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Abstract ric primitives, while their positions are expressed in cbhor
nates of the common environment-wide frame [2, 16]. Dur-
Autonomous cars will likely play an important role in the ing the navigation, the detected features are associatad wi
future. A vision system designed to support outdoor naviga-the elements of the model, in order to localize the robot
tion for such vehicles has to deal with large dynamic en- and to effectively search for new model elements. How-
vironments, changing imaging conditions, and temporary ever, the quality of the obtained results depends directly o
occlusions by other moving objects. This paper presents athe precision of the underlying model. This poses a strong
novel appearance-based navigation framework relying on assumption which impairs the scalability and, depending on
a single perspective vision sensor, which is aimed towardsthe input, may not be attainable at all.
resolving of the above issues. The solution is based on a The alternativeappearance-basedpproach employs a
hierarchical environment representation created during a sensor-centred representation of the environment, whkich i
teaching stage, when the robot is controlled by a human usually a multidimensional array of sensor readings. In
operator. At the top level, the representation contains a the context of computer vision, the representation usually
graph of key-images with extracted 2D features enabling contains a set okey-imagesvhich are acquired during a
a robust navigation by visual servoing. The information learning stage and organized within a graph [6]. Nodes
stored at the bottom level enables to ef ciently predict the of the graph correspond to key-images, while the arcs link
locations of the features which are currently not visibleda  the images containing a distinctive set of common land-
eventually (re-)start their tracking. The outstandingpro  marks. This is illustrated in Figure 1. The navigation
erty of the proposed framework is that it enables robust and
scalable navigation without requiring a globally consiste
map, even in interconnected environments. This result ha o
been con rmed by realistic off-line experiments and suc-
cessful real-time navigation trials in public urban areas.

) Figure 1. Appearance-based navigation: the sketch of a navigation
1. Introduction task (left), and the set of rst eight images from the environment
. . ) representation forming a linear graph (right). Note that the graph
The design of an autonomous mobile robot requires nas peen constructed automatically, as described in 2.1.
establishing a close relation between the perceived en-
vironment and the commands sent to the low-level con- petween two neighbouring nodes is performed using well
troller. This necessitates complex spatial reasoning-rely developed techniques from the eld of mobile robot con-
ing on some kind of internal environment representation tro| [17]. Different types of landmark representations éav
[5]. In the mainstreammodel-basedapproach, a mono-  heen considered in the literature, from the integral con-
lithic environment-centred representation is used toestor tents of a considered image [11] and global image descrip-
the landmarks and the descriptions of the corresponding im-tors [6], to more conventional point features such as Harris
age features. The considered features are usually geometorners [2, 3]. We consider the latter feature-oriented ap-
This work has been supported by the French national projetitr proach, .m which the nextintermediate key-image is reac.hed
Mobivip, by the project Robea Bodega, and by the European MC | DY tr_aCkmg the featu_r_e correspondences fro_m the previous
project AViCMalL. key-image. Recognition of new landmarks is a critical is-




sue in this approach, since it implies a risk of introducing mapped points, so that a prior learning step still seems a ne-
an association error. Predicting approximate locations of cessity in realistic navigation tasks. Our approach has no
currently invisible featured¢ature predictiohis therefore  scaling problems: experiments with 15000 landmarks have
an essential capability in feature-oriented appearaased  been performed without any performance degradation.
navigation. The paper is organized as follows. The details of the
In this paper, a novel vision framework for scal- Proposed framework for mapping and localization are de-
able mapping and localization is presented, enabling ro-scribed in Section 2. Section 3 provides the experimental
bust appearance-based navigation in large outdoor ervironresults, while the conclusion is given in Section 4.
ments. We consider separate mapping and navigation pro-
cedures as an interesting and not completely solved prob2, Scalable mapping and localization
lem, despite the ongoing work on a uni ed solution [4]. The
proposed framework employs a hybrid hierarchical environ-  This section brie y describes the two high-level com-
ment representation [6, 1], with a graph of key-images at the Ponents of the proposed vision framework for appearance-
top, and local 3D reconstructions at the bottom. The global based navigation. The mapping component extracts point
topological representation ensures an outstanding stalab features from the learning sequence acquired along a de-
ity, limits the propagation of association errors, simp  Sired possibly circular physical path. During the navigati
consistency management in interconnected environmentsthe localization component tracks the mapped features and
and enables appearance-based navigation. On the othe?mPploys them to locate new features. Both components rely
hand, the bottom-level geometric models enable feature pre ©n @ multi-scale differential tracker with warp correction
diction by multi-view geometry techniques. The viability o @nd checking towards the reference appearance [19]. The
the approach has been con rmed by successful experimentE€mployed warp includes isotropic scaling and af ne con-
in real-time robot control. The results clearly demonstrat trast compensation [18]. The output of the framework is a
that a globally consistent 3D reconstruction is not regliire S€t of 2D vectors connecting the current features with their
for large-scale navigation to be successful: we considgr th corresponding locations in the next key-image. These vec-

as the most important contribution of this work. tors are nally used to support appearance-based navigatio

An appearance-based navigation approach with featurebase{j on visual servoing.

prediction has been described in [8]. Simplifying assump-
tions with respect to the motion of the robot have been used,
while the prediction was implemented using intersection of  The mapping component constructs the environment
the two epipolar lines, which has important limitations.[9] graph and annotates its nodes and arcs with geometric infor-
The need for feature prediction has been alleviated in [3], mation. Here we consider linear and circular graphs, while
where the points from the next key-image are introduced the work on complex topologies [15] will be integrated in
using wide-baseline matching [12]. A similar approach has the future. The nodes of the graph are formed by choos-
been proposed in the context of omnidirectional vision [7]. ing the corresponding key-imagks The same indexing is

In this closely related work, feature prediction based on ysed for arcs as well, by de ning that arconnects nodes
point transfer [9] has been employed to recover from track-j 1 andi. If the graph is circular, ar® connects the last

ing failures, but not to introduce previously unseen fesgur noden 1 with the nodd). Each node is assigned the Xgt

as well. However, introduction of new features by wide- of features from;, denoted by distinctive identi ers. Each
baseline matching [7, 3] implies a great potential for intro arc is assigned an array of identi eM; denoting land-
ducing association errors caused by ambiguous landmarksmarks located in the two incident key-images. As shown
Our experiments have shown that considerably better eesult in Figure 2, arcs are nally annotated with two-view ge-
are obtained by optimizing the new feature location stgrtin - ometriesw; , recovered fronM; by random sampling with
from a prediction obtained by point transfer. the ve-point algorithm [13] as the hypothesis generator.

In comparison with model-based navigation approaches The elements ofV; include motion parameteiR; and
such as the one described in [16], our approach does not; (jt;j = 1), as well as the metric landmark reconstructions
require a global consistency. By posing weaker require- Q;. The two-view geometrie®8V; are deliberatelynot put
ments, we increase the robustness of the mapping phasento an environment-wide frame, since contradicting scale
likely obtain better local consistencies, can close lo@ps r sequences may be obtained along the graph cycles. The
gardless of the extent of the accumulated drift and have bet-scale ratics; between the incident geometridg andW, .
ter chances to survive correspondence errors. Notable adis therefore stored in the common nodeNote that each
vances in prediction of feature positions have been actiieve neighbouring pair of geometriéd4/;,; andW,;., needs to
in model-based SLAM [4]. Nevertheless, current imple- have some features in comma¥,j+; \ Mis, 6 ?, in
mentations have limitations with respect to the number of order to enable the transfer of features from the next two

2.1. The mapping component



key-imagesl(i+1 ; li+2 ) on the path (see 2.2.2 for details).  to achieve the same goal. However, exceptions to the above

Many maps can be constructed for the same motion of occur when there are discontinuities in the Iearning se-
the robot in the learning phase, depending on the selectediueénce caused by a large moving object, or a “frame gap”
set of key-images and on the technique for extracting cor-due to preemption of the acquisition process. In the pre-
respondences. Quantitatively, a particular arc of the mapsented scheme, such events are re ected by a general track-
can be evaluated by an estimate of the reprojection error [9]ing failure in thesecondframe of a new subrange. A re-

(W), and the number of correspondenjidsj. These pa-  Covery is consequently attempted by matching the last key-
rameters are respectively related with accuracy of thetpoin image with the currentimage. This is especially convenient
transfer and robustness to interferences (occlusionspill ~ When the mapping is performed online, from a manually
nation variations). There is a trade-off in interpreting th ~ controlled robotic car.
criterionjM;j, since more points usually means better ro- ~ Wide-baseline matching is also useful for connecting a
bustness but lower execution speed. Different maps of thecycle in the environment graph, which occurs if the learn-
same environment can be evaluated by the total count ofing sequence is acquired along a closed physical path. Af-
arcs in the grapff M;gj, and by the parameters of the indi- ter the learning sequence acquisition is over, the rst and
vidual arcs (W;) andjM;j. Itis usually favourable to have the last key-image are subjected to matching: a circular
less arcs, since that ensures a smaller difference in lihes ograph is created on success, and a simple linear graph oth-
sight between the relevant key-images and the images acerwise. Note that in case of a monolithic geometric model,
quired during navigation. This is important since the &pili  the above loop closing process would need to be followed
to deviate from the reference path enables the robot to tol-Py @ sophisticated map correction procedure, in order to try
erate control errors and to avoid detected obstacles. to correct the accumulated error. Due to topological repre-

The devised mapping solution uses the tracker to nd the S€ntation at the top-level, this operation proceeds rigliab
stablest point features in a given subrange of the learing s 2nd smoothly, regardless of the extent of the drift.
guence. The tracker is initiated with all Harris points ie th
initial frame of the subrange. The features are tracked un-

til the reconstruction error between the rst and the cutren In the feature-oriented appearance-based navigation, two
frame of the subrange rises above a prede ned threshold  gjstinct kinds of localization are required: (i) explictto-

At this moment the current frame is discarded, while the |ggical localization, and (ii) implicit ne-level localiation
previous frame is registered as the new node of the graph¢hrough the locations of the tracked landmarks. Topologi-
and the whole procedure is repeated from there. The above:a| |ocation corresponds to the arc of the environment graph
is similar to visual odometry [14], except that we employ jncident to the two key-images having most content in com-
larger feature windows and more involved tracking in or- mon with the current image. This is usually well de ned in
der to achieve more distinctive features and longer featurepractice since the motion of a robotic car is constrained by
lifetimes. To ensure a minimum number of features within the traf ¢ infrastructure. Maintaining an accurate tom}io

an arc of the graph, a new node is forced when the absolutgcal Iocation is extremely important since that de nes the
number of tracked points falls belaw Bad tracks are iden-  |andmarks which are currently considered for tracking. In
ti ed by a thresholdR on RMS residual between the current  the proposed framework, the tracked features belong either
feature and the reference appearance [19, 18]. Typicady, t to the actual arc (topological location), or the two neigh-
following values were used: =4,n =50,R = 6. bouring arcs as illustrated in Figure 3.

The above basic mapping scheme provides substantially In this paper, we focus on the on-line facets of the local-
better results than the approach [7] based on wide-baselingzation problem: (i) robust ne-level localization relygron
matching with state-of-the-art algorithms [12]. This slibu  feature prediction, and (ii) maintenance of the topologica
be regarded as no surprise, since more information is usedocation as the navigation proceeds. However, for complete

ness, we rst present a minimalistic initialization proced
2.2.1 The initialization procedure

used in the experiments.
+X * *
wo M * M., ﬁ@ M., @ The navigation program is started with the following pa-
i1, Xi1,511 1,X;,S; T 1 X0 1:Sie1 lis2:Xi42:5i42 rameters: (i) map of the environment (ii) initial topologic
location of the robot (index of the actual arc) (iii) calibra
Figure 2. The linear environment graph. Nodes contain imagestion parameters of the attached camera. The executios start
Ii, extracted featureX; and scale factors;. Arcs contain match  with wide-baseline matching of the current image with the
arraysM; and the two-view geometrie#/; . two key-images incident to the actual arc. From the ob-

2.2. The localization component




tained correspondences, the pose is recovered in the actua.2.3 Maintaining the topological location
geometric frame, allowing to project the mapped features
and to bootstrap the processing loop. Note that automatic
initialization using content based image retrieval is figlas

Maintaining a correct topological location is critical se
both feature prediction and robot control depend on its ac-
curacy. This is especially the case in sharp turns where the
tracked features die quickly due to the contact with the im-
age border. An incorrect topological location implies a-sub

The point features which are tracked in the current image OPtimal introduction of new features and may be followed
|, are employed to estimate the current two-view geome- by a failure due to insuf cient features for calculatiig;
triesWe.i (1i:11) andWe.i+1 (1141 ; 1) towards the two inci- ~ @ndW.i+1, and performing the prediction.

dent key-images, using the same procedure as in 2.1. An Best results have been obtained using a straightforward
accurate and ef cient recovery of the three-view geome- geometric critgrion: a forward trans_ition is taken when the
try is devised by a decomposed approach [10] in the cali- c@mera pose in the actual ggometnc framie, is in front
brated context. The approach relies on recovering the rel-Of the farther camerh .., . This can be expressed as:

ative scale between the two independently recovered met-
ric frames, by enforcing the consistency of the common

structure. The main advantages with respect to the “golden-l-he decision is based on the current geometry related to the

standard” method .[9] are the u.tilizatic')n of pairwise cor- next key-imagéi,.i+1 , which is geometrically closer to the

respondences (Wh_|ch is of particular interest for forwz_;\rd hypothesized transition, as shown in Figure 4. As before,
motion), and real-time performance. Thus, the three-View i apove is cancelled if the estimated reprojection error
geometry(l¢;1i;li+1) is recovered by adjusting the pre- o yhe employed current geometry is not within the safety
computed two-view geometW;., towards the more ac- jinirs Note that backwards transitions can be analogously

curate (in terms of reprojection error) Wi and Wi+ de ned in order to support reverse motion of the robot.
(see Figure 3). The geometf;;li+1;1i+2) is recovered

2.2.2 Feature prediction and tracking resumption

h Riv1” tisa;teivai <0 (1)

from Wi, and W41, while (I¢;1; 1;1;) is recovered ‘ N ‘ ‘ N ‘
from W; andW,.;. Current image locations of landmarks : "
mapped in the actual aic+ 1 are predicted by the geom- ‘ﬁ““l
etry (I¢;1i;1i+1 ). Landmarks from the previous arand e E
the next aré +2 are transferred by geometri@s; i 1;1i) ) - _ _ )
and(1¢;1i.1 ;142 ), respectively. Figure 4. Condition for changing the topological location.
@ After each change of the topological location, the refer-
= ence appearanceeferencesare rede ned for all relevant
L F h features in order to achieve better tracking. For a forward
@ :ﬂ Q*:@Q ® transition, references_ for the fe:?\tures from the actuahgeo
= M A - x R I-; X.l‘\M/(z . etry Wi, are taken inlj.q, vyhﬂe the references for the
o v el e features from\W;., are taken if;., (see Figure 3). Previ-
Figure 3. The current image and the three groups of features pusly tracked points f_rom ge_ometrl_mti +1 a”?‘_Wi +2 are
considered for tracking when the topological locatioivid. . The instantly resumed using their previous positions and new
notation is explained in Figure 2. See text for more details. references while the features froW are discontinued.

In any case, the prediction by point transfer is performed 3. Experimental results

only if the estimated reprojection error of the employed cur Th . s h b ied out
rent geometry is within the safety limits. The obtained pre- € experiments have been carried out on sequences
taken from the robotic car and in real-time, during naviga-

dictions are re ned (or rejected) by minimizing the resitlua iion. Th ) ¢ edin th Vol
between the warped current feature and the reference ap.-'on' € expenments are organized in thrée groups, 1RVOIV

pearance. As in tracking, the result is accepted if the pro—Ing mapping, off-line localization, and navigation (reahe

cedure converges near the predicted location, with an aC_Iocahzann with robot control).

ceptable residual. The above procedure is also employed t . .

check the consistency of the tracked features, which occa(—)s"l' Mapping experiments
sionally “jump” to the occluding foreground. Thus, follow- We rst present quantitative mapping results obtained on
ing the sanity check on the employed two-view geometry, the learning sequendsic5 , corresponding to the reverse
the tracking of a feature is discontinued if the tracked posi of the path shown in Figure 1. The selected set of key-
tion becomes too distant from the prediction. images is presented in Figure 5.



which has been successfully bridged by the tracker alone.
In the second group of experiments, we consider the

&E learning sequencwop-clouds , taken along eircular
= e L - TE‘?»# = /;_,.a: - path of apprommately 50 m. Clrcula_lr sequences are es-
&%;ﬁ!ﬁ - J j : ‘Kd Ty -2 - pecially suitable for testing the mapping alternativexsin

Figure 5. Key-images from the map of the sequdfsie5 . The
sequence contains 1900 images, acquired along a 150 m path. Th
images can be enlarged within the pdf document of the article.

they provide an intuitive notion about the achieved over-
& accuracy. We investigate the sensitivity of the map-
ping algorithm with respect to the three main parameters
described in 2.1: (i) minimum count of featunes(ii) max-
imum allowed reprojection error, and (iii) the RMS resid-

f .T?f %nally&s Wast _perfororlntlad |nht_erhms of t.hei p:ram;zt_ersual thresholdR. The resulting poses have been plotted in
of individual geometric models, which were introduced in Figure 7 for 4 different parameter triples.

2.1. These parameters are (i) the number of point features

(more is better), (ii) the reprojection error (less is bgtte R -

and (iii) the inter-node distance (more is better). Figuia 6 L . \\

shows the variation of the rsttwo parameters along the arcs o : ’

of the created environment graph. A qualitative illustrati i e

of the third parameter (inter-node distance) is presented i LD { O T

Figure 6 as the sequence of recovered camera poses corre- Goreeer” o

sponding to the nodes of the environment graph. n=100, =1,R=4 n=50, =2,R=6
In order to achieve a uniform representation, all geomet- )

ric models were put into the common metric frame of the - ™

rst geometry W;. The gure suggests that the mapping ’ ‘

component adapts the density of key-images to the inherent . ’ ‘

dif culty of the scene. The dense nodes 7-14 correspond ' . ‘

0 -
* e e T -
‘\L2>8,O' 0 -

to the rst dif cult moment of the learning path: approach- 5 e

ing the traverse building and passing underneath it. Nodes N =50, =4,R=6 n=25 =2,R=6

20 to 25 correspond to the sharp left turn, while passing F'9ure 7. Poses from the maps obtained on input sequence
very close to a building. The hard conditions persisted af- loop-clouds , by employing different mapping parameters.

ter the turn due to large featureless bushes and a re ecting

glass surface (see Figure 5, bottom row), which is re ected Reasonable and usable representations have been ob-

in dense nodes 26-28. The number of features in arc 20 iStamed in all cases, despite the smooth planar surfaces and

. . . S vegetation which are visible in Figure 8. The presence of
exceptionally high, while the incident nodes 19 and 20 are node 0' indicates that the cycle at the topological level has

very close. The anomaly is due to a large frame gap causin . . )
most feature tracks to terminate instantly. Wide-baselinegoeen succeslsfully closed by wide-baseline matching. Ide-
ally, nodes 0' and 0 should be very close; the extent of the

hi I he key-i 1 its im-. -~ .
matching succeeded to relate the key-image 19 and its im-_. 2 " & 0 S magnitude of the error due to the ac-
mediate successor which consequently became key-imagée

. . cumulated drift. The relations between the two nodes in the
20. The error peak in arc 21 is caused by an another gaprst three results in Figure 7 suggest that the distance be-

tween the corresponding locations is around 1.5 m. The last
map in Figure 7 (bottom-right) was deliberately constrdcte

10 . —~ . s - 200 ' boptimal ters, to show that igati
| stdev —e— , i 10 o using suboptimal parameters, to show that our navigation

g Gpnpoints e Sy s"g A4 100 £ approach essentially works even when the global consis-

= 4 + 5 . . . . .

® S [aaaagay / s0 £ tency is dif cult to enforce. The navigation can smoothly
s . " " o 215 0 proceed despite a discontinuity in the global geometric re-

o | e P SR
0) o s s fasitjoutil o <l o
Figure 6. Counts of mapped point features and reprojection errorsFigure 8. Key-images from the map obtained on the sequence

(a), and sequence of camera poses corresponding to 28 arcs of thieop-clouds , withn = 50, = 4, R = 6. The images
environment graph obtained from the sequeifgie5  (b). can be enlarged within the pdf document of the article.
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construction, since the local geometries are “elastitally the reference appearance. The danger of introducing an as-
glued together by the continuous topological represemtati ~ sociation error while searching for an occluded feature can
The experiments show that there is a direct coupling be- not be completely avoided, but it can be largely suppressed
tween the number of argéM; gj, and the number of fea- by presmoothing the current image, conservative residual
tures in each ar¢M;j. Thus, it is bene cial to seek the threshold, etc.
smallestjf M gj ensuring acceptable values fofW;) and The capability of the localization component to traverse
iMij. The requirement that neighbouring triples of images a topological cycle created by the mapper was tested on
need to contain common features did not cause problems im sequence obtained during two rounds roughly along the
practice: the accuracy of the two-view geometrigsV,) same circular physical path. This is a quite dif cult sce-
was the main limiting factor for the mapping success. nario since it requires continuous and fast introduction of
In some cases, a more precise overall geometric picturenew features due to persistent changes of viewing direction
might have been obtained by applying a global optimization The rst round was used for mapping (this is the sequence
post-processing step. This has been omitted since, in théoop-clouds |, discussed in Figures 7 and 8), while the lo-
context of appearance-based navigation, global consigten calization is performed along the combined sequence, in-
brings no immediate benets and poses scalability prob- volving two complete rounds. During the acquisition, the
lems. Enforcing the global consistency is especially feagi  robot was manually driven so that the two trajectories were
for forward motion which occurs predominantly in the case more than 1 m apart at several occasions during the experi-
of non-holonomic robotic cars. In this context, more than ment. Nevertheless, the localization was successful ih bot
half of the correspondences aret shared between neigh- rounds, as summarised in Figure 10(a). All features have
bouring geometries, and the ones that are shared are morbeen successfully located during the rst round, while the
likely to contain association errors due to a larger change i outcome in the second round depends on the extent of the
appearance. distance between the two trajectories.

80 T T T T T 80
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3.2. Localization experiments

We rstillustrate the capability of the localization com- B IR e J\ .
ponent to resume temporary occluded and previously un- \‘ /»\ /'\f‘" V.

/
seen features. Figure 9 shows the results of feature track- s o

ing within the localization component. The employed map =/ '\/1 1 =f
has been illustrated in Figure 6 and discussed in the ac- [ e e I R .
companying text. The gure shows a situation in whichsix —° ° * (a)15 o o w (b)ﬁ
features have been wiped out by a moving pedestrian, ancl:igure 10. Average counts of tracked features on the map shown

_subsequent_ly_resumed Wlthout errors. In the gure, t_he re-i Figure 8, while processing the sequenceslgap-clouds
jected predictions are designated with crosses: notide tha(wvo rounds), and (blpop-sunlight (one round).

they are near to where the corresponding landmarks would
have been projected had they not been occluded. Inthe case The map built from the sequentmp-clouds  has also

that the legs of the occluding person are aligned with the 41ong a similar circular path in bright sunlight. The imag-

edge of the tracked corner. Feature 170 has been found inng conditions during the acquisition of the two sequences
the same frame by zooming in onto a detail on the jacket. were considerably different, which can be seen in Fig-
Both ndings were rejected due to a large residual towards yre 11. Nevertheless, the localization component success-

fully tracked enough mapped features, exceptin arcs 10, 11

20 25

Toe® ° o TogBe. Y e, %%, and 12 as shown in Figure 10(b). The recovered geometries

@ . xigs al66 Tyt o gt in arc 10 were too uncertain so that the switching towards
1 o X x o « al a a arc 11 did not occur at all, resulting in zero points tracked
== "o ST o o LT in arcs 11 and 12. The two factors amplifying the effects

of feature decimation due to different illumination were a

tree covering most of the eld of view, and a considerable

curvature of the learning path (see Figures 8 and 11). The

frame 723 frame 743 frame 758 frame 762 localization component was re-initialized by wide-baseli

Figure 9. Re-introducing disoccluded landmarks: tracked featuresmatching using the key-images incident to the arc 13, where
and rejected projections are designated with squares and crosseghe buildings behind the tree begin to be visible. Figure 11
respectively. The bottom row shows the references and optimizedshows the processing results immediately after the reini-
warps for the features 146 (left) and 170 (right). tialization, within arc 13. The gure shows that there is
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Figure 12. The graph of 320 nodes mapping an 1.1 km reference
path. Large circles mark places where a human intervention was
necessary. The distance between A and B is approximately 740 m.

most of the eld of view. The reasons for the ve inter-
the 6 designated features ventions were (i) failures within the localization compahe
Figure 11. Results at 589frame ofloop-sunlight usingthe  due to unsuccessful maintenance of the topological logatio
map obtained ofoop-clouds . The same notation is used as 1N turns (A, B and D), and (ii) prevention of a curb contact
in Figure 9. The bottom part shows references and warped currendue to an extremely narrow section of the road (E) and a
appearances for the six features designated in the upper part.  tendency of the control law (2) to “cut the corners” (C).

The environment representation shown in Figure 12 is
tquite inaccurate from the global point of view. The begin-
ning and the nal node of the graph correspond to the same
physical location, but this is not the case in the gure due
to evident deviations in shape and scale. Nevertheless, the
experimental system succeeds to perform large autonomous
displacements, while also being robust to other moving ob-
jects. We consider this as a strong indication of the padénti

a big potential for association errors since many prominen
landmarks are ambiguous due to structural regularity typi-
cal for man-made environments. The framework deals suc-
cessfully with such ambiguities, since good predictions of
invisible feature positions are provided by point transfer

3.3. The navigation experiments

The proposed framework performed well in navigation
experiments featuring real-time control of the robotic éar .
simple visual servoing scheme was employed, in which the °%
steering angle is determined from averagecomponents i E
of the current feature locatior{g; y;) 2 X, and their cor-
respondences in the next key-imgge;y ) 2 X1 .

&
]
o

= (X¢ X); where 2R™": 2

We present an experiment carried out along an 1.1 km refer-
ence path, offering a variety of driving conditions inclogli
narrow sections, slopes and driving under a building. An
earlier version of the program was used allowing the con-
trol frequency of about 1 Hz. The navigation speed was set
accordingly to 30 cm/s in turns, and otherwise 80 cm/s. The
map was built by the procedure described in 2.1, on a learn-
ing sequence acquired under manual control. The com-

ools

. . . go o, ED”VDDDD
pound appearance-navigation system performed in a way - "R
that only ve human interventions were required, at loca- o . vo o oe
tions shown in Figure 12. Between the points A and B the ousao ol %o, B o ovenn Tl

robot smoothly drove over 740 m despite a passing car oc-

cluding the majority of the features, as shown in Figure 13.

Several similar encounters with pedestrians have beeh deal

with in a graceful manner too. The system succeeded toFigure 13. Sequence of images obtained during the execution of a
map features (and subsequently nd them) in seemingly navigation experiment. The points used for navigation re-appear
featureless areas where the road and the grass occupiegfter being occluded and disoccluded by a moving car.
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