
key-images (Ii+1, Ii+2) on the path (see 2.2.2 for details).
Many maps can be constructed for the same motion of

the robot in the learning phase, depending on the selected
set of key-images and on the technique for extracting cor-
respondences. Quantitatively, a particular arc of the map
can be evaluated by an estimate of the reprojection error [9]
σ(Wi), and the number of correspondencesjMij. These pa-
rameters are respectively related with accuracy of the point
transfer and robustness to interferences (occlusions, illumi-
nation variations). There is a trade-off in interpreting the
criterion jMij, since more points usually means better ro-
bustness but lower execution speed. Different maps of the
same environment can be evaluated by the total count of
arcs in the graphjf Migj, and by the parameters of the indi-
vidual arcsσ(Wi) andjMij. It is usually favourable to have
less arcs, since that ensures a smaller difference in lines of
sight between the relevant key-images and the images ac-
quired during navigation. This is important since the ability
to deviate from the reference path enables the robot to tol-
erate control errors and to avoid detected obstacles.

The devised mapping solution uses the tracker to �nd the
stablest point features in a given subrange of the learning se-
quence. The tracker is initiated with all Harris points in the
initial frame of the subrange. The features are tracked un-
til the reconstruction error between the �rst and the current
frame of the subrange rises above a prede�ned thresholdσ.
At this moment the current frame is discarded, while the
previous frame is registered as the new node of the graph,
and the whole procedure is repeated from there. The above
is similar to visual odometry [14], except that we employ
larger feature windows and more involved tracking in or-
der to achieve more distinctive features and longer feature
lifetimes. To ensure a minimum number of features within
an arc of the graph, a new node is forced when the absolute
number of tracked points falls belown. Bad tracks are iden-
ti�ed by a thresholdR on RMS residual between the current
feature and the reference appearance [19, 18]. Typically, the
following values were used:σ = 4, n = 50,R = 6.

The above basic mapping scheme provides substantially
better results than the approach [7] based on wide-baseline
matching with state-of-the-art algorithms [12]. This should
be regarded as no surprise, since more information is used

Figure 2. The linear environment graph. Nodes contain images
Ii, extracted featuresXi and scale factorssi. Arcs contain match
arraysMi and the two-view geometriesWi.

to achieve the same goal. However, exceptions to the above
occur when there are discontinuities in the learning se-
quence caused by a large moving object, or a �frame gap�
due to preemption of the acquisition process. In the pre-
sented scheme, such events are re�ected by a general track-
ing failure in thesecondframe of a new subrange. A re-
covery is consequently attempted by matching the last key-
image with the current image. This is especially convenient
when the mapping is performed online, from a manually
controlled robotic car.

Wide-baseline matching is also useful for connecting a
cycle in the environment graph, which occurs if the learn-
ing sequence is acquired along a closed physical path. Af-
ter the learning sequence acquisition is over, the �rst and
the last key-image are subjected to matching: a circular
graph is created on success, and a simple linear graph oth-
erwise. Note that in case of a monolithic geometric model,
the above loop closing process would need to be followed
by a sophisticated map correction procedure, in order to try
to correct the accumulated error. Due to topological repre-
sentation at the top-level, this operation proceeds reliably
and smoothly, regardless of the extent of the drift.

2.2. The localization component

In the feature-oriented appearance-based navigation, two
distinct kinds of localization are required: (i) explicit topo-
logical localization, and (ii) implicit �ne-level localization
through the locations of the tracked landmarks. Topologi-
cal location corresponds to the arc of the environment graph
incident to the two key-images having most content in com-
mon with the current image. This is usually well de�ned in
practice since the motion of a robotic car is constrained by
the traf�c infrastructure. Maintaining an accurate topolog-
ical location is extremely important since that de�nes the
landmarks which are currently considered for tracking. In
the proposed framework, the tracked features belong either
to theactual arc (topological location), or the two neigh-
bouring arcs as illustrated in Figure 3.

In this paper, we focus on the on-line facets of the local-
ization problem: (i) robust �ne-level localization relying on
feature prediction, and (ii) maintenance of the topological
location as the navigation proceeds. However, for complete-
ness, we �rst present a minimalistic initialization procedure
used in the experiments.

2.2.1 The initialization procedure

The navigation program is started with the following pa-
rameters: (i) map of the environment (ii) initial topological
location of the robot (index of the actual arc) (iii) calibra-
tion parameters of the attached camera. The execution starts
with wide-baseline matching of the current image with the
two key-images incident to the actual arc. From the ob-
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a big potential for association errors since many prominent
landmarks are ambiguous due to structural regularity typi-
cal for man-made environments. The framework deals suc-
cessfully with such ambiguities, since good predictions of
invisible feature positions are provided by point transfer.

3.3. The navigation experiments

The proposed framework performed well in navigation
experiments featuring real-time control of the robotic car. A
simple visual servoing scheme was employed, in which the
steering angleψ is determined from averagex components
of the current feature locations(xt, yt) 2 Xt, and their cor-
respondences in the next key-image(x� , y� ) 2 Xi+1.

ψ = � λ (xt � x� ) , where λ 2 R + . (2)

We present an experiment carried out along an 1.1 km refer-
ence path, offering a variety of driving conditions including
narrow sections, slopes and driving under a building. An
earlier version of the program was used allowing the con-
trol frequency of about 1 Hz. The navigation speed was set
accordingly to 30 cm/s in turns, and otherwise 80 cm/s. The
map was built by the procedure described in 2.1, on a learn-
ing sequence acquired under manual control. The com-
pound appearance-navigation system performed in a way
that only �ve human interventions were required, at loca-
tions shown in Figure 12. Between the points A and B the
robot smoothly drove over 740 m despite a passing car oc-
cluding the majority of the features, as shown in Figure 13.
Several similar encounters with pedestrians have been dealt
with in a graceful manner too. The system succeeded to
map features (and subsequently �nd them) in seemingly
featureless areas where the road and the grass occupied
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Figure 12. The graph of 320 nodes mapping an 1.1 km reference
path. Large circles mark places where a human intervention was
necessary. The distance between A and B is approximately 740 m.

most of the �eld of view. The reasons for the �ve inter-
ventions were (i) failures within the localization component
due to unsuccessful maintenance of the topological location
in turns (A, B and D), and (ii) prevention of a curb contact
due to an extremely narrow section of the road (E) and a
tendency of the control law (2) to �cut the corners� (C).

The environment representation shown in Figure 12 is
quite inaccurate from the global point of view. The begin-
ning and the �nal node of the graph correspond to the same
physical location, but this is not the case in the �gure due
to evident deviations in shape and scale. Nevertheless, the
experimental system succeeds to perform large autonomous
displacements, while also being robust to other moving ob-
jects. We consider this as a strong indication of the potential

Figure 13. Sequence of images obtained during the execution of a
navigation experiment. The points used for navigation re-appear
after being occluded and disoccluded by a moving car.



of the proposed framework towards real applications of au-
tonomous vehicles in the near future.

4. Conclusion
We described a novel framework for large-scale mapping

and localization, based on point features mapped during a
learning session. The purpose of the framework is to pro-
vide 2D image measurements for appearance-based naviga-
tion. The tracking of temporarily occluded and previously
unseen features can be (re-)started on-the-�y due to feature
prediction based on point transfer. 2D navigation and 3D
prediction smoothly interact through a hybrid hierarchical
environment representation. The navigation is concerned
with the upper topological level, while the prediction is per-
formed within the lower, geometrical level.

In comparison with the mainstream approach involving
a monolithic geometric representation, the proposed frame-
work enables robust large-scale navigation without requir-
ing a geometrically consistent global view of the environ-
ment. This point has been demonstrated in the experiment
with a circular path, in which the navigation bridges the �rst
and the last node of the topology regardless of the extent
of the accumulated error in the global 3D reconstruction.
Thus, the proposed framework is applicable even in inter-
connected environments, where a global consistency may
be dif�cult to enforce.

The localization component requires imaging and nav-
igation conditions such that enough of the mapped land-
marks have recognizable appearances in the acquired cur-
rent images. The performed experiments suggest that this
can be achieved even with very small images, for moderate-
to-large changes in imaging conditions. The dif�cult sit-
uations include featureless areas (smooth buildings, vege-
tation, pavement), photometric variations (strong shadows
and re�ections), and the deviations from the reference path
used to perform the mapping, due to control errors or obsta-
cle avoidance. In the spirit of active vision, the last problem
will be addressed within the control domain.

In the current implementation, the mapping and localiza-
tion throughput on320 � 240 gray�level images is 5 Hz and
7 Hz, respectively, using a notebook computer with a CPU
performance roughly equivalent to a Pentium 4 at 2GHz.
Most of the processing time is spent within the point fea-
ture tracker, which uses a three-level image pyramid in or-
der to be able to deal with large feature motion in turns.
The computational complexity is an important issue: with
more processing power we could deal with larger images
and map more features, which would result in even greater
robustness. Nevertheless, encouraging results in real-time
autonomous robot control have been obtained even on very
small images. In the light of future increase in processing
performance, this suggests that the time of vision-based au-
tonomous transportation systems is getting close.
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