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Abstract— A critical assumption of many multi-view control
systems is the initial visibility of the regions of interest from all
the views. An initialization step is proposed for a hybrid eye-
in-hand/eye-to-hand grasping system to fullfil this requirement.
In this paper, the object of interest is assumed to be within the
eye-to-hand field of view, whereas it may not be within the eye-
in-hand one. The object model is unknown and no database
is used. The object lies in a complex scene with a cluttered
background. A method to automatically focus on the object
of interest is presented, tested and validated on a multi view
robotic system.

I. INTRODUCTION

Service robotics is a fast growing field. Among its appli-
cations are robotic assistants for elderly or disabled lgeop
They can help these people recovering some manipulation
capabilities in everyday-life. Since their handicap oftea-
vents disabled people from moving their arms and legs, the
action necessary to command such robotic assistants has td he application starts as soon as the user has clicked on
be strictly limited. In this paper, we propose the first steghe object to grasp in the eye-to-hand image. Due to the
towards a semi-autonomous application for a grasping tagipolar geometry constraint [8], the corresponding paint
which only requires one click from the user. known to be on a line in the eye-in-hand image. A visual

The robotic system consists of two cameras. One cameraS@rvoing scheme based on epipolar geometry allows the eye-
fixed in the workspace (typically this is a wideangle camer#)-hand camera to center the line in its image. The camera
able to see the whole working area and attached to the t6g" then be controlled to cover the line while the centering
of a wheelchair). The other camera is mounted on a robétsk ensures that the object will be in the eye-in-hand field
end-effector and is of limited sight. It can move close to th€f view at some moments. Epipolar-geometry-based robot
scene and is able to capture scene details. The goal is@@ntrol has been studied in the past, mostly for visual hgmin
achieve eye-in-hand/eye-to-hand cooperation with these t @pplications [12], [13], [1]. In [12], [13], the visual sesing
cameras. Few papers [10], [7], [5] (and to some extent [9]3; based on the matching of a desired epipole position and
deal with eye-in-hand/eye-to-hand cooperation. the current computed epipole. In [1], the epipolar lines in

[10], [7], [5] and most of the multi camera systems assum@Cth the current and the desired views are computed and
that the interest area is common to every cameras fiefligned. These methods assume that some common features
of view. On the contrary, in the proposed approach, th@® ob_served in both current and_d_e_5|_red views to_estlmate
object of interest is within the filed of view of only the the epipolar geometry. In [9] an initialization step is used
eye-to-hand camera. This assumption is not necessarily f& ensure that the object detected by the fixed camera falls
the mobile camera since the initial arm pose is assumé&}thin the mobile camera's field of view. Our approach can
to be purely random. We propose an approach to senfi€ S€€n as an extension of [1] and [9] as the servoing task
automatically set the mobile camera’s position so as toecentcONsists of surfing the epipolar line looking for the objett o
the interest area in its field of view. The object is assumelfterest. Similar to [9], no image is acquired at the desired
to be unknown, i.e. its shape and texture are not known, f@mera position. The system is calibrated and the epipolar
database is used, and the scene is complex with a textui@gPMetry is not estimated but explicitly computed. In [9],
and cluttered background. Furthermore, the object can motie¢ Paseline of the system is fixed and small, whereas the
slightly within the scene. The hybrid system is supposed tgPnsidered mobile camera is mounted on a six degrees of

Fig. 1. Eye-in-hand/eye-to-hand system reference frames

be calibrated. freedom (dof) arm and is far from the eye-to-hand camera.
Besides, in [9], a geometric and kinematic coupling between
L INRIA, IRISA, Lagadic Project, F-35000 Rennes, France both cameras is built, while we propose to use a visual
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under contribution to student grant. visual servoing. A complete solution to ensure that the



PN The essential matrix (2) defines a relation between the
,xﬁp\ epipolar plane epipolar constraint and the extrinsic parameters of the sys
T tem. Since™M¢, is given, the essential matrix can be
computed at every stage. Furthermore, in @E,‘mp is
eye-to-hand epipolar line the epipolar line that goes throughp and the epipoléme
image plane (the projection ofCt on ¢, image plane). The epipolar line
/ A is the projection of the line of view corresponding %p.
iel{lea;:;:;ned The essential matrix is therefore the mapping between point
and epipolar lines we were looking for. Since our system has
; | a wide baseline, epipolar geometry is stable and it can be
used robustly to perform 3D reconstruction. Knowing the
point ¢“p and the calibration of the system, the epipolar
_ line equation in the eye-in-hand image plane can be deduced
e regardless of potential motion &fp. In the following, the
epipolar line is represented by the two parametgrs9).
The line equation under this representation is the follgwin
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Fig. 2. Epipolar geometry of the eye-to-hand/eye-in-harstesy XcoL +ysind = p 3)

p and 6 are computed from equation (1).

object of interest is centered in the mobile camera’s viev& Visual servoing based on the epipolar line

is presented. Sectiorl focuses on the search of the object ] .
using Lowe's SIFT point matching and Bayesian decision We now present the visual servoing control scheme. Let us

framework. SectionlV presents some experimental resultdirst recall the task specifications: the epipolar line asged
that validate the proposed method. with ““p has to be brought in the mobile view. Ensuring

this line remains horizontal and centered, the mobile camer

[I. EPIPOLAR GEOMETRY BASED VISUAL SERVOING moves along it to search for the object.

In this section, the eye-in-hand/eye-to-hand cooperation 1) Focusing on the epipolar lineVisual servoing is a
framework to control the centering of the line of view angobotic control based on visual features extracted from one
or several cameras. Let be the current visual feature
and s* be the desired visual feature. The main task is to
A. Eye-in-hand/eye-to-hand system regulate the error vectag;=s— s* to zero. The associated

Let %;, be the system reference frame. Considgra interaction matrixLy of the taske; links the time variation
fixed camera, andy, a mobile camera mounted on the robof the selected visual features to the relative camera bbjec
end-effector (see Figure 1). Le#;, and %, be the fixed kinematics screw. It is defined by [6]:
camera and the mobile camera frame respectivély. is 5= L. (4)

. . S
the object frame.fM, and M, are the transformations
between the cameras and the base frame. Finall§{M¢_~ Then, considering a eye-in-hand camera the control law that
be the transformation between the two camerfdd., is regulatese; is [6]:
constant (and can be evaluated through a classical pose
estimation procedure), the robot odometry gives a precise

imati —~+ , L
estimation of "Mt at every stage™Mc, can thus be whereL; denotes the pseudo inverse of an approximation
computed by™M¢, = MM, . or a model ofL 1, z is an arbitrary secondary control vector
- andP=1—L7L, is a projection operator that guarantees
B. Multi-view Geometry . that the control vector has no effect on the main task.

Let Cy and C be the two optical centers @, andct | et us introduce a secondary taskand its associated matrix

respectively. The lin€+Cn is called the baseline (see Figure|_,. ), is a positive gain that tunes the exponential decrease
2). The epipolar geometry sets the relation between a 3§ the task. Therz is set to be:

point ' P and its projections in the two camera image planes

its exploration are presented.

V=—MLy e +Pz (5)

¢ p and®mp. The epipolar geometry constraint can be written zZ= 7/\2G+ez (6)
as [8]: : : :
CipT T E “mp =0 1) By including (6) in (5), the control law computed from

the two tasks is:
where® Eg,, is called the essential matrix and is defined by:

C Ecm = [Cthf ] X Cchf (2)

—~ —~
v=—Ail1 eg—APL; & (7

In our case the primary task is a focusing task w.r.t the
with “mtc, and “"Rc, the translation and rotation matrix epipolar line while the secondary task allows movement
between the two frames arid, the cross product. along the line.



2) Primary task: centering the epipolar lineSince the
features= (p, 0) is a line, its associated interaction matrix
is given by [6]:

Ly ApCO ApsH —App (1+p?)sH —(1+p?)co O
AgCO AgsB —Agp  —pcB —psO -1
(8)
with s8 = sin(@) andc6 = cog0). A, andAg are given by:
Ap = (apcosf+bpsind+c)/d )
Ag = (asinf—bcosf)/d
whereaX+-bY+-cZ+d =0 is an equation, expresseddfy,,, . _ _
of the plane that contair¢, ° p and which is perpendicular Fig. 3. Selection of the interest areas

to the eplpola_r plane. ) ) . is available and can be used to detect the object in the eye-
When the visual servoing task ensures the epipolar line j§ g image while the eye-in-hand camera is covering the

horizontal and centered, a secondary task can be consideg—it)quar line associated fop

to look along this line for the quect of _mterest. A classical object recognition schemes, such as Lowe’s

_ I an open loop was considered, it would have bee& 1 [11] can be used to match the appearance of the
impossible to handle potential motion of the object. V'Su%bject in eye-to-hand and eye-in-hand images. The main

servoing can overcome this problem, since the features aleg mntion of the presented approach is that more features

updated at each step of the control and it is robust to objegfe found on the object area than on the rest of the segment

motion. _ _ , _ giving information on the object localization. The Lowe’s
3) Secondary task: covering the epipolar linéhe search  foa¢res [11] are famous for their invariance properties, t

of the object is limited to the segment which is the interj 446 scale and rotation, and provide robust matching acros

section of the epipolar line and the robot workspace. Thegine gistortion, change in 3D viewpoint, addition of noise
extremities are two 3D poin$P; = (X,Y,Z), i€ {1,2},in  anq change in illumination. Yet, since it is a multi-scale
Zc;. They are projected on the image plane of the mobilg,athod. it is time-consuming.

camera ap; = (x,¥), i € {1,2}. To reduce computational time, the feature extraction is

Since the centering of the epipolar line constraints tw@mnited to a region of interest in both views. In tice view,
DoF, four DoF are available for the secondary task. Usinghe exiraction is restricted to the neighborhood®gg. In
the redundancy formalism as presented in Section II-C.151 it is assumed that the regions of high edge densities are
centering of thé'P; can be achieved without disturbing the cangidates for the object. These regions are highlighted as
regulation of the primary task. o _ blobs of interest. The blob surrounding a user selectedt poin
~ The centering of the poir®; in the mobile field of view s kept. Active edge detector, level sets, intrinsic scale o
is achieved by using a secondary t&gklts regulation aims  growing region methods can also be used to detect the object

at brin*ging the 2D poinp; on the pointp” = (0,0) : & =  area. The computed object area contains a pattern made of
p1—p*. The associated interaction matiix is the matrix 4t |east a part of the object and some of the surrounding
related to a 2D point [6]. background. That pattern is the reference for the recamniti

~ Considering an open loop control, if the line centeringcheme. In the eye-in-hand image, the search of the object is
is not perfect, rotating the mobile camera along its y axifmjted to the area between the two extremal epipolar lines
increases the error and the line is no longer guaranteggresponding to the selected area in the eye-to-hand image
to be inside the mobile camera’s field of view. The US@see Figure 3).

of redundancy overcomes this problem. It ensures that theTpe matching process thus consists of three main steps: 1)
secondary task does not disturb the achievement of th@|ect the interest areas in the two views 2) extract the lsowe
primary task. SIFT [11] 3) use Lowe’s SIFT [11] matching to detect the

object in the eye-in-hand image set.
Visual servoing based on epipolar geometry provides a way

of controlling an eye-in-hand camera to move along the lind. Projection of the features matched on the 3D segment
of view that stems from a selected 2D point in the eye-to- The object of interest is now on the epipolar line. In this
hand image plane. At this point the mobile camera is ensuregrt, we propose a solution to estimate its depttDuring

to run along the 3D segment of interest. The next section {he mobile camera’s motion, SIFT features are extracted and
dedicated to searching the object along the epipolar line. matched with the pattern selected in the fixed view.

Thanks to the robustness and the accuracy of visual
servoing, we can assume that the epipolar line is horizontal
and centered and therefore only consider the x-coordirmdites

The object to grasp projects in the neighborhood of ththe matched features. Then, the depth of features projectio
point ¢ p in the eye-to-hand image. So, a view of the objecbn the 3D line is calculated using (4).

IIl. L OCALIZATION OF THE OBJECT ON THE EPIPOLAR
LINE



process the unseen part of the segment has to be handled.
Decision process is then used to determine the depth of the
object on the epipolar line.

In the beginning, there is no knowledge on the object
depth. The a priori probability density function (we refer
to it as 'the prior’) is therefore uniform on the segment and
zero elsewhere. At each step of the chaining, a likelihood is
computed based on the feature detection. This likelihood,

eye-in-hand

image plane together with the prior is used to compute the posterior,
e % x. through a.BayeS|an rule [4]. Thg chaining is done by using
the posterior of a step as the prior of the next step.
Fig. 4. Top view of the system: given the x coordinate in the rieotiew, Let ki be a set ofi features,D the depth of the object,
compute the depth of the point on the 3D segment. L the length of the segment arg{x) a probability density

function, Bayes theorem gives:

Consider the ends of the segménP;. As soon as the (DK, p(D 1)p(ke .. [Drs1)
primary task is regulated, the epipolar plane is of cootdi®ia p(Dy, ki, ,,Do.() = Pt [Kip, P(Lo.t-1))PMKir [Dt+1
(0,1,0,0). BesidesCy, and both the 3D point&"P; are on ' JL P(Dt ki, P(Do.1-1)) P(Ki; 4 [De+1
the epipolar plane. Therefore tivecoordinates are null. Let
(x,y) be the coordinate of a feature pofiik and let(X,0,2)
be the coordinates of its projection on the segment.

X = X+ (X —X1)D/L
z Zy+(Z, - Z1)D/L

)dD
(13)

(10)  Pldo)

where L = /(X1 — X2)2+ (Z1— Z2)? and D is the depth
associate tx on the 3D segment. p(fildy)

¢From (10),D is deduced: A /\ [ ||

d
XZ1 — X1 (11)
(Xo—X1) — X(Zz —71) p(dilfi))
This equation sets the relation between a feaftikein AN //\_’
the mobile image plane and its depth if it was part of at
object lying on the 3D segment. To model the measureme p(fi,|d2)
error, the positions on the 3D segment are not represent [ P 200
as Dirac functions but as Gaussian functigpso), where ' t
U is set to D, the projection of the feature on the segmer p(q,|f,,, 1
and o represents the uncertainty in the depth estimation.
Let kijc1. N, be a set oN matched points extracted from
a view. LetDijjc1.N, be their relative depth, then:

R N
D = max Z
i=

Each set of matched features extracted from \A/iews of tr
3D segment gives an estimation of the object ddpthf no
feature is matched, the object is likely to be on the part afig. 5. Bayesian decision process: 1) The top frame represéet a

D=L

d

=
f

p(dn ‘fil —1 dl.,n—l)

1 1 X=Hi\2
3(—)
ez\"o 12

agVvan } (12) d

the epipolar line that is not seen. priori knowledge at the initialization step. The pdf is wrifh between
the minimum and maximum depth and null elsewhere. 2) The second
B. Bayesian decision framework frame is the pdf corresponding to the first measurements. Sorbherdea

e ) ) ) have been matched and their projection on the 3D line are septed by
Finding the depth of an object lying on a line has beesome Gaussian functions. 3) using Bayesian equation (13paiseerior

investigated over the past few years mainly for object§ calculated. It is used as the prior of the next step. 4) A et of

R . . . Mmeasurements is taken given a new pdf. 5) Posterior is compsted the
localization in the mobile robot context and more preciselyips of the third and fourth frame, and so on, until the pdf coges to a
in the initialization of the feature depth in Simultaneoussaussian distribution that has a maximum at the object estihupth.
Localization and Mapping issue [3]. A feature depth is
estimated using Bayesian inference over a set of successivéAs soon as the segment has been entirely seen, the depth
views where the tracked features lie. On the contrary, owstimation is computed as the maximum of the posterior. To
approach does not imply that the object is seen in all thefine the estimation, the segment may be covered several
views taken along the segment. At each step of the decisitimes. Two stop criteria may then be used: a threshold on the



task error remains zero. At iteration 60, segment extremity
P, is reached; the point to center is thBp. The secondary
task error increases suddenly when the referenced point is
changed, and is then regulated according to an exponential
decrease. Figure 8 gives the robot-end-effector velacitie
The execution of the secondary task at iterations 30 and 60
implies, as expected, a pure rotational motion aroundythe
axis of theZ,,, frame.
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Fig. 6. Experimental setup: the scene is complex and the baakgris Fig. 7. Task error during a visual servoing execution on a ombiss target

textured. The two camera locations are highlighted. Toptritite eye-To-
Hand view is display with the clicked poifitp. The green line represents

the line of view associated witff p )
x 10
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maximum of the posterior or a measure of the informatior ¢ -2 Y
such as Shannon’s entropy. A compromise has to be react "~ %10 2 2 2 = & 0 & :V
between the accuracy of the estimation and the time spe 008 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —
to compute fit. g 004 >

As soon as the stop criterion is reached, an estimation 3 002 ™ wi
the object deptiD is returned. Z o —
o
IV. EXPERIMENTAL RESULTS o
004 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
This section presents a typical execution of the applioatic e T T

presented above. The experimental setup is presented in
Figure 1 and 6. The mobile camera is mounted on the erkdp. 8. Velocities of the mobile camera during the servoing omotionless
effector of a 6-DoF arm robot. The eye-to-hand camera §9¢t
fixed and its field of view covers the whole robot workspace.
As figure 6 shows, the scene is quite complex and the We performed another experiment (Figure 9) with a
background is highly textured. The algorithm is launchednoving object to validate the robustness of the proposed
by clicking the image of the object of interest in the fixedcontrol scheme. A simple tracking algorithm based on local
view. appearance gives the coordinatesiqf at each step of the
First, the epipolar line is centered. When the main tas&ervo loop, so that we can compute each time the epipolar
error falls below a certain threshold the secondary task [§1€ and the point®;. The control law thus takes into account
activated and the 3D segment is scanned. While the eye-fie movement of the object.
hand camera is covering the segment, the object is searched\t the beginning of the experiment, when the main task is
in the mobile view. The mobile camera keeps moving untilaunched, the targeted object is motionless. The objedssta
the object is found. moving at iteration 90 while the main task is not completed.
We first present the results of the visual based contrdi stops moving at iteration 190, and then moves again from
scheme and then the results of the detection process. iteration 230 to 330. The secondary task is launched at
. _ _ iteration 160 when the main task is completed.
A. Epipolar based visual servoing The main task is hardly disturbed by the object motion.
The control scheme results are summed up in Figures 7 A& can be seen in Figure 9(c), the main task error is a perfect
and 9. Figure 7 shows the evolution of the two taskande,  exponential before iteration 160, and is perfectly regdat
during the regulation. The execution starts with only théma afterwards. The secondary task is disturbed more by the
task. Then, at iteration 30, the main task error passes teelowbject motion. The error decreases, but is not regulated to
fixed threshold and the secondary task is launched. The poidro. A tracking error can be clearly noticed from iteration
to center is the projection d¢¥y, the first extremity of the 3D 200 to 330 (see Figure 9). This error is quickly corrected as
segment. The secondary task error decreases while the magon as the object stops.
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Fig. 10. Depth estimation using Bayesian decision proceassugon of

the posterior probability density function over the time.eThrther graph
allows to estimate the depth of the object on the view line. 3Besegment

is 1,5m long has been sampled in 50 bins. The object is thought to be at
- position 43. The estimated depth i3Im.

error (m)

The estimation of the object localization is achieved using

o1 1 Bayesian framework that allows to fuse data over time. The
o accuracy of the object position can be refined by covering
0 50 100 150 200 It;;(i)on 300 350 400 450 500 the Segment Several tlmes

The proposed method will be deployed on the Manus
robotic arm to give handicapped people an initializatiapst
Fig. 9.  Visual servoing on a mobile target: the top frame ilatsts for t.he grasplng.task. It wil be. teSte.d and validated in asmu
the movement offp in the eye-in-hand image plan. The middle frame €NVIronment using everyday life objects. The next stepisf th
represents the evolution of the coordinates®qf over time. The bottom work will consist of finding a way to pick up the desired

frame is the evolution of the task error object from the scene bearing in mind that the grasping task
can be made easier by decoupling the commands.Eye-in-
B. Searching for the object hand/Eye-to-hand cooperation may be a good way to deal

o _ . with obstacle avoidance.
As soon as the segment is in the eye-in-hand view, the
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