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Abstract

This paper addresses the problem of vision-based navigation and proposes an original control law to perform such navigation. The overall
approach is based on an appearance-based representation of the environment, where the scene is directly defined in the sensor space by a database
of images acquired during a learning phase. Within this context, a path to follow is described by a set of images, or image path extracted from the
database. This image path is designed so as to provide enough information to control the robotic system. The central contribution of this paper
is the closed-loop control law that drives the robot to its desired position using this image path. This control does not require either a global 3D
reconstruction or a temporal planning step. Furthermore, the robot is not constrained to converge directly upon each image of the path, but chooses
its trajectory automatically. We propose a process of qualitative visual servoing, enabling us to enlarge the convergence space towards positioning
in a range within a confidence interval. We propose and use specific visual features which ensure that the robot navigates within the visibility
path. Experimental simulations are given to show the effectiveness of this method for controlling the motion of a camera in three-dimensional
environments (free-flying camera, or camera moving on a plane). In addition, experiments realized with a robotic arm observing a planar scene
are also presented.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A robotic system performing a navigation task must have the
ability to move itself from an initial position to a desired one.
The difficulty of this problem is that these two positions can be
far apart. When considering a robotic system with exteroceptive
sensors, this particularity means that the information describing
the initial position can be totally different and without any
relation to the sensor information the robot might obtain at the
desired position.

It is thus obvious that the robotic system needs a
representation of its environment to perform such a task. In
order to realize an autonomous system, this representation
should provide enough information for localizing initial and
desired positions, defining a path between these two positions,
and controlling the motion of the robot during the navigation.
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Different types of navigation space description have been
proposed in the literature. The most widespread are the
ones used for model-based navigation, and appearance-based
navigation, which we briefly recall now.

1.1. Model-based approach

Model-based approaches rely on the knowledge of a 3D
model of the navigation space. The localization is then
performed by matching the global model with a local model
deduced from sensor data. Features used can be either lines [5],
planes [4] or points [3,22]. If the model is not known, a learning
step is used for estimating it. The robot is generally controlled
by a human operator, like in [22], where the reconstruction is
performed using a hierarchical bundle adjustment, or like in [3]
where odometry is coupled with a visual tracking system for
estimating spherical feature coordinates. A large portion of the
article proposes an autonomous mapping of the environment
(methods known as SLAM, for Simultaneous Localization And
Mapping) [26,23,6]. In this case, autonomous motions are
performed for discovering new areas, but not for reaching a
particular desired position.
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Once the current robot position is estimated, its motion
is generally performed by attracting it towards intermediary
desired positions. In [22], motion is deduced from the error
measured between the current robot position and the one
associated with an intermediary view. In [19,3], the motion is
obtained by imposing the features to follow based on the image
trajectories observed during the learning step.

1.2. Appearance-based approach

The appearance-based approach (known also as the
topological approach) does not require a 3D model of the
environment. It presents the advantage of working directly in
the sensor space. In this case, the environment is described by a
topological graph. Each node corresponds to a description of a
place in the environment obtained using sensor data, and a link
between two nodes defines the possibility for the robot to move
autonomously between the two associated positions.

When considering a vision sensor, which is the case in this
article, sensor descriptions correspond to images acquired by
the camera during the learning step. Localization is usually
performed by computing a similarity score between the view
acquired by the camera and the different images of the
database. This similarity can be based on global descriptors,
like the whole image [13,17], color histograms [28], or image
gradient [7,14]). Another method consists of taking advantage
of image retrieval principles to localize the robot, by using
local descriptors, like photometric invariants [21] or SIFT
points [15].

Different strategies are then proposed to control the robot
during the navigation. In [13,17], a particular motion is
associated with each image of the database. At each iteration,
the robot performs the motion associated with the closest
view of the sequence. However this scheme cannot take into
account a potential deviation from the pre-taught path, which
can be problematic. In [1,2], the robot converges, using a
visual servoing loop, towards each intermediary image of the
path, reducing the error measured between the current and the
successive desired positions of visual landmarks in the image.
However, this approach requires a database precise enough
to get satisfying trajectories wherever the initial and desired
positions are. Furthermore, it can be considered as useless to
converge towards each intermediary position, as long as these
local convergences do not culminate in reaching the desired
position.

1.3. Approach proposed: A qualitative topological navigation

The work presented here belongs to the second family.
We believe that getting rid of a global 3D reconstruction
and an absolute pose estimation (as needed in model-
based approaches) can avoid a potential error propagation
while nevertheless merging all the information available in a
common 3D frame.

Figs. 1 and 2 present in a general way the different
processes that enable the system to define a topological path
for reaching a particular position. The first figure illustrates

Fig. 1. Qualitative localization of the robotic system by image retrieval. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Image path finding. The robot will use this path to control its motion
during the navigation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

how the localization is performed, before the beginning of
the motion. During this step, no assumption is made about
the robotic system’s position. One can note that it is not a
particular hypothesis, which can also be found in a large set
of works on localization [14,28]. The only information used
corresponds to the set of images acquired during an off-line
step (this database is surrounded by a circle on the figure).
The localization consists in finding those views of the database
that are similar, in terms of content, to the request images,
either the initial one, or the desired one. On the figure, blue
arrows describe the similar views that are found. In [20], we
have proposed to use image retrieval schemes to perform this
operation. Note that this localization is qualitative. Indeed, the
3D position of the robotic system is not searched; only the most
similar views are.

Once the initial and desired images have been put in relation
with some views from the database, the next step consists in
reducing the whole database to a set of images describing the
area in which the robot is controlled to move. This is illustrated
on Fig. 2. This subset of views is directly deduced from
the structure of the database. Indeed, like every topological
approach, the different views describing the environment are
organized within a graph. Each node represents an image,
and an edge between two nodes means that the robot can
move autonomously between the two associated views. Similar
images obtained in the previous steps enable it to incorporate
the initial and desired images into the topological graph. Then,
the selection of the set of images describing the area in which
the robot will navigate is nothing but a search of a path in the
graph (this image path is illustrated in red on the Fig. 2).

In the following, it is supposed that an image path is
provided to the robotic system. The originality of the scheme
proposed is that the robotic system is not obliged to converge
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towards each intermediary position associated to the different
images of the path, which gives to it more flexibility during the
navigation. The navigation scheme is based on visual servoing.
We propose a new qualitative approach in which the visual
features used for controlling the system are regulated toward
confidence intervals rather than specific desired values.

The next section deals with the navigation scheme. Section 3
presents some experimental results, obtained in simulation and
with a real robotic system, which demonstrate the validity of the
proposed navigation scheme. Finally, Section 4 contains some
concluding remarks.

2. Robot motion control with qualitative visual servoing

In the following, the image path extracted from the database
is noted ψ0, . . . , ψN . ψ0 is the image given by the camera
before the beginning of the motion (the initial image). ψN is the
image that the camera should acquire when the robot reaches
its desired position. Features used during the navigation are
Harris points [10], matched between the consecutive images
of the path. Methods like [27] can be used to determine these
correspondences. In the following,Mi corresponds to the set of
points (i x j ,

i+1x j ) that are matched between viewsψi andψi+1
of the path.

2.1. General control loop

Each set Mi corresponds to a set of points that are visible
between two images of the database. Therefore, these features
describe the environment between these two positions. In order
to reach the desired position, the robot has to successively go
through the places described by the different sets Mi . The
navigation task can thus be formulated as follows:

Let Mi be a set of features matched between views ψi and
ψi+1 of the image path. Suppose that this set is partially
or totally visible within the image frame ψt acquired by the
camera. Given a set of objective functions describing the image
projections of this feature set, the motion of the robotic system
aims to make these visual measures reach confidence intervals
such that the robot becomes enabled to observe the next set of
pointsMi+1.

It is important to note that moving the robot to observe
a set of features does not impose a requirement for it to
converge towards every intermediary position in succession. In
this formalism, the control law is designed to attract the system
into an area in which the visibility is considered as correct.

Fig. 3 shows the general control loop that is used to compute
the motion of the robotic system. The different steps involved in
this control loop are the following, once a new image has been
acquired (this new image being called the current one):

1. Point tracking: the features t−1x j visible in the previous
view ψt−1 are tracked to obtain their new position in the
current view ψt .

2. Point projection update: features that were not previously
considered as visible are transferred from the image path to
the current view. It enables the system to determine if new
features have gotten inside the camera field of view.

Fig. 3. General control loop used.

Fig. 4. Relation induced by a homography between two views.

3. Visible points update: for all the set of correspondencesMi
defines in the image path, features that are currently
projected inside the camera’s field of view are recorded, and
form the new set of visible points t x j .

4. Interest set selection: amongst all the sets for which some
points are already visible, the farthest one is selected. It
describes all the features the camera should observe.

5. Control law update: Taking into consideration the interest
set, the motion of the robot is computed. This motion enables
the robot to move towards an area in which the visibility of
the whole set is considered as better.

The tracking stage (step 1) can be performed in a real appli-
cation with a differential point tracker like [12]. The point trans-
fer (step 2) is now described, as well as the step 5 in Section 2.3.

2.2. Geometric relation between images

Let us note 1xp and 2xp the projections in two views ψ1
and ψ2 of a 3D point. These coordinates can be put in relation
by the homography 2Hp1 , through the equation [11]:

2xp ∝
2Hp1

1xp +β1, j c2, (1)

with:

2Hp1 = K 2Hn1 K−1, 2Hn1 =

(
2R1 +

2t1
1n>

dπ

)
and

β1, j =
d j

Z1dπ
.

(2)

K represents the camera’s intrinsic parameters, and c2
the epipole of the second camera. (2R1,

2t1) is the rigid
motion between the two camera positions. This rotation and
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translation (up to a scalar factor) can be extracted from the
homography [9]. The homography is defined with respect to
a reference plane π ; n represents its normal, and d j the signed
distance between the 3D point and this plane (see Fig. 4).

If all the points observed belong to the reference plane,
only four points are needed for computing the homography [9],
and βi, j = 0. If it is not the case, eight correspondences are
needed [16].

The parallax β1, j is deduced from the previous equation:

β1, j = −

(
2Hp1

1xp ∧
2xp

)> (
c2 ∧

2xp
)

‖c2 ∧
2xp ‖2

. (3)

One can note in Eq. (2) that the parallax term is independent of
the second frame position. Nevertheless, as the epipole is only
known up to a scalar factor, the Eq. (1) obtained from points
data is rather:
2xp j ∝ α 2Hp1

1xp j +βα1 j c2,

where βα1 j = αβ1 j . To get rid of this problem, Shashua
proposes to scale the homography with respect to a reference
point X0 6∈ π [24]:

2H′
p1

=
α

βα10

2Hp1
.

By doing this, the parallax becomes invariant to the scalar
factor:

β ′
1 j

=
βα1 j

βα10

=
αd j

Z j dπ

Z0dπ
αd0

=
d j Z0

d0 Z j
.

Thus, if one knows the homography 3Hp1 between the
same reference frame ψ1 and a third image ψ3, and if this
homography is scaled with the same reference point X0, it is
possible to predict the position in ψ3 of any point matched
between views ψ1 and ψ2:

3xp j ∝
3H′

p1
1xp j +β ′

1, j c3. (4)

This principle can be used to perform image transfer, between
the different images of the path and the current view.

Let us add also that the homography enables us to determine
some scene structure information, like the ratio between the
depth Z1 and Z2 of a 3D point [16]:

τ =
Z2

Z1
=

‖[
2t1]×

2R1
1xn ‖

‖[
2t1]×

2xn ‖

and the ratio between the depth Z2 and distance d1:

ρ =
Z2

d1
= τ

‖
2t1 /d1‖

‖
2t1 /Z1‖

, (5)

with 2t1/Z1 = τ 2xn −
2R1

1xn . These relations will be used in
the following.

2.3. Computing the control law

2.3.1. Qualitative visual servoing
The new control law we propose can be seen as a qualitative

visual servoing. Classically, visual servoing is used to minimize

Fig. 5. Motions along the optical axis: (a) visibility cone associated with free
area Ifree, (b) comparing the image borders after a motion along the optical
axis.

an error between a set of visual features s and their desired
values s∗. As s depends on the camera pose p, the desired
pose p∗ is reached when the error measured is null, that is
when s = s∗. For that, a classical control law is given by [8]:

v = −λL+
s (s − s∗), (6)

where v is the camera velocity sent to the low-level robot
controller, λ is a gain tuning the time-to-convergence of the
system, and L+

s is the pseudo inverse of the interaction matrix
related to s, which is defined such that ṡ = Lsv.

In the method proposed, no particular desired visual features
can be defined, since the robot is not required to reach each
intermediary pose defined by the image path. The robot is only
required to move into areas where the projections of points from
setMi are considered as satisfactory.

Thus, the robot is only required to reach an area where s ∈

[smin; smax]. This is achieved by defining well suited objective
functions V , such that their minima correspond to poses where
the associated visual feature belongs to s ∈ [smin; smax]. Then,
the gradients of these functions ∇V(p) are used as visual
features, replacing s in Eq. (6). The desired feature s∗ in this
equation, is then equivalent to ∇V(p)∗, which is equal to zero.
The control law that is used instead of Eq. (6) is thus:

v = −λL+

∇V∇V, (7)

where L∇V is the interaction matrix associated to the gradient
of V .

Sections 2.3.2–2.3.4 present the different functions V(p), as
well as ∇V(p) and L∇V used in our scheme. Section 2.3.5
finally describes how they are merged together.

2.3.2. Progressing along the path
This first objective function deals with the camera’s motions

along the optical axis. In the case of a pinhole camera,
as illustrated on Fig. 5(a), the projection of a 3D point
X = (X, Y, Z) is inversely proportional to Z , since x =

(X/Z , Y/Z). Therefore, the higher Z is, the closer to the
image center the point projection is. The same reasoning holds
when moving the camera along the optical axis. Indeed, if one
considers a motion between two views that is reduced to a
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Fig. 6. Functions h and g used to smoothen the objective function (see Eq. (11)).

translation tz , then the projection of a point becomes, in the
second view, (X/(tz + Z), Y/(tz + Z)). The farther the current
camera is to the next image, the closer to the image center is the
point projection. This point is illustrated on Fig. 5(b), where ψ0
is the current view given by the camera, and ψ1 is the next
image from the path. As one can easily see, the area defined
by the set of image points is smaller than the one observed in
the imageψ1. This information is here used to consider motions
along the optical axis.

To describe the feature projection area, a measure based on
centered moments is used. More precisely, it is composed of the
second order centered moments:

a = µ02 + µ20.

We recall that, for a set of n features, the centered moment µi j
of order i + j is:

µi j =

n∑
k=0

(xk − xg)
i (yk − yg)

j ,

where (xg, yg) is the image center of gravity of the n points
(n = card(Mi )). The closer the points are to the camera, the
bigger the value of a is. Intuitively, a is closely related to the
area of the set of points in the image. The following measure
an compares the current value of a with a∗, the one obtained on
the next image of the path [25]:

an =

√
a∗

a
. (8)

Since the robot is not required to precisely reach each position
associated to the image path, it is not required to obtain the
measure a∗, but rather a value sufficiently close to the one
measured in the path frame ψi+1. Let p ∈ [0 1] be the
percentage of liberty authorized around a∗

n . A satisfactory
measure is one such that:

am = a∗
n(1 − p) < an < a∗

n(1 + p) = aM .

This could be controlled with the following function:

Van (an) =


1
2
(an − aM )

2 if an > aM

1
2
(am − an)

2 if an < am

0 otherwise.

(9)

In order to obtain a smooth and continuous transition between
the three cases, we propose to use, rather:

Van (an) = g(an − aM )+ g(am − an), (10)

where (see Fig. 6):

g(x) =
1
2

x2hk(x) and hk(x) =
arctan(kπx)

π
+

1
2

(11)

hk(x) is the arc-tangent function normalized on [0; 1]. It
corresponds to a “heavy-side” function which defines a
transition between the values 0 and 1. This transition occurs
when x = 0. The constant scalar k enables us to regulate the
curvature of the transition from one value to the other. As it can
be seen on Fig. 7, Van is null when the measure an belongs to
the confidence interval. It tends toward the parabolic function
when an moves away from this free area.

The error associated with Van is derived as:

e∇an
= ∇anVan =

∂Van

∂an
, (12)

where ∇anVan is:

∇anVan = (an − aM )h(an − aM )+O(an − aM )

+ (an − am)h(am − an)−O(am − an),

in which:

O(x) =
kx2

2(1 + k2π2x2)
. (13)

If one gets rid of the functions h and O used for continuity
matters, this gradient can be approximated by:

∇anVan =

an − aM if an > aM
an − am if an < am
0 otherwise.

(14)

Finally, to derive the control law, the interaction matrix
associated with this feature has to be computed. By using
Eq. (12), the derivative of e∇an

with respect to time is given by:

ė∇an
=
∂e∇an

∂an

dan

dt
=
∂2Van

∂a2
n

Lan v = L∇an
v, (15)

where Lan is the interaction matrix related to an and L∇an
is

the one associated to the visual feature ∇anVan . By using the
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Fig. 7. Controlling the motion along the optical axis: (a) the function used, (b) its gradient.

approximation proposed on Eq. (14), we get:

∂2Van

∂a2
n

=

{
1 if an < am, or an > aM
0 otherwise.

(16)

Since e∇an
= 0 for am < an < aM , Lan can be chosen as a

good approximation of L∇an
. An approximation of this interac-

tion matrix Lan is given by Tahri and Chaumette [25]:

Lan =

[
0 0 −

1
Z∗

− anε1 anε2 0
]
, (17)

with:

ε1 = yg + (ygµ02 + xgµ11 + µ21 + µ03)/a

ε2 = xg + (xgµ20 + ygµ11 + µ12 + µ30)/a,

where ε1 and ε2 can be neglected with respect to 1. This ap-
proximation is correct only if the camera is parallel to a pla-
nar object (at a distance Z∗). However, as our experiments will
show, this approximation does not disturb the results (and we
have set Z∗

= 1).

2.3.3. Feature position control

The next function controls the point projections onto the
image plane. It should be clear that all the features of the interest
set should project inside the camera field of view.

Feature projection coordinates x j = (x j , y j ) are satisfactory
if they are such that: x j ∈ [xm + α; xM − α] and y j ∈

[ym + α; yM − α], where xm, xM , ym and yM are the image
borders, and α is a positive constant defining a free projection
area Ifree within the image frame (see Fig. 8).

The function Vs characterizing point projections on the
image plane is defined by:

Vs =

∑
j

Vs(x j )
with

Vs(x j )
= g(xm − x j )+ g(x j − xM )+ g(ym − y j )

+ g(y j − yM ),

where g(x) has already been given in Eq. (11). Fig. 9 represents
this objective function for a single point, and is one component
of its gradient. In the application considered here, ∇>

s Vs gathers

Fig. 8. Areas of activation induced in the control law, displayed on the image
plane (Ifree is a restriction of the image frame). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

the gradients of the different features of the interest setMi :

∇
>
s Vs =

(
∇

>
s Vs(x1), . . . ,∇

>
s Vs(xn)

)
,

where ∇
>
s Vs(x j ) is given in Box I.

By using the same approximation as before, the interaction
matrix related to ∇

>
s Vs is approximated by the interaction

matrix Ls associated with the image point coordinates. This
matrix is given by:

Ls = L(x, di+1) =

[
1

di+1
S Q

]
,

where di+1 is the distance between the image frame ψi+1
and the reference plane π . S = (S1, . . . ,Sn) and Q =

(Q1, . . . ,Qn) are two 2n × 3 matrices independent to di+1:

S j =
1
ρ j

[
−1 0 x j
0 −1 y j

]
Q j =

[
x j y j −(1 + x2

j ) y j

1 + y2
j −x j y j −x j

]
.

Scalar ρ j is given by Eq. (5), using the homography t Hi+1 be-
tween the current view ψt and the image ψi+1 of the path.

2.3.4. Landmark based on image orientation
The last visual measure deals with the error of orientation

that can be measured between the current camera pose and the
images of the path. This rotation can be extracted from the
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∇
>
s Vs(x j ) =

[
(x j − xM )h(x j − xM )+ (x j − xm)h(xm − x j )+O(x j − xM )−O(xm − x j )

(y j − yM )h(y j − yM )+ (y j − ym)h(ym − y j )+O(y j − yM )−O(ym − y j )

]
,

Box I. Gradient of the function Vs for a given image point position x j .

Fig. 9. Function considering feature visibility: (a) function for one point, (b) gradient, for x j coordinates.

homography t Hi+1 linking the current view ψt with the image
ψi+1.

The minimal representation of the rotation θu is obtained
from the coefficients ri j (i=1...3, j=1...3) of the matrix t Ri+1, by
using:

θu =
1

2sinc θ

r32 − r23
r31 − r13
r21 − r12

 ,
with θ = arccos((r11+r22+r33−1)/2), and where the cardinal
sine sinc θ is such that sin θ = θsinc θ .

Once again, an interval is used to define the quality of the
current orientation:

−pθ < θui < pθ ,

where p is a positive scalar belonging to [0 1]. The associated
function is:

Vθu(θui ) = g(θui − pθ )+ g(−pθ − θui ), (18)

whose corresponding gradient is:

∇θuVθu(θui ) = (θui − pθ )h(θui − pθ )+O(θui − pθ )

+ (θui + pθ )h(−pθ − θui )−O(θui + pθ ). (19)

The interaction matrix of ∇
>
θuVθu is approximated by Lθu [16]:

Lθu = [03 Lw], where

Lw = I3 −
θ

2
[u]× +

(
1 −

sinc θ

sinc2 θ
2

)
[u]

2
×. (20)

The function defined here is very similar to the ones defined
before; the corresponding curves are therefore not shown. Let
us note that in our experiments, this function is only used
for controlling rotation around Ex and Ey axis. Indeed, rotations
around the optical axis do not improve the feature visibility;

nor do they push the robot towards the desired position. But it
could be also possible to control this degree of freedom in other
applications.

The next subsection presents how these different visual
measures are combined to compute the motion of the robotic
system.

2.3.5. Control law
Previous subsections have described three different func-

tions, ascribing to each a different constraint on the visual fea-
ture configurations, and all these constraints have to be ob-
served simultaneously. This is achieved by stacking the visual
features in the control law, which gives:

v = −λL−1
∇,

where L and ∇ are respectively a stack of interaction matrices
and gradients previously defined:

L = (Ls,Lan ,Lθu), and ∇ = (∇>
s Vs,∇anVan ,∇

>
θuVθu).

The gradient ∇sVs is computed as described in Section 2.3.3.
Features t xn j used correspond to the set Mi , which gathers
landmarks matched between the views ψi and ψi+1 of the path.
Their coordinates are obtained either by the tracking step or by
the prediction step.

In ∇anVan (defined in Section 2.3.2), the desired value a∗

is based on the feature projections observed in the image
ψi+1 from the path. Once again, only features from Mi are
considered. Measure a is deduced from the position of these
landmarks in the current image It .

Finally, with the homography between current view and
view ψi+1, the rotation t Ri+1 is extracted, from which is
obtained the vectorial representation θu, which in turn is used
to compute ∇θuVθu and Lθu (see Section 2.3.4).

When enough points from the last set MN−1 are visible,
the robotic system is in the vicinity of its desired position. A
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Fig. 10. Views of the 3D object used for simulations. The camera frame is
represented as follows: Ex axis in red, Ey axis in green, and Ez axis in blue. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. Exp. 1: Positions associated with the image path.

classical visual servoing scheme can then be used to converge
towards this position.

To conclude, the control law proposed can be considered
as defining a qualitative visual servoing process. The word
qualitative means that there is not a single position that
enables the system to have this convergence. Indeed, contrary to
classical visual servoing, no particular desired value is required,
but rather a range within a confidence interval.

Furthermore, one can note that the control law proposed
merges features expressed directly in the image with
information expressed in the configuration space. Merging 2D
and 3D information has also ensured the success of the 2 1/2D
visual servoing proposed in [16].

3. Experimental results

In this section, several experimental results are proposed
to demonstrate the validity of the control law proposed. In
order to study the behavior of this control law without adding
potential noise that could bring the tracking and prediction
steps, a simulator has been developed. The first subsection
presents results for a camera with five degrees of freedom, and
the next subsection for a camera moving on a plane as if it
was mounted on a holonomic mobile robot. Finally, Section 3.2

Fig. 13. Exp. 1: Realized trajectory.

presents some experiments realized on a real robotic system,
with a planar environment.

3.1. Setup one: Five degrees of freedom camera

First of all, let us consider the object around which the
camera will move. It is composed by a set of planes (as shown
on Fig. 10). With each face is associated a set of points. All the
points defined do not belong to a particular face.

On Fig. 11, a navigation task is presented by the set of
positions associated with the image path that is contained in the
image database. Some of the corresponding views are presented
on Fig. 12. The position of the camera during the navigation is
presented on Figs. 13 and 14. On the second figure, the pose of
the robotic system (curves) is compared to the positions of the
several images from the path (crosses). Vertical lines indicate a
change of interest set Mi . If the robot was converging towards
every image from the path, the curves would pass through the
crosses. This clearly not the case.

As scheduled by the image path, the beginning of the motion
is mainly a translation along the optical axis (until iteration
370). When the robot is close enough to the object, translations
along Ey axis and rotations around Ex axis enable it to reach
the upper part of the object (iterations 370 to 800). Then,
translations along Ex axis are performed to reach the desired final
area.

In the next example, only the initial position is changed. As
shown on Fig. 15, the initial projection of the object is close
to the left border of the image. As it can be seen on Fig. 16,
the beginning of the motion is mainly a translation along the
optical axis (up to iteration 370). Indeed, the second visual
measure presented in Section 2.3.3 is used to make the object
projection area grow, by getting closer to the object. But at the
same time, the object gets closer to the image’s borders. The
first visual measure is thus used to ensure that the object stays
in the camera’s field of view, which is achieved thanks to its
translation along Ex axis and rotation around Ey axis.

Fig. 12. Exp. 1: Examples of images from the path (ψ0: initial image, ψ19: desired one).

Please cite this article in press as: A. Remazeilles, F. Chaumette, Image-based robot navigation from an image memory, Robotics and Autonomous Systems
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Fig. 14. Exp. 1: Position of the camera (translation and orientation) during the navigation. Vertical lines indicate a change of the interest setMi used to control the
system. Crosses indicate the pose associated with the view ψi+1 of the setMi just before the change of interest set. The robotic system does not converge towards
each of these positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Exp. 2: (a) initial image, (b) image path positions.

3.2. Set up two: Robotic system moving on a plane

In the next experiment, the proposed control law has been
used for controlling the motion of a robot moving on a plane.
The navigation space corresponds to a corridor, defined by a set
of planes, on the floor and on the walls.

The robot is controlled here with two inputs: one for the
translation along the Ez axis, and one for the rotation around
the Ey axis. The interaction matrices Ls , Lθu and Lan are thus
simplified to consider only this kind of motion.

Fig. 17(a) represents the image path. One can note in this
figure that in the beginning of the image path, some images are
not situated on the shortest path. Views ψ2 and ψ4 are shifted
towards the left. It is obvious here that the robotic system does
not need to reach these positions to perform its navigation task.

Figs. 17(b) and 18 describe the trajectory realized by the
robotic system. It can be seen that it does not reach the posi-
tion associated with views ψ2 and ψ4. On the second figure, the

Fig. 17. Exp. 3: Image path positions and the realized trajectory.

blue line (robot position on Ex axis), stays far from the crosses 1
and 3.

3.3. Experiments on a robot arm

The next few experiments have been realized on a robot
arm with six degrees of freedom with an on-board camera. The
navigation space considered is a plane on which several images
are stuck. In order to demonstrate the validity of our approach,
we select a case where the robot cannot go in a straight path
from the initial position to the desired one. Images extracted
from the database and defining the path the robot needs to
perform are shown in Fig. 19.

When considering a planar scene, the image transfer
presented in Section 2.2 is much simpler. Indeed, the relation
between the points in two views is reduced to 2xp ∝

2Hp1
1xp, since all the points belong to the reference plane

used to compute the homography. Therefore, the information
in this matrix is sufficient to perform the point transfer. The

Fig. 16. Exp. 2: Robotic system positions and orientations during navigation. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 18. Exp. 3: Robotic system positions and orientations during navigation. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 19. Exp. 4: Image path used. ψ0 is the initial image, and ψ6 is the desired one. Other ones have been automatically extracted from the database.

combination of homographies is also straightforward. Thus, if
we consider that the point correspondences between the images
ψt and ψi enable us to compute the associated homography
(four matches are sufficient), and if the homography between
images of the path ψi and ψ j has been computed, then one can
estimate the homography between views ψt and ψ j , which is
nothing but:

t Hp j =
t Hpi

i Hp j . (21)

This principle is used during the navigation for predicting the
position of the points that are entering inside the camera’s field
of view. It has also been used for creating the Fig. 20, in which
all the points and image borders of the image path are projected
onto the first reference frame. As one can see, all the points
are not visible in the first view. Furthermore, their position in
the image does not enable the robot to move directly from the
initial to the desired position.

Fig. 21 presents the trajectory of the principal point of the
camera during the navigation. Ensuring that the points of the
next scheduled set Mi enter the camera’s field of view is
sufficient to perform the navigation without reaching the pose

Fig. 20. Exp. 4: Points and image borders projected onto the first image plane.

of each image of the path. Fig. 22 compares the obtained 2D
trajectory with two other approaches. The first method is an
extension of classical image-based visual servoing: the robotic
system successively converges towards each image of the path.
Once the error measured between the current and desired point
positions is sufficiently small, the system considers the next
image in the path as its new desired position. In the second
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Fig. 21. Exp. 4: Principal point trajectory projected onto the first image plane.

Fig. 22. Exp. 4: Comparison of 2D robot trajectories for the path defined by
Fig. 19. Method 1: iterative classical visual servoing with convergence towards
each intermediary image. Method 2: the current visual servoing is skipped when
enough points from the next view are visible. Method 3: method proposed
in this paper. Our approach gives the shortest path. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

method [18], the robot still converges towards intermediary
images with an image-based visual servoing, but the current
servoing is stopped as soon as enough points from the next
image in the path are visible (this information is obtained by
performing the point transfer with Eq. (21)). The next image in
the path is then considered as the desired one. Therefore, the
robot no longer converges towards every image of the sequence
(as we can see in Fig. 22), but it is still dependent on the
intermediary poses.

As one can see, while ensuring that the robotic system stays
in areas where enough points are visible, the method proposed
here manages to realize a shorter trajectory. Furthermore, this
trajectory is less dependent on the poses of the images from the
path. Indeed, in the second objective function Vs (see 2.3.3),
all the points considered are projected on the current image
plane, and the measures realized only consider these positions.
For the two other approaches, the points are explicitly required
to reach the positions measured in the next image of the path.
The motion performed is thus naturally dependent on the pose
between this view and the current one.

Fig. 23. Exp. 4: Robot trajectories compared (path defined by Fig. 19 and the
same with rotated images). The two trajectories are equivalent, since the robotic
system uses the feature positions in the current frame to control its motion, and
not the ones observed within the images from the path. Rotated images do not
disturb the control law. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

In the next experiment, a 180◦ rotation is applied to images
ψ1 and ψ5 of the path. Navigating this path with the first
approach constrains the robot to make these useless rotations
during motions ψ0 − ψ1, ψ1 − ψ2, ψ4 − ψ5 and ψ5 − ψ6.
The second method, even if it avoids the convergence towards
each of the intermediary images, realizes a part of these
rotations anyway. Fig. 23 compares the trajectory obtained
with our approach for the path without rotation, and for the
trajectory obtained when views ψ1 and ψ5 are rotated. The
two trajectories are nearly the same. As expected, the rotations
around the optical axis do not affect our approach at all.

4. Conclusion

This paper has presented a new control law for robot
navigation. An image path is first extracted from a visual
memory describing the environment. This image path defines
the visual features that the camera should observe during the
motion. The control law proposed does not require a 3D
reconstruction of the environment. Furthermore, the images
constituting the path are not considered as successive desired
positions that the robot has to reach. Robot motions are defined
with respect to the points matched between consecutive views
of the path. These sets of matches are considered as descriptions
of the area the robot has to successively reach. By requiring the
robot to observe these sets within good conditions, the system
gets closer to the desired position. A qualitative visual servoing,
using adequate objective functions, has been presented. The
originality of this control law is that no particular desired
positions or desired visual measures are imposed, but rather
confidence intervals. Experiments realized in simulations and
with a real robotic system have demonstrated the validity of the
proposed approach.

Future works will consider the application of this principle
to a real mobile robot. This requires us to define specific visual
measures, adapted to the motions that a robotic system like a car
can perform. Furthermore, we are interested in the extension of
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the control law in order to satisfy the non-holonomic constraints
of such robotic system.
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