
Real-Time Hybrid Tracking using Edge and Texture Information

Muriel Pressigout1 and Eric Marchand2

1 Université de Rennes 1, IRISA, Lagadic, F-35042 Rennes, France ;∗
2 INRIA, IRISA, Lagadic, F-35042 Rennes, France.†

Published in
The International Journal of Robotics Research

Vol 26, No 7, July 2007

Abstract

This paper proposes a real-time, robust and effective tracking framework for visual servoing applications.

The algorithm is based on the fusion of visual cues and on the estimation of a transformation (either a

homography or a 3D pose). The parameters of this transformation are estimated using a non-linear mini-

mization of a unique criterion that integrates informationboth on the texture and the edges of the tracked

object. The proposed tracker is more robust and performs well in conditions where methods based on a

single cue fail. The framework has been tested for 2D object motion estimation and pose computation. The

method presented in this paper has been validated on severalvideo sequences as well as in visual servoing

experiments considering various objects. Results show themethod to be robust to occlusions or textured

backgrounds and suitable for visual servoing applications.

Keywords : Visual Tracking, Visual Servoing, Hybrid Tracki ng

1 Introduction

Development of object tracking algorithms is an important issue for applications related to visual servoing

and more generally for robot vision. A robust extraction andreal-time spatio-temporal tracking process

of image motion/object’s pose is indeed one of the keys to success of a visual servoing task. To consider

∗Contact :Muriel.Pressigout@irisa.fr // +33 (0) 2 99 84 73 05.
†Contact :Eric.Marchand@irisa.fr // +33 (0) 2 99 84 74 27.

1

visual servoing within large scale applications, it is now fundamental to handle natural scenes without any

fiducial markers and with complex objects in various illumination conditions. From a historical perspective,

the use of fiducial markers allowed the validation of theoretical aspects of visual servoing research. Even if

such features are still useful to validate new control laws,it is no longer possible to limit ourselves to such

techniques if the final objectives are the transfer of these technologies in realistic applications.

Most of the available tracking techniques can be divided into two main classes: 2D image and 3D

pose-based tracking. The former approaches mainly focus ontracking 2D features such as geometrical

primitives (points [33, 44], segments [5, 21, 35], circles [35, 49],. . .) or object contours [3, 4], regions of

interest [20],. . . The latter explicitly use a 3D model of thetracked objects [11, 12, 13, 14, 15, 18, 29, 32, 38,

46, 48].

Edge-based tracking. Regarding the low level information that is extracted from the images, one can

consider edge-based information or texture-based information. Edge-based trackers rely on the high spatial

gradients outlining the contour of the object or some geometrical features of its pattern (points, lines, circles,

distances, splines,...). When 2D tracking is considered, such edge points enable to estimate the geometrical

features parameters whose values define the position of the object [21]. Snakes or active contours can be

used to outline a complex shape [4]. If a 3D model of the objectis available [12, 15], edge-based tracking is

closely related to the pose estimation problem and is therefore suitable for any visual servoing approach. In

general, edge-based techniques have proved to be very effective for applications that require a fast tracking

process. Nevertheless, they may fail in the presence of highly textured environments.

Texture-based tracking. On the other hand, texture information has been widely used for object tracking.

Contrarily to edge-based trackers, it is well adapted to textured objects and does usually less suffer from

jittering. However, this solution is not appropriate for poorly textured objects and is mainly exploited in

2D tracking, such as the KLT algorithm [44] or region of interest tracking [2, 20, 28]. Points or regions of

interest can also be used within a 3D model-based tracking asreported in [48] where the camera viewpoint

can be estimated by minimizing the projection errors of the different points of interest, or as in [27] where

the grey level values are integrated directly in the minimization process of the 3D tracking. Furthermore

these approaches usually lack of precision if there is a significant difference between current and reference

texture scales.

As one can note, model-based trackers can be mainly divided in two groups, the edge-based ones and the

2

textured-based ones. Both have complementary advantages and drawbacks. The idea is then to integrate both

approaches in the same process. This paper addresses the problem of robust tracking of 2D and 3D objects

by closely integrating edge and texture information. Considering various kind of features in a tracking

received little attention in the literature.

Hybrid tracking overview Among approaches to cue integration one can find i) a sequential use of the

available information (mainly motion and edges), ii) probabilistic approaches such as Extended Kalman

Filter or particle filter, iii) voting approaches and iv) registration process of the different cues within the

same minimization process. We try to analyze these different approaches.

Some methods rely on a sequential estimation of motion and of2D or 3D edge-based registration in

order to combine robustness and accuracy, as in [1, 10, 36, 7]. In these approaches, motion estimation

(dominant motion or optical flow) provides a prediction of the edge (i.e. , of the 2D object location) which

is helpful for the edge-based registration step and improves tracking reliability. Nevertheless, although both

motion and edges are (sequentially) considered these are not strictly hybrid algorithms and these approaches

do not take benefit of several advantages from using them simultaneously.

Most of the current approaches that integrate multiple cuesin a tracking process are probabilistic tech-

niques. Most of these approaches rely on the well known Kalman filter, its non-linear version the Extended

Kalman filter (EKF) or particle filter. [45] fuses measurements of the object’s center of mass using color in-

formation, edge orientations and positions and some feature displacements obtained by a SSD minimization

of the grey level difference between the current image and the prediction in a Kalman filter. [31] integrates

the outputs from two trackers (a 3D model-based tracker [15]and a point of interest tracker) using an EKF.

[19] fuses edge-based tracking and optical-flow estimationwithin an Iterated Extended Kalman Filter to

update object position. Let note that many approaches rely on a particle filtering as [26] or Probabilistic

Multiple Hypothesis Tracker (PMHT) [43] but are usually very slow. 2D visual cues fusion using voting has

also been studied in [30] and considered for visual servoingapplications. However, this work is not directly

related to edge and texture fusion.

In [48] the proposed model-based approach considers both 2D-3D matching against a key-frame that

represents a single pose as in a classical model-based approach but considering multiple hypothesises for the

edge tracking and 2D-2D temporal matching (which introduces multiple view spatio-temporal constraints in

the tracking process). A nice extension is proposed in [47] to integrate contribution of an edge-based tracker

3

similar to [12, 15]. The work of [39] extends the tracker of [27] by integrating contour information in the

case of planar structures. In this latter approach a global error function (that considers both distance to the

edge and difference of intensity) is defined and the Jacobianthat links the variation of a homography to the

variation of the feature vector is learnt using the approachpresented in [27].

The framework presented in this paper fuses a classical model-based approach based on the edge ex-

traction and a temporal matching relying on texture analysis into a single non-linear objective function that

has then to be minimized. Tracking is formulated in terms of afull scale non-linear optimization. We will

consider within the same framework both a 2D and a 3D tracker.Dealing with the 2D tracker, our goal is to

define a unique state vector that describes both the appearance of the template as well as its edge boundaries.

Considering this state vector, we are able to compute the parameters of a 2D transformation (a homography)

that minimizes the error between a current multi-cue template and the transformed reference one. When con-

sidering a 3D tracker, estimating both pose and camera displacement introduces an implicit spatio-temporal

constraint a 3D model-based tracker based on edge features lacks of. This general framework is used to

create a system which is capable of treating complex scenes in real-time. To improve robustness, an M-

estimator is integrated in a robust control law. The resulting pose or displacement computation algorithm

is thus able to deal effectively with incorrectly tracked features that usually degrade the performance and

result in a failure.

a b

Figure 1: Tracking issues. (a) estimating the 2D position ofan object in the image : its outline can be
determined all along the sequence, (b) retrieving the position and the orientation of the object in the 3D
space : the frame of the scene with respect to the camera is estimated in every image. Both problems are
addressed in this paper using the same hybrid transformation estimation framework.

In the remainder of this paper, section 2 presents the principle of the approach. Two different tracking

issues are addressed in sections 3 and 4 as illustrated in Figure 1. The section 3 deals with the estimation

of the 2D object position in the image by applying this general framework to the estimation of 2D trans-

4

formation, a homography. The pose computation issue is described in section 4 to estimate the pose of the

object in the 3D space, once again using the same framework. Finally, in order to validate this approach

both trackers are tested on several realistic image sequences as well as used as an input to a visual servoing

experiments. Those experimental results are reported in Section 5.

2 Tracking : general framework

This section is dedicated to the description of the general framework of the algorithm. It is based on a

transformation (either a 2D homography or a 3D pose) estimation that exploits image information. This

transformation estimation is first described in subsection2.1. After the introduction of different image

information used in this scheme in subsection 2.2, their fusion in the proposed framework is explained in

subsection 2.3.

2.1 General 2D or 3D transformation estimation

Whatever the tracking considered, either the estimation ofthe 2D object position in the image or its pose

in the 3D space with respect to the camera, the process relieson the estimation of a transformation. The

framework presented in this section describes the estimation process of this transformation, disregarding the

model of the transformation.

This transformation is parametrized byM parametersµi stored in a vectorµ. µt will be the notation for

the current transformation for the imageIt. Its estimation relies on the analysis of image featuress. The

first subsection presents the basis of the estimation process, whatever the image featuress, then its robust

version. Subsections 2.2 and 2.3 will describe the different image features that will be considered in this

work and their fusion in the transformation estimation process.

The value of the current image featuressµt estimated according toµt depends on stored datax and on

µt:

sµt = f(µt,x) (1)

The observations extracted from the imageIt provide a ground truths∗ for these features. The idea is to

determine the transformation parameters that minimize thedifference between those desired values and the

current ones,i.e. to estimateµt that minimizes the error∆ such as:

∆ =

n
∑

i=1

(si
µt

− s∗i)2 (2)

5

If each image feature is stored in a vectors = (s1, . . . , si, . . . , sn)>, it comes to minimize the error

vectore defined by:

e = sµt − s∗ (3)

If an exponential decrease of the error is specified:

ė = −λe (4)

whereλ is a positive scalar, one then has:

ė =
∂sµt

∂µt

dµt

dt
= −λe (5)

With Jsµt
=

∂sµt

∂µt
and dµt

dt
= δµ, a vector can be computed such as:

δµ = −λJ+
sµt

(sµt − s∗) (6)

whereJ+
s
µk

t

is the pseudo-inverse of the JacobianJsµt

1, in order to update the vectorµt at each iteration of

the iterative minimization process:

µk+1
t = µk

t ⊕ δµ (7)

with µ0
t = 0 until the error is minimized.⊕ is an update operator that depends on the considered trans-

formation. It will be explained later for each case. The finalµt is the vector that stores the estimated

transformation.

Since input data are extracted from the images, the process is sensitive to outliers originating from

noise, occlusions, mismatching,etcand a robust optimization has to be performed [23, 40]. Equation 2 can

be rewritten by:

∆ =
n

∑

i=1

ρ(si
µt

− s∗i) (8)

whereρ(u) is a robust function [23] that grows sub-quadratically and is monotonically non-decreasing

with increasing|u|. Iteratively Re-weighted Least Squares (IRLS) is a common method of applying the

M-estimator. It converts the M-estimation problem into an equivalent weighted least-squares problem.

The error to be regulated to zero is thus defined ase = D(sµt − s∗) whereD = diag(w1, . . . , wn) is a

diagonal weighting matrix. The weightswi, which represent the different elements of theD matrix, reflect

the confidence of each feature. In our case these weights are computed using the Tukey M-estimator [23].

1In our case since the number of rows is greater that the numberof columns the pseudo inverse of a matrixA is defined by:
A+ = (A>

A)−1
A

> whereA> is the transpose ofA.

6

Tukey’s estimator allows to completely reject outliers andgives them a zero weight. A complete description

of the way to computewi is given in [12]. The update of the transformation parameters is now given by:

δµ = −λ(DJs
µk

t

)+D(sµt − s∗) (9)

2.2 Visual features

Any kind of geometrical feature can be considered within theproposed framework as soon as it is possible

to compute its corresponding Jacobian matrixJ. It is easy to show that combining different features can be

achieved by adding features to vectors and by “stacking” each feature’s corresponding interaction matrix

into a large interaction matrix of sizend × 6 wheren corresponds to the number of features andd their

dimension:

ṡ =

ṡ1

...
ṡn

=

Js1

...
Jsn

δµ = Jsδµ (10)

The redundancy yields more accurate result with the computation of the pseudo-inverse ofJ as given in

equation (6). Furthermore if the number or the nature of visual features is modified over time, the interaction

matrixJ and the vector errors is easily modified consequently.

Two kinds of visual features will be considered in this work:edge-based and texture-based features.

Their description is given in the following paragraphs.

Edge-based features In this case, the visual featuress are composed of a set of distancesd⊥ (see Figure 2)

between local point featurespt obtained from an edge-based tracker (described in appendixA) and the

contours of the objectC. In this case, the desired values∗ is zero. An assumption is made that the contours

of the object in the image can be described as piecewise linear segments or portions of ellipses. All distances

are then treated according to their corresponding segment or ellipse.

Minimizing (2) using only such features comes to minimize:

∆ =

n
∑

i=1

(d⊥(pi
t, Cµt))

2 (11)

whereCµt denotes the geometrical features that outline the object contour estimated according to the current

transformation parametersµt. Note that the parameters of the object contours observed inthe image do not

need to be estimated.

7

Ct
at different steps of

the estimation process
edge extracted in the current image

estimated contour in the previous image

Ĉµt−1

Cµt

pi
t

pî
µt−1

pi−1
̂µt−1

pi−1
t

Figure 2: Edge-based tracking

Point-to-contour distances avoid a matching step that is necessary to algorithms that estimate the motion

by minimizing a point-to-point distance. As an example, in the Iterative Closest Point algorithm [17],

at each iteration of the minimization process, point matching must be performed before estimating the

transformation parameters.

An edge-based tracker is fast, effective and robust to illumination changes. However, it is mainly a

mono image process. As a consequence, if the geometrical features can not be accurately extracted without

any ambiguity, the tracker may lack of precision. This sensitivity to the textureness of the object or the

background may lead to jittering effects or even divergence.

Texture-based features Second type of features are grey levelsIt(p) that describe the pattern of the

object in imageIt. With the constant illumination assumption, the desired values of such features is given

by s∗ = It(pµ∗
t
) = I0(p0) and the current value of the features bysµt = It(pµt).

Minimizing (2) using only such features becomes:

∆ =
n

∑

i=1

(It(p
i
µt

) − I0(p
i
0))

2 (12)

The initial samples extracted from a reference imageI0 are chosen following the Harris criteria to select

locations that will give some reliable information about the motion. Indeed, the Jacobian matrix of such a

feature depends on the image spatial gradient∇I and the Jacobian matrix of the point location:

Jsµt
= ∇I(pµt)

>Jpµt
(13)

8

A small camera motion with respect to the object can lead to a large image intensity change. To avoid the

systematic elimination of the most interesting points of the pattern, the image gradient is taken into account

in the weight computation. Indeed,‖ ∇I ‖ is a good measure of reliability of the point. The larger‖ ∇I ‖,

the more significant the measure of the intensity differenceIt(p
i
µt

) − I0(p
i
0). So we prefer to consider

the intensity difference weighted by the norm of the spatialintensity gradient: the following normalized

vector(. . . ,
It(pi

µt
)−I0(pi

0
)

‖∇I0(pi
0
)‖

, . . .)> is used to compute the M-estimators instead of the errorsµt − s∗. Similar

normalizations are used in [25, 41].

If only texture-based features are exploited in the framework to estimate the transformation, the process

is relatively robust if the object is textured. It is howeversensitive to scale and illumination changes.

2.3 Merging features

As already said, any kind of features can be considered in thepresented framework. Using equation (10) not

only enables to consider several features but also several types of features of different nature. If there areNc

edge-based features (i.e. point-to-contour distances) andNt texture-based features (i.e. grey level samples),

one has:

s =

s1

...
sNc+Nt

(14)

where:

si =

{

d⊥(pi, C) if i ≤ Nc

It(p
i) if i > Nc

(15)

Merging two different types of features is quite simple. However one must care of the order of mag-

nitude of each one. Indeed, a point-to-contour distance is far smaller than an intensity difference and thus

the edge-based features may have not enough influence on the minimization process. As a consequence, a

normalization is performed respectively on each error vector (one storing the edge-based error, the other the

texture-based error) before stacking them in equation (3) such as each of their terms belongs to the inter-

val [−1; 1]. This is done by computing the maximal absolute value of the errors associated to the edge-based

(resp. texture-based) features and dividing the error vector associated to the edge-based (resp. texture-based)

features by this maximal value.

The tracking framework described in this section applies for different kinds of features as it has been said

but also for various transformation models. The two next sections will be dedicated to two cases. Section 3

deals with the estimation of the object position in the image, i.e. relies on a 2D transformation estimation,

9

more specifically a homography estimation, and section 4 with the camera pose/displacement computation.

In each case, details about the image features and their Jacobian matrix are given.

3 2D tracking: Homography estimation

Here, we consider 2D tracking and therefore the problem is toestimate the position of the object in a video

sequence. We work there in the 2D space of the images, therefore the process relies on the estimation of a

2D transformation.

Different types of models have been studied in the literature: pure translation, affine, homography,etc.

The most generic transformation for a planar structure is a homography since it is able to account for the

full 3D motion of such a structure.

In the case of an homographic model, the points of an image arelinked to those ones of another image

of the same planar structure by a3 × 3 matrixH :

pµt ∝ Hpµ̂t−1
(16)

Therefore, there are nine parameters to be estimated such as:

µ = (µ0, . . . , µ8) (17)

and:

H =

µ0 µ1 µ2

µ3 µ4 µ5

µ6 µ7 µ8

 (18)

and ifHk+1
t , Hk

t andδHt denote respectively the homography matrices obtained fromµk+1
t , µk

t andδµ as

defined in equation(7), the update operator is given by:

Hk+1
t = Hk

t δHt (19)

The transformation being defined, the image features can be more precisely described and their Jacobian

computed.

3.1 Edge-based features

Let us recall that the edge-based features are point-to-contour distances and that using only such features

comes to minimize (11). If we callεj the geometrical feature parameters describing the contours C, the

10

general analytical form of the Jacobian matrix ofsµt is:

Jsµt
=

∑

j

∂d⊥(pt, Cµt)

∂εj

∂εj

∂µt
(20)

The 2D tracking has been implemented for two classes of contours: piecewise linear contours, described

by lines and curved contours, described by NURBS. The approach used to extract this low level information

is described in Annex A.

Lines. In this case, the parametersεj are the three coefficientsaµt , bµt andcµt that define the line according

to the current 2D transformation parameters by:

xtaµt + ytbµt + cµt = 0 (21)

wherept = (xt, yt) is a point belonging the line. In the previous image, this contour is represented by the

estimated coefficientsaµ̂t−1
, bµ̂t−1

andcµ̂t−1
.

The featuresµt is given by:

sµt = d⊥(pt, Cµt) =
xtaµt + ytbµt + cµt

r
(22)

wherer =
√

a2
µt

+ b2
µt

and its Jacobian matrix:

Jsµt
=

xt r − aµtd⊥
r2

Jaµt
+

yt r − bµtd⊥
r2

Jbµt
+

1

r
Jcµt

(23)

with d⊥ = d⊥(pt, Cµt) to simplify the notations.

Jaµt
, Jbµt

andJcµt
are the respective Jacobian matrices ofaµt , bµt andcµt . They are detailed in Annex B

as well as the update ofCµt along the sequence.

NURBS. In this case, the parametersεj are the coordinatesQi = (αi, βi)
> and the weightswi of the

control pointsQi of the NURBS which is defined as follows [42]:

C(s) =

n
∑

i=0

Ri,p(s)Qi (24)

Ri,p are the rational basis functions, they are piecewise rational functions ons ∈ [0; 1] defined by:

Ri,p(s) =
Ni,p(s)wi

∑n
j=0 Nj,p(s)wj

(25)

11

Ni,p are the B-spline basis functions, they are piecewise polygonal functions ons ∈ [0; 1]. The NURBS are

more general curves than B-splines, their main advantage being their invariance to perspective transforma-

tion thanks to the weight associated with each control pointof the curve. A NURBS is therefore updated

from an image to another simply by applying the homographic transformation to its control points [42]

considering the weights as their third homogeneous coordinate.

The distance between a point and the curve is approximated bythe distance between the point and the

line tangent to the NURBS. The minimization problem is then similar to the piecewise linear outline case

since a distance between a point and a line is considered. Theselection of the points to be tracked is such as

there is the same number of points for each span of the NURBS, evenly spread.

3.2 Texture-based features

As said in section 2, the texture-based features are samplesof the grey levels of the object pattern and

minimizing (2) with only such features comes to minimize (12). The reference image is the image in which

the initial sampling is performed in the first image of the sequence.

The general form of the Jacobian matrix is given by (13) and using (16),Jpµt
is given by:

Jpµt
=

1

wµ̂t−1

(

xµ̂t−1
yµ̂t−1

1 0 0 0 −xµ̂t−1
xµt −yµ̂t−1

xµt

0 0 0 xµ̂t−1
yµ̂t−1

1 −xµ̂t−1
yµt −yµ̂t−1

yµt

)

(26)

The texture-based 2D tracker is similar to the work proposedby [20] and extended to homography estimation

by various authors such as [2, 8, 28].

4 3D tracking : camera pose/displacement computation

In this section, the general framework will be applied for the pose computation problem. Now the tracking

is performed in the 3D space and requires a 3D model of the object. The position and the orientation of the

camera with respect to the scene has to be determined,i.e. six parameters: three for the position and three

for the rotations of axes. It is supposed the intrinsic parametersξ are available but it is possible, using the

same approach, to also estimate these parameters. One thus hasµ = (tx, ty, tz, rx, ry, rz).

The pose matrixctMw (obtained fromµ) links the 3D featureswP of the object, expressed in the world

frame, to their projectionp in the image by:

p = prξ(
ctMw,w Pi) (27)

12

whereprξ(
ctMw,w Pi) is the chosen projection model. For a point with a simple perspective projection

model, we have:

p = K ctMw
wP (28)

whereK is a projective matrix obtained from the intrinsic parameters ξ.

If ctMk+1
w , ctMk

w andδµ denote respectively the matrices obtained fromµk+1
t , µk

t andδµ as defined in

equation (7), the update operator is given by:

ctMk+1
w = ctMk

w e[δµ] (29)

wheree[δµ] is the exponential map of SE(3) ofδµ computed using the Rodrigues’ formula (e.g.[34], p. 33).

δµ can be seen as a virtual camera velocity and the pose/displacement estimation as the process that

enables a virtual camera to align the observation in the image with the projection of the scene in its image

plane [12, 37]. To illustrate the principle, consider the case of an object with various 3D featuresP (for

instance,wP are the 3D coordinates of object points in the object frame).A virtual camera is defined whose

position and orientation in the object frame is defined byµ. The approach consists of estimating the real

pose or displacement by minimizing the error∆ between the observed datas∗ and the current valuesµ of

the same features computed by forward-projection according to the current pose/displacement:

∆ =
n

∑

i=1

(si
µ − s∗i)2 (30)

In this formulation of the problem, a virtual camera (initially at µt) is moved using a visual servoing

control law in order to minimize this error∆. At convergence, the virtual camera reaches the poseµ∗ which

minimizes this error.µ∗ is the real camera pose we are looking for.

As it will be seen, the edge-based features enable to performa pose computation while the texture-based

features are more suitable for a camera displacement estimation but it will be shown it is the same problem.

4.1 Edge-based features

When edge-based features are considered, the pose computation is performed as in a classical model-based

tracker [12, 15, 32]. The approach consists of estimating the real camera pose by minimizing the error∆

between the observed datas∗ and the positionsµt of the same features computed by a forward-projection

according to the current pose:

∆ =

n
∑

i=1

(

prξ(µ,w Pi) − s∗
i
)2

=

n
∑

i=1

(

d⊥(pi
t, Cµt)

)2
(31)

13

whereprξ(µ,w P) is the projection model according to the intrinsic parameters ξ and camera poseµ, s∗i =

d⊥(pi
t, Ct) = 0 as said in section 2 ands∗µt

= d⊥(pi
t, Cµt), Cµt being computed by the projection of the 3D

model in the image according to the current pose parametersµt. At convergence, the pose minimizing the

error∆ is assumed to be the real one.

The derivation of the interaction matrix that links the variation of the distance between a fixed point and

a moving straight line to the virtual camera motion is now given [12]. In Figure 3,p is the tracked point and

l(µ) is the current line feature position.

p
ρ

ρd

d⊥

y

x

θ

l(µt)

Figure 3: Distance of a point to a straight line

The position of the straight line is given by its polar coordinates representation,

x cos θ + y sin θ = ρ,∀(x, y) ∈ l(µ), (32)

The distance between pointp and linel(µ) can be characterized by the distanced⊥ perpendicular to the

line. In other words the distance parallel to the segment does not hold any useful information unless a

correspondence exists between a point on the line andp (which is not the case). Thus the distance feature

from a line is given by:

dl = d⊥(p, l(µ)) = ρ(l(µ)) − ρd, (33)

where

ρd = xd cos θ + yd sin θ, (34)

14

with xd andyd being the coordinates of the tracked point. Thus,

ḋl = ρ̇ − ρ̇d = ρ̇ + αθ̇, (35)

whereα = xd sin θ − yd cos θ. Deduction from (35) gives the Jacobian related todl: Jdl
= Jρ + αJθ. Jdl

can be thus derived from the Jacobian related to a straight line given by (see [16] for its complete derivation):

Jθ = [λθ cos θ λθ sin θ −λθρ ρcosθ −ρsinθ −1]
Jρ = [λρ cos θ λρ sin θ −λρρ (1 + ρ2) sin θ −(1 + ρ2) cos θ 0]

(36)

whereλθ = (A2sinθ−B2cosθ)/D2, λρ = (A2ρcosθ+B2ρsinθ+C2)/D2, andA2X+B2Y +C2Z+D2 = 0

is the equation of a 3D plane which the line belongs to.

From (35) and (36) the following is obtained:

Jdl
=

λdl
cosθ

λdl
sinθ

−λdl
ρ

(1 + ρ2)sinθ − αρcosθ

−(1 + ρ2)cosθ − αρsinθ

−α

>

, (37)

whereλdl
= λρ + αλθ.

4.2 Texture-based features

As said in section 2, the texture-based features are samplesof the grey levels of the object pattern and

minimizing (2) with only such features corresponds to minimizing (12)).

The geometry of a multi-view system (or of a moving camera) introduce very strong constraints in

feature location across different views. In the general case, the point transfer can be achieved considering

the epipolar geometry and the essential or fundamental matrices (see, for example, [22]). In this paper we

restrict ourselves to the less general case where point transfer can be achieved using a homography. Since

any kind of 3D motion must be considered, this means that the texture lies on a plane in the 3D space. We

first suppose that the object is piecewise planar and then release this assumption.

Planar structure. This case is quite similar to the 2D case but the homography isnow computed from the

camera displacement parameters [22]:

pt ∝ K−1 ctHc0 K p0 (38)

15

with:

ctHc0 = ctRc0 +
cttc0

d0
n>

0 (39)

wheren0 andd0 are the normal and distance to the origin of the reference plane expressed in the camera

reference frame.ctRc0 andcttc0 are respectively the rotation matrix and the translation vector between the

two camera frames.

Non-planar structure. In the case of a non-planar structure, the point transfer given by (38) becomes [22]:

pt ∝ K−1 ctHc0 K p0 + β0ct (40)

wherectHc0 is the homography induced by a reference planeπ as seen previously, the scalarβ0 is the

parallax relative to the homographyctHc0 andct = K cttc0 the epipole projected onto the imageIt in pixel

coordinates.β0 may be interpreted as a depth relative to the planeπ:

β0 =
d0 − n>

0 (Z0K
−1p0)

Z0 d0
(41)

with Z0 the depth coordinate of the 3D point associated withp0 expressed in camera frame 1. Asβ0 depends

only on parameters expressed in the camera reference frame,it can be precomputed. The value ofZ0 is given

by the intersection of the 3D structure and the ray passing through the camera center andp0.

Jacobian matrix. Independent of the object shape, the Jacobian matrixJpµt
is estimated using (13) with:

Jpµt
=

(

fx 0
0 fy

)(

− 1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x

)

(42)

From displacement estimation to pose estimation. The texture-based 3D tracker presented here relies

on the camera displacement parameters. However, estimating the camera displacement or its pose is similar

since a virtual camera velocityδµ is computed, which is equivalent if the camera posec0Mw in the reference

imageI0 is known, since:

ctMw = ctMc0
c0Mw (43)

Combining both approaches allows to introduce a spatio-temporal constraint in the pose estimation by

considering information in the current and past images and the underlying multi-view geometrical con-

straints.

16

Multiscale model. The displacement estimation has been presented for two imagesI0 andIt. In practice,

It is the current image for which the camera pose has to be estimated andI0 a reference image of the tracked

plane. There is a reference imageI0i for each planeπi with texture to track on the object. In the case of a

piecewise planar structure, there are then as many reference images as planes, such as the plane is not too far

from a fronto-parallel position with respect to the image plane. If it is a non-planar structure, it is necessary

to cover the whole object. Such a set of images is also used in [48], however, the features extracted from

these images is different (points locationsversusgrey levels). The model of the object is then composed

of the CAD model for the edge-based part of the tracker and thereference images for the texture-based

one. A pose computation is performed for each reference image using the edge-based model-based tracker

to get the plane parameters with respect to the camera frame needed in (39) and the depth computation.

The homographies needed to transfer the points are computedat each step for each plane following (39).

Because of (43), they all depend on the same pose parameters and by consequence tracking different planes

is not an issue.

If several planes are tracked, the number of grey-level samples per plane must be updated at each im-

age since the visibility of each plane changes. If there arent grey level samples to be considered in the

minimization process, the number of grey level samplesnti belonging to the planeπi to be involved in the

minimization process isnti = nt
P

i ai
ai whereai is the area of the planeπi in the image,ai being equal to

0 if the planeπi is not visible. For each reference image,nt points are subsampled following a trade-off

between the Harris criteria and covering as much as possiblethe whole pattern to enforce the robustness

of the tracking [44]. In Figure 4, an example is given for eachobject tracked in the experiment Section.

Depending on the visibility of the plane, a set of these samples will be updated and tracked following the

rule given above.

a b c

Figure 4: Texture model for a face of: (a) a rice box, (b) a DVD box, (c) a ball

This model of the object patterns enable to depict its textureness for a given camera-to-object distance

17

interval. A pyramid of reference images will be now introduced to represent the grey levels that best describe

the object for larger distances. From the reference imageI0i associated with a planeπi, K imagesIk
0i are

built using a Gaussian filter and a sub-sampling step. ImageIk
0i is obtained from imageIk−1

0i by:

Ik
0i = f(G⊗ Ik−1

0i) (44)

wheref is the sub-sampling function ,G a Gaussian filter and⊗ the convolution operator. The bottom of

the pyramid is given by the reference imageI0i = I1
0i. Only one of the imagesIk

0i will be tracked if the

planeπi is visible. The choice is simply based on the current distance between the object and the camera. As

we assume that the reference images are not too far from a fronto-parallel position with respect to the image

plane, ifα is the object distance from the camera for imageI0i, then the distanceαk = 2kα is associated

with imageIk
0i. The comparison with the current distance allows to select the image that is the nearest to

the current one. Figure 5 shows a pyramid obtained for a face of the DVD box. The Harris selection will be

performed for each image of this pyramid.

a b c

Figure 5: Pyramid obtained for a face. (a) Level 1, (b) Level 2, (c) Level 3

5 Experimental Results

This section presents some qualitative and quantitative results for the homography estimation and the pose

computation. In each case, experiments have been performedto validate the efficiency of the tracker which

is then applied to visual servoing positioning tasks [16, 24]. Visual servoing aims to control a robotic system

such as it realizes a given task by exploiting the information extracted from the images acquired by a camera.

18

The precision of the tracking is therefore a key point of the success or failure of such a task.

Each experiment is performed using i) the edge-based features, ii) the texture-based features and iii) their

integration hybrid tracker. The edge locations and/or the texture points used in the minimization process are

displayed in the first image of each sequence.

5.1 Results on homography estimation

To begin with, experiments have been performed to validate the efficiency of the tracker. The two first

experiments test the tracker on objects whose contours are modeled first by lines and then by NURBS. It is

then applied to visual servoing tasks.

In each experiment red crosses are used for inliers and greenones for outliers. Blue crosses are used for

edge locations that are not sharp enough and therefore not used in the tracking process. The object position

in each image is given by the current outline in red. During the visual servoing experiment, the desired

position is described by the green outline.

5.1.1 Video sequences

Tracking a piecewise linear object. In this experiment, a video sequence is captured. The tracked object

is outlined by four lines. The edge-based tracker diverges quite quickly (see Figure 6(b)), mistaken by

the neighboring sharp edges and the texture-based tracker slowly drifts (see Figure 6(a)), especially when

occlusions occur. However, the complementarity of the two kinds of features and the robust estimation

process enable the hybrid tracker to succeed (see Figure 6(c)). On Figure 7, one can see the occluded parts

are well-detected and withdrawn from the minimization by a low confidence weight.

Tracking a curved-shaped picture The framework has been applied to objects outlined by a NURBSas

described in this section. Figure 8 is an example of such a tracker. The object to track is a picture of an

apple. The challenge here is to obtain an accurate contour, which is quite difficult due to the background and

the shadow. Once again, the only tracker that succeeds to track the object is the hybrid one (see Figure 8(c)).

The edge-based is misled by the shadows that are very near thereal object outline and ends to be attracted

by texture in the neighborhood and the texture-based one drifts on one side. As previously, the selected

features are shown in the first image. The red crosses are for the inliers ones and the green crosses for the

features considered as outliers.

19

a

b

c

Figure 6: Tracking a planar structure. Images for: (a) the texture-based tracker, (b) the edge-based tracker
and (c) the hybrid tracker. The green crosses are points associated with features considered as outliers (due
to noise, occlusions or shadow) and the red ones are for the inliers ones. Blue crosses are used for edge
locations that are not sharp enough and therefore not used inthe tracking process. The hybrid is the only
one that succeeds to track the object, although significant occlusions occur.

Figure 7: Tracking a planar structure. Example of an occlusion detection. The green crosses are points
associated with features considered as outliers (due to noise, occlusions or shadow) and the red ones are for
the inliers ones. Blue crosses are used for edge locations that are not sharp enough and therefore not used in
the tracking process.

20

a

b

c

Figure 8: Apple sequence: NURBS tracking. Initial and final images. The hybrid tracker (c) succeeds to
track the object while the two other ones fail((a) and (b)). The green crosses are points associated with
features considered as outliers (due to noise, occlusions or shadow) and the red ones are for the inliers ones.

21

5.1.2 Others experiments : outdoor environment and significant motions

The tracker presented in this paper has been tested in various conditions: hand-held moving objects, camera

mounted on a robot,etc. Outdoor environment has also been studied, for example to track a building facade

as in Figure 9. Attention has also been paid to significant motions as shown in Figure 10 where the maximal

motion of the object during the experiment is displayed.

Figure 9: Outdoor environments. The scene, rich in contoursand texture, is made of planes and therefore,
the hybrid algorithm is an effective one for such an application

5.1.3 Visual servoing positioning task based on image moments

The task, here a positioning task, is specified by a set of desired featuresx∗ associated to its desired position

in the image. The velocity of a camera mounted on the end-effector of a 6 d.o.f robot is controlled such that

the error between the desired featuresx∗ and the current value of the featuresx gets minimized. The camera

velocityv that is computed to move the robot is such as:

v = −λLx
+(x − x∗) (45)

whereLx is the interaction matrix related tox (which links the motion ofx in the image to the camera

velocity: ẋ = Lxv).

In this experiment, image moments are used in the control lawto achieve the task [9]. We then have:

x = (xg, yg, a, px, py, θ) (46)

wherexg andyg are the coordinates of the center of gravity of the object,a its area,θ its orientation in the

image,px andpy depending of moments of order 3 as described in [9]

22

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120

m
ax

im
al

 m
ot

io
n

(p
ix

el
s)

images

maximum image motion

Figure 10: Significant motions. The merging of contour-based and texture-based results in an approach that
is more robust to large motions. Sudden increases or decreases of the object motion in the image are also
considered in this experiment.

23

The first experiment will show the accuracy of the positioning task although significant occlusions occur

when using the hybrid tracker and the second one compares itsaccuracy to a single-based one when both

succeed to track the object.

Visual servoing with occlusions. In this experiment, the task is performed four times: once totest the

output of each tracker when no occlusion occurs and once again to test the output of the hybrid tracker when

multiple occlusions occur.

The initial and final images of the experiment performed without occlusion are shown in Figure 11.

One can see the tracking was not successful in the single cue cases. Although the tracker proposed in this

paper is slower than the single-cue trackers (near video rate for the hybrid tracker and the texture-based

one, three time faster for the edge-based tracker), the experiments show that it is better than the single-cue

ones. Using only intensity information is not accurate enough because of the object scale changes during

the experiment and because of the poor texture in the areas ofthe pattern where the drift begins. In such

cases, the edge-based features are important to adjust moreaccurately the object position in the image.

(a) texture-based (b) Edge-based (c) Hybrid

Figure 11: First 2D visual servoing experiments without occlusion. Green rectangle: desired position of
the object in the image. Initial and final images. Only the hybrid tracker performs a good tracking. The
edge-based tracker completely diverges and the texture-based one lacks of accuracy.

24

Some of the intermediate and the final images of the experiment performed with occlusions are shown

in Figure 12. The green crosses are points associated with features considered as outliers (due to noise,

occlusions or shadow) and the red ones are for the inlier ones. Hidden edge locations are represented in

blue. One can see that the occluded parts are well detected.

Figure 12: First 2D visual servoing experiment with occlusions. Green rectangle : desired position of the
object in the image. The green crosses are points associatedwith features considered as outliers (due to
noise, occlusions or shadow) and the red ones are for the inliers ones.

The output of the hybrid tracker enables a good behavior of the camera and the positioning task is

correctly achieved. In Figure 13(a), the evolution of the camera velocity is shown, as well as the error

between the desired features and the current ones in Figure 13(b). The camera displacement is smooth and

the accuracy of our tracker enables to achieve a very good positioning. In Figure 14, the desired position

and the two final ones (without and with occlusions) obtainedusing the hybrid tracker are presented. The

positioning is well achieved in both cases: the error on the camera pose is below 1 degree on rotation and 5

mm on translation when no occlusion occurs and below 1.5 degree on rotation axis and 10 mm on translation

when occlusions occur.

Second visual servoing experiment. In this experiment, contrarily to the previous one two trackers suc-

ceed: the texture-based one (see Figure 15(a)) and the hybrid one (see Figure 15(c)). The servo-control

task has been stopped in the case of the edge-based case sincethe tracker completely diverges without any

chance to recover (see Figure 15(b)). Although the texture-based tracker succeeds to track the object, the

hybrid tracker achieves the positioning task with a better accuracy. As shown in Figure 16, the final camera

position obtained with the hybrid tracker is closer to the desired one than the one obtained by the texture-

based tracker. Furthermore, the velocity of the camera thatdepends on the output of the tracker is noisier

when using this latter one (see Figure 17).

25

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 400 800 1200 1600 2000
image

tx velocity
ty velocity
tz velocity
rx velocity
ry velocity
rz velocity

(a)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 400 800 1200 1600 2000
image

xg
yg

a
Px
Py

theta

(b)

Figure 13: First 2D visual servoing without occlusion usingour hybrid tracker. (a) camera velocity, transla-
tion velocities are incm/s and angle velocities indegree/s, (b) error in the image of each visual feature

Axes tx ty tz rx ry rz

Desired pose 40.3 -5.1 30.0 17.8 0 5.2

Final pose without occlusion(a) 40.9 -5.1 29.9 18.4 0 4.7
Motion from this pose to the desired one-0.6 -0.6 -0.1 -0.6 -0.2 0.5

Final pose with occlusions (b) 41.4 -4.9 30.0 18 -0.2 4
Motion from this pose to the desired one-1.1 -1.1 -0.1 -0.2 -0.2 1.2

Figure 14: First 2D visual servoing using our hybrid tracker: desired and final positions (a) case without
occlusion, (b) case with occlusions.tx, ty andtz are incm while rx, ry andrz are in degrees.

26

(a) texture-based (b) Edge-based (c) Hybrid

Figure 15: Second 2D visual servoing experiments. Green rectangle: desired position of the object in the
image. Initial and final images.The texture-based and the hybrid tracker perform a good tracking. The
edge-based tracker completely diverges.

Axes tx ty tz rx ry rz

Desired pose 8.0 -19.1 17.9 90.3 0.3 0.0

Final pose with the texture-based tracker (a)7.3 -21.2 17.5 91 0.9 2.1
Motion from this pose to the desired one 0.3 2 0.4 -0.7 2.1 -0.6

Final pose with the hybrid tracker (b) 7.9 -18.7 17.9 90.2 0.4 -0.5
Motion from this pose to the desired one 0.3 -0.3 0 0.1 -0.5 -0.1

Figure 16: Second 2D visual servoing: comparison of the finalpositioning: desired and final positions: (a)
texture-based tracker, (b) hybrid tracker.tx, ty and tz are incm while rx, ry andrz are in degrees. The
hybrid tracker is more accurate than the texture-based tracker.

27

-3

-2

-1

 0

 1

 2

 3

 4

 0 500 1000 1500 2000 2500

C
am

er
a

ve
lo

ci
ty

Image

tx velocity
ty velocity
tz velocity
rx velocity
ry velocity
rz velocity

a

-3

-2

-1

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700

C
am

er
a

ve
lo

ci
ty

Image

tx velocity
ty velocity
tz velocity
rx velocity
ry velocity
rz velocity

b

Figure 17: Second 2D visual servoing: comparison of the camera velocity. (a) texture-based tracker, (b)
hybrid tracker. Translation velocities are incm/s and angle velocities indegree/s. The camera velocity
with the texture-based tracker is noisier, which is something to be avoided.

5.2 Results on pose computation

As in the 2D case, some experiments will be first performed to validate the efficiency of the tracker and then

its reliability will be shown in visual servoing experiments.

Blue crosses are used for inliers and green ones for outliers. Black crosses are used for edge locations

that are not sharp enough and therefore not used in the tracking process. The object position in each image

is given by the current outline in green. During the visual servoing experiment, the desired position is

described by the red outline.

5.2.1 Video sequences

Tracking a box. In the considered image sequence, tracking the rice box is a very complex task since

the object achieves a complete rotation. Therefore, the features to be tracked change as some faces appear

or disappear. If the tracking begins to drift, it may be difficult to rectify the error, all the more that the

light positions lead to big specularities and the background is quite complex. The object contours are

permanently partially occluded by the hands or hardly visible: the edge-based tracker ends to lose the

object (see Figure 18a). The object scale in the image is different from the one in the reference images,

consequently this leads the texture-based tracker to fail to track the object quite quickly (see Figure 18b).

However, even if each single-cue trackers were not sufficient for a good tracking in this image sequence,

their fusion in the hybrid tracker enables to track the object correctly (see Figure 18c).

The camera pose parameters evolution is shown in Figure 19a and the evolution of the number of grey

28

a

b

c

Figure 18: Rice box sequence. Images for (a): the edge-basedtracker, (b): the texture-based one, (c): the
hybrid one. Only the hybrid tracker succeeds to track correctly the object all along the sequence, despite the
specularities and the misleading environment. The grey level samples are represented in the first image by
blue crosses and the edge location by red points.

level samples used in the control law per face in Figure 19b. These curves are quite smooth and the output of

the tracking is not prone to jittering. Let us note that the object being hand-held, the evolution of the pose is

not regular. Figure 19c shows an example of specularity the tracker has to deal with. The grey level samples

in the concerned area are considered as outliers by the M-estimators (they are drawn in green whereas the

inliers are in blue) as well as a few ones in the top of the object covered by the shadow due to the hand. The

hybrid tracker runs at an average rate of 25 Hz (see Figure 19d).

Tracking a ball. The difficulty of this experiment is to track a sphere which raises some illumination prob-

lems (permanent specularities,...). The contour-based tracker (Figure 20(b)) succeeds to track the contour

of the ball but gives no information about the ball orientation. One can see the frame linked to the object

remaining to the same place. The texture-based tracker (Figure 20(a)) succeeds to track the object for a

while but ends to lose it due to the illumination changes. Thehybrid tracker gives the full information about

the ball position and orientation during the whole sequence(Figure 20(c)).

29

5.2.2 2 1/2 D visual servoing experiment

Figure 22 presents a first example of 2 1/2 D visual servoing task. In this case, the visual feature vectorx is

selected as(t, x, y, θuz) wheret, expressed in the desired camera frame, is the translation that the camera

has to realize,x andy are the coordinates of an image point, andθuz is the third component of vectorθu

(whereθ andu are the angle and the axis of the rotation that the camera has to realize).t andθu are directly

computed from the current estimated pose and the desired one.

Similarly to the first VS experiment with the 2D tracker, the hybrid 3D tracker is able to perform an

accurate positioning task while the two others trackers fail. In Figure 23(a), the evolution of the camera

velocity is given and Figure 23(b) shows the task error decreasing. This leads to a precise positioning: the

desired pose and the obtained one are given in Figure 24. The error in the positioning is below 1 cm for the

position parameters and 1 degree for the orientation ones.

A more complex object is considered in the next experiment. The camera has to turn around the object

to achieve the positioning task, which makes some parts of the object disappearing/appearing as illustrated

in Figure 26. The experiment has been performed with each tracker without occlusion. The texture-based

tracker fails immediately as the robot motion is quite significant at the beginning (see Figure 25(d)). The

edge-based (see Figure 25(b)) and the hybrid tracker (see Figure 25(c)) both succeed to track the object and

enable a precise positioning of the robot as presented in Figure 28. However, when other objects occlude the

tracked one or are very near, the edge-based tracker drifts since the edges outlining the neighborhood mistake

the pose estimation (see Figure 25(e)). However, the hybridtracker is not sensitive to these occlusions and

succeeds to track the object all along the positioning task (see Figure 25(f)).

One can see in Figure 27 that the hybrid tracker enables a proper robot behavior even though the robot

motion is quite fast at the beginning, and leads to an accurate positioning (see Figure 28). Whether there are

occlusions or not, the error in the positioning is below 1 cm for the position parameters and 1degree for the

orientation ones.

6 Conclusion

From two classical model-based trackers, a new hybrid one has been built, exploiting both edge extraction

and texture information to obtain a more robust and accuratepose computation. The integration of the

texture-based camera motion estimation in the edge-based camera pose estimation process enables a robust

30

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120 140

P
os

e
pa

ra
m

et
er

s

Image

tx
ty
tz
rx
ry
rz

(a)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

N
um

be
r

of
 te

xt
ur

e
po

in
ts

 tr
ac

ke
d

Image

face 0
face 1
face 2
face 3
face 4
face 5

(b)

(c)

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

T
im

e
tr

ac
ki

ng
 (

m
s)

Image

tracking time

(d)

Figure 19: Rice box sequence. (a) camera pose parameters, (b) evolution of the number of grey level samples
per face used in the control. The hybrid approach succeeds a tracking without jittering, which is illustrated
by the smoothness of these curves. (c) example of specularity. The outliers are displayed in green and the
inliers in blue for the grey level samples or red for the edge locations. (d) evolution of the time tracking

31

a

b

c

Figure 20: Ball sequence. Images for (a): the texture-basedtracker that succeeds to estimate correctly the
whole pose parameters for a while, (b): the edge-based tracker: the reference frame remains still in the
image since the ball rotation is not observable using only the edge information, (c): the hybrid one. Only
the hybrid tracker succeeds to track correctly the object all along the sequence, despite the specularities and
the misleading environment.

32

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

P
os

e
pa

ra
m

et
er

s

Image

tx
ty
tz
rx
ry
rz

(a)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

P
os

e
pa

ra
m

et
er

s

Image

tx
ty
tz
rx
ry
rz

(b)

Figure 21: Ball sequence. Camera pose parameters for (a) edge-based tracker, (b) hybrid tracker. As the
ball is rotated, the edge-based tracker detects no motion. The hybrid tracker can estimate fully this motion
thanks to the texture information.

(a) (b) (c)

Figure 22: First 2 1/2 D visual servoing experiment, initialand final images for (a) the edge-based tracker,
(b) the texture-based one, (c) the hybrid one. The desired (resp current) position of the object in the image
is given by the red (resp green) drawing. Only the hybrid tracker succeeds to track the object and achieve a
accurate positioning since the edge-based one drifts a little.

33

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

vx
vy
vz
wx
wy
wz

a
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 50 100 150 200 250

tx
ty
tz
x
y

thetaUz

b

Figure 23: First 2 1/2 D visual servoing experiment using thehybrid algorithm. (a) Evolution of the camera
velocity (mm/s and deg/s) (b) Evolution of the error.

Axes tx ty tz rx ry rz

Desired pose 56.1 50.8 11.0 10.7 42.9 0.0

Final pose 55.4 50.6 10.8 10.2 42.8 0.9
Motion from this pose to the desired one 0.1 0.8 0.5 -0.1 0.2 -0.6

Figure 24: First 2 1/2 D visual servoing experiment using thehybrid algorithm. Desired camera pose and the
obtained one.tx, ty andtz are the position parameters in cm andrx, ry andrz are the orientation parameters
in degrees.

34

(a) (b) (c)

Figure 25: Second 2 1/2 D visual servoing experiment, Initial (first row) and final images (second row
without occlusion, third one with occlusions) for (a) the edge-based tracker, (b) the texture-based one, (c)
the hybrid one. The desired (resp current) position of the object in the image is given by the red (resp green)
drawing. The hybrid tracker and the edge-based tracker succeed to track the object and achieve accurate
positioning even if the object is not occluded. However whenocclusions occurs, only the hybrid tracker
enables to achieve the task with a good accuracy.

35

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350

N
um

be
r

of
 te

xt
ur

e
po

in
ts

 tr
ac

ke
d

Image

face 0
face 1
face 2
face 3
face 4
face 5
face 6
face 7
face 8
face 9

face 10
face 11

Figure 26: Second 2 1/2 D visual servoing experiment using the hybrid algorithm. Evolution of the visibility
of the faces of the object. Appearance and disappearance of the faces do not disturb the tracker.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300 350

C
am

er
a

ve
lo

ci
ty

 p
ar

am
et

er
s

Image

vx
vy
vz

wx
wy
wz

a

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 50 100 150 200 250 300 350

T
as

k
er

ro
r

Image

tx
ty
tz
x
y

thetaUz

b

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300 350

C
am

er
a

ve
lo

ci
ty

 p
ar

am
et

er
s

Image

vx
vy
vz

wx
wy
wz

c

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 50 100 150 200 250 300 350

T
as

k
er

ro
r

Image

tx
ty
tz
x
y

thetaUz

d

Figure 27: Second 2 1/2 D visual servoing experiment using the hybrid algorithm. (a) evolution of the
camera velocity (m/s and rad/s) when no occlusion occurs, (b) evolution of the error when no occlusion
occurs,(c) evolution of the camera velocity (m/s and rad/s)when occlusions occur, (d) evolution of the error
when occlusions occur. The hybrid tracker enables a smooth robot motion and a good positioning, whether
the object is occluded or not.

36

Axes tx ty tz rx ry rz

Desired pose -41.7 53.0 -35.4 21.3 50.7 0.0

Final pose with edge-based tracker without occlusions-42.4 53.2 -36.2 21.5 50.2 0.2
Motion from this pose to the desired one 1.1 0.1 0.7 -0.3 0.5 0

Final pose with hybrid tracker without occlusions -41.7 53.5 -35.5 21.3 50.5 0.1
Motion from this pose to the desired one 0.1 -0.4 0 0 0.2 0

Final pose with edge-based tracker with occlusions-41.7 53.7 -43.2 24.1 48.6 -1.6
Motion from this pose to the desired one 2.8 1.8 8.1 -1.6 1.5 1.8

Final pose with hybrid tracker with occlusions -41.3 53.3 -35.4 21.3 50.8 0
Motion from this pose to the desired one -0.5 -0.3 0 0 -0.1 0

Figure 28: Second 2 1/2 D visual servoing experiment using the hybrid algorithm. Desired camera pose
and the obtained one.tx, ty andtz are the position parameters in cm andrx, ry andrz are the orientation
parameters in degrees. If no occlusion occurs, the edge-based and the hybrid trackers both enable an accurate
positioning. However, only the hybrid one remains effective when occlusions occur.

and real-time tracking. M-estimators are added in the tracking process to enforce the robustness of the algo-

rithm to occlusions, shadows, specularities and misleading backgrounds. The effectiveness of the proposed

approach has been tested on various image sequences and within visual servoing positioning tasks.

We are now interested in extending this spatio-temporal tracking to texture lying on other non-planar

structures to track a wider range of objects. As any improvement in the treatment of a kind of feature in the

tracking process leads also to a better hybrid tracker, we also study a model of the textured plane to enforce

the robustness to illumination changes.

7 Acknowledgement

The authors would like to thank Andrew Comport and Nicolas Mansard for their comments on this work.

A Edge extraction

When dealing with low-level image processing, the contoursare sampled at a regular distance. At these

sample points a 1 dimensional search is performed to the normal of the contour for corresponding edges. An

orientedgradient mask [6] is used to detect the presence of a similar contour. One of the advantages of this

method is that it only searches for edges which are aligned inthe same direction as the parent contour. An

array of 180 masks is generated off-line which is indexed according to the contour angle. This is therefore

implemented with convolution efficiency, and leads to real-time performance.

37

More precisely, the process [6] consists of searching for the corresponding pointpt+1 in imageIt+1 for

each pointpt (see Figure 29). A 1D search interval{Qj, j ∈ [−J, J]} is determined in the directionδ of

the normal to the contour.For each pointP t
i in the list Lt, and for every entire positionQj, we compute

a criterion corresponding to the square root of a log-likelihood ratioζj [6]. The latter is nothing but the

absolute sum of the convolution values, computed atpt andQj respectively in imagesIt andIt+1, using a

pre-determined maskMδ function of the orientation of the contour. Then the new position pt+1 is given by:

Q∗
j = arg max

j∈[−J,J]
ζj with ζj =| It

ν(pt) ∗ Mδ + It+1
ν(Qj)

∗ Mδ | (47)

ν(.) is the neighborhood of the considered pixel. In this paper the neighborhood is limited to a7 × 7 pixel

mask. It should be noted that there is a trade-off to be made between real-time performance and mask

stability. Likewise there is a trade-off to be made between the search distance, real-time performance while

considering the maximum inter-frame movement of the object.

This low level search produces a list ofk points which are used to calculate distances from corresponding

projected contours.

(a) (b)

δ

pt

Qj

Qj+1

Qj+n

l(µ)t

pt

pt+1

l(µ)t
100 100 100

0 0 0

100 100 0

(d)

(c)

 100 0 −100

−100 −100 −100

0 −100 −100

Figure 29: Determining points position in the next image using the oriented gradient algorithm: (a) calcu-
lating the normal at sample points, (b) sampling along the normal and searching new similar contour (c-d) 2
out of 180 3x3 predetermined masksMδ (in practice 7x7 masks are used) (c)180o (d) 45o.

38

B Case of line tracking for a homography estimation

Jaµt
, Jbµt

andJcµt
are the respective Jacobian matrices of the lines coordinatesaµt , bµt andcµt . With the

notations introduced in sections 2 and 3, they are such as :

Jaµt
= −

1

d

(

ca1
ua ca2

ua ca3
ua ca1

ub (48)

ca2
ub ca3

ub ca1
uc ca2

uv ca2
uv

)

Jbµt
= −

1

d

(

cb1ua cb2ua cb3ua cb1ub

cb2ub cb3ub cb1uc cb2uv cb2uv

)

Jcµt
= −

1

d

(

cc1ua cc2ua cc3ua cc1ub

cc2ub cc3ub cc1uc cc2uv cc2uv

)

with :

d = det(H) (49)

ca =
(

ca1
ca2

ca3

)>

(

(µ4µ8 − µ5µ7) (µ5µ6 − µ3µ8) (µ3µ7 − µ4µ6)
)>

cb =
(

cb1 cb2 cb3

)>

(

(µ2µ7 − µ1µ8) (µ0µ8 − µ2µ6) (µ1µ6 − µ0µ7)
)>

cc =
(

cc1 cc2 cc3

)>

(

(µ1µ5 − µ2µ4) (µ2µ3 − µ0µ5) (µ0µ4 − µ1µ3)
)>

c =
(

aµ̂t−1
bµ̂t−1

cµ̂t−1

)

ua = c.ca

ub = c.cb

uc = c.cc

Using these notations, the update ofCµt along the sequence,i.e. of the coefficientsaµt , bµt andcµt , is given

by :

aµt =
ua

d
, bµt =

ub

d
, cµt =

uc

d

Let note thatd 6= 0 since it is the determinant of a homography.

39

C Notations

Table 1 gives an overview of the different notation used in the paper.

Notation Signification

µt : current 2D (homography) or 3D (pose) transformation for the imageIt

s : image features exploited to estimate the transformation
s∗ : observed values of the image features in imageIt

sµt : current values of the image features in imageIt

Jx : Jacobian of a featurex
p : image point
p0 : image point extracted in the reference image
pµt : projection of an image point according toµt

pt : image point extracted in the current imageIt

∂⊥(p, C) : distance between a pointp and a geometrical featureC
Cµt : geometrical feature representing the contour according to µt

I0(p
i
0) : grey level at locationpi

0 in imageI0

It(p
i
µt

) : grey level at locationpi
µt

in imageIt

K : projective matrix obtained from the intrinsic camera parameters
ctMw : camera pose matrix associated to imageIt
ctRc0 : camera rotation matrix between the frames respectively associated toI0 andIt
cttc0 : camera translation vector between the frames respectively associated toI0 andIt
ctHc0 : homography associated to a plane between the frames respectively associated toI0 andIt

n0, d0 : normal and distance to the origin of a plane expressed in thecamera reference frame

Table 1: Main notations used in the paper.

References

[1] B. Bascle, P. Bouthemy, N. Deriche, and F. Meyer. Tracking complex primitives in an image sequence.

In Int. Conf. on Pattern Recognition, ICPR’94, pages 426–431, Jerusalem, October 1994.

[2] S. Benhimane and E. Malis. Homography-based 2d visual tracking and servoing.Int. Journal of

Computer Vision, 2007. Special IJCV/IJRR issue on vision for robots.

[3] M.-O. Berger. How to track efficiently piecewise curved contours with a view to reconstructing 3D

objects. InInt. Conf on Pattern Recognition, ICPR’94, pages 32–36, Jerusalem, October 1994.

[4] A. Blake and M. Isard.Active Contours. Springer Verlag, April 1998.

40

[5] S. Boukir, P. Bouthemy, F. Chaumette, and D. Juvin. A local method for contour matching and its

parallel implementation.Machine Vision and Application, 10(5/6):321–330, April 1998.

[6] P. Bouthemy. A maximum likelihood framework for determining moving edges.IEEE Trans. on

Pattern Analysis and Machine Intelligence, 11(5):499–511, May 1989.

[7] T. Brox, B. Rosenhahn, D. Cremers, and H.-P. Seidel. Highaccuracy optical flow serves 3-D pose

tracking: exploiting contour and flow based constraints. InA. Leonardis, H. Bischof, and A. Pinz,

editors,European Conf. on Computer Vision, ECCV’06, volume 3952 ofLNCS, pages 98–111, Graz,

Austria, May 2006. Springer.

[8] J. Buenaposada and L. Baumela. Real-time tracking and estimation of plane pose. InIAP Int. Conf.

on Pattern Recognition, ICPR’02, volume 2, pages 697–700, Québec, Canada, August 2002.

[9] F. Chaumette. Image moments: a general and useful set of features for visual servoing.IEEE Trans.

on Robotics, 20(4):713–723, August 2004.

[10] N. Chiba and T. Kanade. A tracker for broken and closely-spaced lines. InISPRS Int. Society for

Photogrammetry and Remote Sensing Conf., pages 676 – 683., Hakodate,Japan, 1998.

[11] A.I. Comport, E. Marchand, and F. Chaumette. Robust model-based tracking for robot vision. In

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS’04, volume 1, pages 692–697, Sendai,

Japan, September 2004. (extended version version published in Advanced Robotics, 16(10):1097–

1013, december 2005 (special issue on Selected paper from IROS’04).

[12] A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-time markerless tracking for

augmented reality: the virtual visual servoing framework.IEEE Trans. on Visualization and Computer

Graphics, 12(4):615–628, july 2006.

[13] N. Daucher, M. Dhome, J.T. Lapreste, and G. Rives. Modelled object pose estimation and tracking

by monocular vision. InBritish Machine Vision Conf., BMVC’93, pages 249–258, Guildford, UK,

September 1993.

[14] M. Dhome, M. Richetin, J.-T. Lapresté, and G. Rives. Determination of the attitude of 3D objects from

a single perspective view.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(12):1265–

1278, December 1989.

41

[15] T. Drummond and R. Cipolla. Real-time visual tracking of complex structures.IEEE Trans. on Pattern

Analysis and Machine Intelligence, 24(7):932–946, July 2002.

[16] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in robotics.IEEE Trans. on

Robotics and Automation, 8(3):313–326, June 1992.

[17] A.W. Fitzgibbon. Robust registration of 2d and 3d pointsets. Image and Vision Computing, 21(12-

13):1145–1153, December 2003.

[18] D.B. Gennery. Visual tracking of known three-dimensional objects. Int. J. of Computer Vision,

7(3):243–270, 1992.

[19] M. Haag and H.H. Nagel. Combination of edge element and optical flow estimates for 3D-model-

based vehicle tracking in traffic image sequences.Int. Journal of Computer Vision, 35(3):295–319,

December 1999.

[20] G. Hager and P. Belhumeur. Efficient region tracking with parametric models of geometry and il-

lumination. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(10):1025–1039, October

1998.

[21] G. Hager and K. Toyama. The XVision system: A general-purpose substrate for portable real-time

vision applications.Computer Vision and Image Understanding, 69(1):23–37, January 1998. Also

Research Report Yale University.

[22] R. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge University

Press, 2001.

[23] P.-J. Huber.Robust Statistics. Wiler, New York, 1981.

[24] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control.IEEE Trans. on Robotics

and Automation, 12(5):651–670, October 1996.

[25] M. Irani, B. Rousso, and S. Peleg. Detecting and tracking multiple moving objects using temporal

integration. InECCV’92, pages 282–287, 1992.

42

[26] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. InEuropean

Conf. on Computer Vision, ECCV’96, LNCS no. 1064, Springer-Verlag, pages 343–356, Cambridge,

UK, 1996.

[27] F. Jurie and M. Dhome. Read time 3D template matching. InInt. Conf. on Computer Vision and

Pattern Recognition, volume 1, pages 791–796, Hawai, December 2001.

[28] F. Jurie and M. Dhome. Hyperplane approximation for template matching.IEEE Trans. on Pattern

Analysis and Machine Intelligence, 24(7):996–1000, July 2002.

[29] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-basedobject tracking in monocular image sequences

of road traffic scenes.Int. Journal of Computer Vision, 10(2):257–281, June 1993.

[30] D. Kragic and H. Christensen. Cue integration for visual servoing. IEEE Trans. on Robotics and

Automation, 17(1):19–26, February 2001.

[31] V. Kyrki and D. Kragic. Integration of model-based and model-free cues for visual object tracking in

3d. In IEEE Int. Conf. on Robotics and Automation, ICRA’05, pages 1566–1572, Barcelona, Spain,

April 2005.

[32] D.G. Lowe. Fitting parameterized three-dimensional models to images.IEEE Trans. on Pattern Anal-

ysis and Machine Intelligence, 13(5):441–450, May 1991.

[33] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo

vision. In Int. Joint Conf. on Artificial Intelligence, IJCAI’81, pages 674–679, 1981.

[34] Y. Ma, S. Soatto, J. Košecká, and S. Sastry.An invitation to 3-D vision. Springer, 2004.

[35] E. Marchand. Visp: A software environment for eye-in-hand visual servoing. InIEEE Int. Conf. on

Robotics and Automation, ICRA’99, volume 4, pages 3224–3229, Detroit, Michigan, Mai 1999.

[36] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau. Robust real-time visual tracking using a

2D-3D model-based approach. InIEEE Int. Conf. on Computer Vision, ICCV’99, volume 1, pages

262–268, Kerkira, Greece, September 1999.

43

[37] E. Marchand and F. Chaumette. Virtual visual servoing:a framework for real-time augmented reality.

In G. Drettakis and H.-P. Seidel, editors,EUROGRAPHICS’02 Conf. Proceeding, volume 21(3) of

Computer Graphics Forum, pages 289–298, Saarebrücken, Germany, September 2002.

[38] F. Martin and R. Horaud. Multiple camera tracking of rigid objects.Int. Journal of Robotics Research,

21(2):97–113, February 2002. (INRIA RR-4268, september 2001).

[39] L. Masson, F. Jurie, and M. Dhome. Contour/texture approach for visual tracking. In13th Scandina-

vian Conf. on Image Analysis, SCIA 2003, volume 2749 ofLecture Notes in Computer Science, pages

661–668. Springer, 2003.

[40] P. Meer, C. V. Stewart, and D. E. Tyler. Robust computer vision: An interdisciplinary challenge.

Computer Vision and Image Understanding: CVIU, 78(1):1–7, 2000.

[41] J.-M. Odobez and P. Bouthemy. Robust multiresolution estimation of parametric motion models.Jour-

nal of Visual Communication and Image Representation, 6(4):348–365, December 1995.

[42] L. Piegl and W. Tiller.The NURBS book (2nd ed.). Springer-Verlag New York, Inc., 1997.

[43] C. Rasmussen and G. Hager. Joint probabilistic techniques for tracking multi-part objects.IEEE Trans.

on Pattern Analysis and Machine Intelligence, 23(6):560–576, 2001.

[44] J. Shi and C. Tomasi. Good features to track. InIEEE Int. Conf. on Computer Vision and Pattern

Recognition, CVPR’94, pages 593–600, Seattle, Washington, June 1994.

[45] G. Taylor and L. Kleeman. Fusion of multimodal visual cues for model-based object tracking. In

Australasian Conference on Robotics and Automation (ACRA2003), Brisbane,Australia, December

2003.

[46] M. Tonko and H.H. Nagel. Model-based stereo-tracking of non-polyhedral objects for automatic dis-

assembly experiments.Int. Journal of Computer Vision, 37(1):99–118, June 2000.

[47] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge andtexture information for real-time accurate 3d

camera tracking. InACM/IEEE Int. Symp. on Mixed and Augmented Reality, ISMAR’2004, volume 2,

pages 48–57, Arlington, Va, November 2004.

44

[48] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3d tracking using online and offline information.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(10):1385–1391, October 2004.

[49] M. Vincze. Robust tracking of ellipses at frame rate.Pattern Recognition, 34(2):487 – 498, February

2001.

45

Contents

1 Introduction 1

2 Tracking : general framework 5

2.1 General 2D or 3D transformation estimation 5

2.2 Visual features 7

2.3 Merging features 9

3 2D tracking: Homography estimation 10

3.1 Edge-based features 10

3.2 Texture-based features 12

4 3D tracking : camera pose/displacement computation 12

4.1 Edge-based features 13

4.2 Texture-based features 15

5 Experimental Results 18

5.1 Results on homography estimation 19

5.1.1 Video sequences 19

5.1.2 Others experiments : outdoor environment and significant motions 22

5.1.3 Visual servoing positioning task based on image moments 22

5.2 Results on pose computation 28

5.2.1 Video sequences 28

5.2.2 2 1/2 D visual servoing experiment 30

6 Conclusion 30

7 Acknowledgement 37

A Edge extraction 37

B Case of line tracking for a homography estimation 39

C Notations 40

46

