−T

)
Kc

≡ (α[r]× − I) wwT (α[r]T× + I)

+ (α[r]× + I) wwT (α[r]T× − I)

≡ α2[r]×wwT[r]× + wwT

≡ [r]× (α2 wwT

‖w‖2
+

[w]×[w]T×
‖w‖2

) [r]T×

≡ [r]× (I− (1 − α2)
wwT

‖w‖2
) [r]T×

≡
(
I− rrT − zzT

)

=
[

a zu r
]





1 0 0
0 1 − σ2 0
0 0 0









aT

zT

u

rT





(21)

with z =
√

1−α2

‖w‖ [r]×w and the unit vectorzu = z/σ. On
the other hand, the SVD has the following expression

KcT
C Kc = U D UT = U diag(λ1, λ2, 0) UT. (22)

It is easy to see thatU =
[

a zu r
]

and

σ = ‖z‖ =
√

1 − α2 =

√

1 − λ2

λ1

.

Finally, w ≡ zu × r = a and

‖z‖ =

√

1 − r2
c

‖w‖2 − r2
c

⇒ ‖w‖ = rc

√

1 +
λ1

λ2

. (23)

Many results are provided in [8]. In particular, we have
compared the pose computation from the apparent contours
of cylinders and the Haralick’s method for the pose of a
set of collinear points [14] with some artificial markers
sticked on the cylinder’s surface. Here, we rather focus
the discussion on the application of concern which is the
image-guidance for intra-operative procedures in minimally
invasive surgery (MIS). In laparoscopic surgery, most of
surgical instruments have cylindrical parts and are metallic
(see figure 6 (top)) leading to grey regions with many
specularities in the image. Prior research involving such

endoscopic images have been conducted in the field of color
image segmentation [9]. Once regions have been segmented,
the region boundaries are ordered and used to perform a
degenerate conic-based contours fitting. With the calibrated
and distortion-corrected endoscope used in the experiments,
the 3-D localization of the two moving surgical instruments
in figure 6 (a-c) has been done with success for more than
300 successive images of the abdominal cavity of a pig.

With the proposed method, the location of each insertion
point in laparoscopy can be recovered, on-line, with no
marker, without any knowledge of robot kinematics and
without an external measurement device [10]. Since any
laparoscopic instrument is passsing through this point, the
motion constraint in MIS can be expressed as the intersec-
tion of multiple convergent 3-D straight lines. Since any
(homogeneous) pointX is on L if L⋆X = 0, given n
positions corresponding to the set of dual Plücker matrices
{L⋆

1, L
⋆
2, ..., L

⋆
n}, the intersection of lines is obtained with a

rank-3(4n × 4) matrix GT

n such that

Gn = [L⋆
1, L

⋆
2, ..., L

⋆
n] . (24)

That is to say the null-space ofGT

n must be a one-dimensional
subspace and the intersection may be computed withn (n ≥
2) 3D positions. By computing the SVD ofGT

n, one obtains
the common intersection with the singular vector associated
to the null singular value (or the smallest one in presence of
noisy data). Moreover, the perspective projection of the 3D
line Lj is the image linelj defined by

[lj ]× = KcPc Lj (KcPc)T = [(Kc)−T wj ]× ⇒ lj ≡ (Kc)−T wj ,
(25)

wherePc is the projection matrix. Since vectorlj is defined
up to a scale, it does not depend on the magnitude of vector
wj , hence then convergent image linesl1, l2, ..., ln must
satisfy

(
l1 . . . ln

)T

i =
(

w1 . . . wn

)T

︸ ︷︷ ︸

Wn

(Kc)−1 i = 0

(26)
wherei is the image of the insertion pointI. It follows that a
set ofn 3D straight lines is projected ton convergent image
lines if the above(n×3) matrix Wn is of rank 2. It is only a
necessary condition which does not ensure the convergence
of the 3D lines, but it makes very important the accurate
estimation of the imaged cylinder axis (lineslj), hence the
estimation of its Plücker coordinates.



(a) (b)

Fig. 8. ”Look an move” with CT scanners. (a) The needle is maintained in
the needle-holder jaws of a lightweight parallel robotic plateform (CT-Bot),
which has to be moved to the target point (right). (b) A new acquisition to
check for the final positioning.

IV. POSE ESTIMATION OF STEREOTACTIC LANDMARKS

This section deals with the 2-D/3-D registration of a
stereotactic frame from a single slice captured with a com-
puted tomography (CT) scanner. A registration with a single
image is very well suited for CT-guided robotic systems
in interventional radiology, particularly to quickly correct
the needle positioning (see figure 8) during percutaneous
procedures [27].
In stereotaxy, line fiducials are usually used to produce a
set of image points that are further employed in a pose esti-
mation algorithm. To achieve the registration, the matching
and pose estimation processes need to be robust and fast
enough so as to be convenient in clinical conditions. To this
end, a new formulation of the patient-to-modality stereotactic
registration with a single image and for any arrangement of
the fiducials has been proposed. It is worth pointing out that
our solution requires very few fiducials in comparison with
previous techniques.

A. The imaging model

Since most CT imaging devices execute some proprietary
algorithms to generate image slices and since these
algorithms usually are not in the public domain, we
consider the imaging device as a black box. In other words,
this work is focused on the delivery of a general framework
for 2-D/3-D registration rather than a study of the physical
properties of each step of image formation. A CT scanner
provides slices of objects. It has internal parameters such
as the thickness of a slice and scaling parameters that
influence the tomographic reconstruction process from the
projection measurements. To take care of them, we propose
an imaging model composed of an affine transformation
accounting for intrinsic scaling parameters, an Euclidean
one for the rigid-body transformation that relates the scanner
to the stereotactic frame, and an orthographic projection that
expresses the projection of a thin slice onto the CT image.

To formulate the registration, we denote withF0 the refer-
ence frame attached to the fiducials and withFct the frame
attached to the scanner. A scaled frameFI is also attached
to the CT image with pixel units instead of millimeters. A
point in space like the origin of a reference frame is written
in bold asO. The imaging model relates the coordinates

(a) (b)

Fig. 9. (a) The plastic cube with the line fiducials used for experiments. -
(b) A CT scanner image (magnified) when the cube is placed on a phantom.

of a 3-D pointPj expressed inFct and coordinates of the
corresponding pointIQj =

[
uj vj

]T
in the image as

ctOPj =





xj

yj

zj



 =





1 0
0 1
0 0





︸ ︷︷ ︸

orthographic

[
sx g
0 sy

]

︸ ︷︷ ︸

intrinsic parameters

[
uj

vj

]

︸ ︷︷ ︸

pixel

= ctΠπ
πSI

IQj

(27)
where ctΠπ is a (3 × 2) matrix accounting for the ortho-
graphic projection onto the cutting plane(π) and the non-
null entries of matrixπSI are the intrinsic parameters of the
scanner. They consist of two scaling factorssx andsy and a
shearing parameterg accounting for a gantry tilt angle error
or table bending during the scan. Usually, this parameter is
very small and it is often neglected. However, it may be
identified, since in some circumstances, it may decrease the
registration accuracy or for MRI [4]). In the rest of the paper,
this parameter will be neglected.
Since there exists a rigid-body transformation betweenF0

andFct, the expression for the vectorOPj in F0 is given
by 0OPj = R ctOPj + t whereR is a rotation matrix
andt is a position vector. Then, one may see the following
expression

0OPj =
[

r1 r2

]
πSI

IQj + t (28)

as a compact representation for the transformationFI → F0

including the orthographic projection, whererk is the kth

column ofR. Therefore, the following(3 × 2) real matrix

0LI = [r1 r2]
πSI = [l1 l2] (29)

must satisfy the quadratic constraints coming from the or-
thonormality of any rotation matrix1 :

l1
T l1 = s2

x , l2
T l2 = s2

y and l1
T l2 = 0 . (30)

Finally, considering the notations for homogenous coordi-
nates ofIQj as IQ

j
= (uj , vj , 1)T , (28) is rewritten as

0OPj =
[

0LI t
]

IQ
j

. (31)

1In accordance with (27), if the shearing parameterg is significant,
equation (30) should be replaced bylT1 l1 = s2

x, lT1 l2 = sxg and
lT2 l2 = g2 + s2

y.
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Fig. 10. A 3-D line∆j crossing the cutting plane(π). The pair of vectors
(yj ,wj) is the Plückerian representation of the line.

B. Modeling the fiducials

Fiducials used in stereotaxy are usually composed of rods
(see figure 9.a) and are represented with straight lines (
[13], [23], [35]). Let ∆j be thejth line. This line may be
represented with the originOj (3 dof) and a unit vectoryj (2
dof). Its intersection with the scanner plane(π) is (generally)
a pointPj = ∆j ∩ π (see figure 9.b), and substituting
the expression of0OPj in (31), it can be expressed with

0OPj = 0OOj + λj
0yj =

[
0LI t

]
IQ

j
, λj ∈ R

(32)
where Oj is the orthogonal projection of the origin of
the frameF0 onto ∆j , thus satisfyingOjPj × yj = 0.
Therefore, to achieve the registration, one must solve (32)for
0LI , t and the{λj}’s, that is for(9 + n) unknowns withn
lines. Consequently, the size of the system to solve increases
with the number of rods, leading to large matrices which
must be handle with many numerical operations [26]. To
reduce the number of unknowns, we introduce the Plückerian
representation [16]. The Plückerian coordinates of a 3-D line
∆j are the pair of orthogonal vectors(yj ,wj) (see figure
10) wherewj is defined bywj = yj × OPj . With this
representation, the origin of the line as well as the{λj}’s
are removed from the system.
The above definition and the latter expression for0OPj can
be gathered in the following equation, expressed inF0:

[0yj ]×
[

0LI t
]

IQ
j

= 0wj , (33)

where[yj ]× is the(3×3) skew-symmetric (singular) matrix
associated toyj . Equation (33) is the basis for our registra-
tion approach.
Generally, intersections of straight lines with the cutting
plane should provide as many spots as there are lines (see
figure 9.b). In practice, several spots may be missing in the
image or in contrary some artifacts may appear [23]. In prac-
tice, line fiducials are bounded (λmin

j ≤ λj ≤ λmax
j ). It is

easy to compute these extremal values for any displacement
(R,t) and to check the relevance of the corresponding spot.
To do so, a pre-multiplication with a unit vector0y

T
j in (32)

gives the following expression

λj = 0yj
T [

0LI t
]

IQ
j

. (34)

Given n lines/points correspondences, (33) can be ex-
pressed as a minimization problem with equality constraints:

min
x

|| A x− b ||2 subject to xT C x = 0 (35)

wherex =
[

l1
T

l2
T

tT
]T

, C is a (9× 9) symmetrical
matrix with null entries except forC14 = C25 = C36 =
C41 = C52 = C63, A is a (3n × 9) and b is a (3n × 1)
matrix, respectively defined as:

A =






IQ
1

T
⊗ [0y1]×
...

IQ
n

T
⊗ [0yn]×




 , b =






0w1

T

...
0wn

T




 . (36)

C. Registration as a pose estimation problem

This section aims at designing fast algorithms for estimating
the parameters of the rigid registration, assuming a calibrated
scanner is available (see [26] for uncalibrated scanners).We
tackle this rigid registration problem (recovery ofR and t)
with the minimum number of fiducials needed and by means
of a linear algorithm . Given a single image, and considering
the unknown vectorξ =

[
r1

T r2
T tT

]T
, (33) becomes

[
IQ

j

T ⊗ [0yj ]×
]

S9 ξ = 0wj , (37)

where S9 =

[
πSI

T ⊗ I3 0
0 I3

]

. With exactly 4

lines/points correspondences, (37) is a deficient-rank system
which can be solved thanks to rotations properties. Except
for some arrangements of the fiducials enumerated in
[25], the matrix A has rank8 when components contain
uncorrupted data. However, with noisy data, the rank may
be greater than8. Hence, we wish to enforce the rank value
because of the matrix structure (it is built with singular
matrices). Therefore, there is a one-parameter family of
solutions and (37) may be solved with the the Singular
Value Decomposition (SVD). We summarize it as follows:

1) Find the SVD ofA: A = UDV T , where the diagonal
entriesdi of D are in descending numerical order,

2) Setb′ =
[
b′1 b′2 . . . b′9

]T
= UT b (see (36)),

3) Build the vectorz defined byzi = b′i/di, for i =
1, · · · , 8 andz9 = 0,

4) The general solution isξ = S−1
9 (V z + γ v9), where

v9 is the last column ofV .
5) Computeγ with the quadratic relations betweenr1 =

[
ξ1 ξ2 ξ3

]T
andr2 =

[
ξ4 ξ5 ξ6

]T
.

Equation (37) can be solved provided that all combinations of
triplets verify the conditions mentioned in previous section.

Because of the presence of noise,R is not exactly
a rotation matrix. One may enforceR to be a rotation
by computing the SVD, R = UΣV T and by setting
eigenvalues to1. If R′ is the corrected rotation matrix, it is
given byR′ = U diag(1, 1, det(UV )) V T ( [12], [40]).

A Newton-Raphson (N-R) numerical approach has also
been carried out. It uses the initial guesses provided by the



above least-squares method (LS) but we do not describe it
here (see [26] for details).

D. Experimental validations

(a) (b)

Fig. 11. (a) The two cubes used for the experiments. - (b) image picked
up from a CT helicoidal sequence with image size of(512 × 512) pixel.

Experiments were conducted with a Siemens Somatom Plus
CT scanner and with fiducials composed of two cubes with
six rods each (see figure 11). The relative position of the two
cubes is constrained to by a guide rail on which the cubes
are screwed. Each cube of line fiducials has been calibrated
as well as their relative position with a Mitutoyo measuring
machine which can achieve a precision of10 µm.
We have assessed the accuracy of the relative pose recovery
by registering only one fiducial cube at a time, and by
computing the relative position and rotation. By doing so,
it is possible to verify the constitancy of the pose estimation
between two coordinate frames with a single image. To
this end, a helicoidal sequence has been captured while
a constant translation of the table is performed. In figure
12, we present the estimated position vector between the
two cubes, as the orientation is approximately the identity
matrix (it differs to the identity matrix by less than10−5

on each component). The registration has been executed
for each cube independently and once it has been done for
both (with the LS method and the N-R minimization), the
relative position and orientation have been computed. The
position T =

[
0 −118.29 0

]
mm was measured during

a calibration procedure (orientations are equal for the two
cubes’ reference frames). Thus, this value (dotted line in
figure 12) can be compared to the estimations.
As shown in figure 13, the 3-D pose algorithm works very
well on experimental data, since the registration of each cube
can serve to predict the position of the rods of the other
cube. The estimated error bounding-boxes with an assumed
spot location error of0.25 pixel are also represented. As
illustrated, all the detected spots are inside the box with
boundaries corresponding to 3-D position errors always less
than2 mm.

V. CONCLUSION

In this paper, we have described some pose estimation
problems by means of intra-operative images. We focused
the works on endoscopic views for assisted laparoscopy
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Fig. 12. Relative positions between the cubes during the acquisition (slice
thickness is0.5 mm) while translating the table. The first plot (up) is with
5 fiducials for the estimation while the second (down) is with6 fiducials.

Fig. 13. CT images of the cubes. Each yellow box in one cube is
corresponding to2 mm of error bounds computed with the registration of
the other cube.

and CT images slices with X-ray scanners for the image-
guidance in interventional radiology.
For vision-based integrated systems used in minimally
invasive surgery, we have developed a set of techniques
for assisting surgeons in navigating and manipulating the
three-dimensional space within the human body. To that
purpose, simple geometrical features have been attached
to surgical instruments. Alternatively, when the task is
sufficiently constrained by the shape of object of interest,
we directly solve the pose estimation problem without
markers : it is the case for the 4 dofs of a cylindrical
needle-holder within the human abdomen.

One path toward safety and reliability is to incorporate all
the available video information. Following this road, the
virtual visual servoing has been used to combine both the
apparent contour of the instrument and artificial markers in
a numerical iterative process.
The recovery of out-of-field of view instrument in la-
paroscopy, the automatic suturing intervention demonstrated
in vitro [31], the positioning of a radio-frequency needle with
CT scanners [25] are some applications we contribute with
the provided solutions for the aforementioned pose problems.
Finally, we believe that significant advances are possible
when the geometric information is fused accross time and
accross modality. Furthermore, pre-operative informations



like the insertion points localization, the CAD model of
instruments, the eye-to-hand calibration or the availability
of several statistical atlases of organs can provide some
strong constraints on the vision problem. These are crucial
factors to achieve reliable dedicated vision systems while
compensating small displacements due to patient breathing
or any small disturbances which may occur during an image-
guided surgical procedure.
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pour les procédures percutanées sous imageur scanner. PhD thesis,
Louis Pasteur University, France, November 2005.

[26] B. Maurin, C. Doignon, M. de Mathelin, and A. Gangi. Pose
reconstruction from an uncalibrated computed tomography imaging
device. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Madison, WN, U.S.A.,
June 16-23 2003.

[27] B. Maurin, J. Gangloff, B. Bayle, M. de Mathelin, O. Piccin, P. Zanne,
C. Doignon, L. Soler, and A. Gangi. A parallel robotic system
with force sensors for percutaneous procedures under ct-guidance.
In Int’l Conf. on Medical Image Computing and Computer-Assisted
Intervention, St Malo, France, September 2004.

[28] S.J. Maybank. The cross-ratio and the j-invariant.Geometric
invariance in computer vision, pages 107–109, 1992.
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