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Abstract— This paper describes an original control law called
qualitative servoing. The particularity of this method is that no
specific desired value is specified for the visual features involved
in the control scheme. Indeed, visual features are only constrained
to belong to a confident interval, which gives more flexibility to
the system. While this formalism can be used for several types
of visual features, it is used in this paper for improving the
on-line control of the visibility of a target. The principle is to
make a compromise between the classical positioning task and
the visibility constraint. Experimental results obtained with a six
degrees of freedom robot arm are presented, demonstrating the
performance of the proposed method.

I. INTRODUCTION

Visual servoing provides very efficient techniques to control
robot motions from an initial position to a precise goal [1],
[2]. It supplies high accuracy for the final pose, and good
robustness to noise in image processing, camera calibration
and other setting parameters. The control loop is based on
the minimization of the error between the current and desired
values of some visual features. The visibility constraint is one
of the critical issues of visual servoing. Indeed, if a large part
of the target gets out the camera field of view during the servo,
the value of the current features can no more be computed,
which leads to a failure of the task. In [3], the loss of some
points is accepted and taken into account within the control
law, by reducing the contribution of a point while it leaves
the camera field of view. This method manages to keep a
continuous control law. Nevertheless, nothing avoids the loss
of too many points and the task may fail due to the lack of
visual information. For example, when considering a visual
servoing based on image points, it is well known that at least
four points have to be observed [4].

Some control laws have been designed to minimize the risk
of visibility loss. When building a partitioned control law, a
decoupling is usually done between the centering of the target
and the other degrees of freedom (DOF) [5], [6], [7]. With the
target at the center of the image, the risk of visibility loss is
reduced. Some specific DOF, such as the zoom, can also be
added and be devoted to the visibility control [8]. However, the
visibility constraint is not taken into account explicitly in the
control law but per se, by construction of the control scheme.
This makes very difficult to take any other constraints into
account, such as joint limits, obstacles or visibility loss due
to occlusion. In [9], the visibility constraint is explicitly taken
into account through a switching control law. At each iteration,

the motion induced by the positioning task is computed. If
this motion can lead to a point loss, the controller removes
the rotational part of the computed velocity. If a point loss is
still expected then the controller requires the robot to translate
along the optical axis, getting further to the object and thus
increasing the camera field of view. Such a control scheme
could be adapted to other kind of constraints (joint limits for
example). However, since the robot does not move to minimize
the visibility-loss risk but changes its motion when the risk is
too high, it is very difficult to adapt this strategy in order to
consider several different constraints at the same time.

More generally, the visibility can be treated as a measurable
constraint which has to be taken into account when realizing
the task. Several strategies have been proposed for controlling
the visibility of the features as a minimization problem. A nice
solution consists in planning offline the robot trajectory until
the desired position while taking into account the visibility
constraint, for example using the potential field method [10],
[11]. Other constraints can be added and minimized at the
same time. However, this combination may induce some local
minima. Numerous works have been realized to deal reactively
with the minimization of constraints during a positioning task.
The major part could easily be adapted to visibility control.
See for example [12] for joint-limit and singularity avoidance,
or [13] for obstacle and occlusion avoidance. A very suited
approach is proposed by the redundancy formalism [14], [15],
[16]. The constraints are handled as secondary tasks that are
accomplished as long as the main task is not perturbed. It has
first been used for visual servoing in [2], and in numerous
applications since (e.g. joint limits [17], occlusions [13], etc.).
A common lack of these works is the formulation of the
secondary task, which is generally ad hoc and thus difficult
to adapt to other situations. Furthermore, the secondary tasks
are realized by the DOF that the main task leaves free. The
constraints are thus not taken into account if the main task is
full rank (for example in the very common case of positioning
the end effector of a 6-DOF manipulator).

When the main task does not let any DOF free, another
solution is to realize a trade off between the main task and
the constraint [18]. In this case, the control law generates
motions that try to achieve the main task and simultaneously
take the robot away from its kinematic singularities and its
joint limits. Once more, the objective function that represents
the constraints is built from ad-hoc computations.



In this paper, we propose to control the visibility constraint
using a reactive formulation. This constraint is written as a
numerical criterion to be minimized by a trade off with the
main positioning task. In order to build such a control law, a
new formulation called qualitative servoing is first proposed.
It enables to easily write objectives such as “the points have to
remains away from the image border” or “the robot has to stay
away from its joint limits” into a formalism that is commonly
used [19]. The control law is defined so that visual features
reach a confidence interval. The definition of this new scheme
is presented in Section II. Then, it is very easy to integrate
it into a classical visual servoing loop. Our solution is very
general and can be applied to numerous problems that would
have otherwise required tiresome formulations. We propose to
apply it to the visibility constraint in Section III. Experimental
results, presented in Section IV, demonstrate that this scheme
brings significant improvements.

II. QUALITATIVE VISUAL SERVOING

A. Classical visual servoing

A sensor-based robotic task is defined by an error func-
tion e, computed from the difference between the current and
the desired sensor-based values:

e(p, t) = x (p, t) − x∗, (1)

where x is the measure vector state computed at the current
camera pose p, and x∗ its desired value. If we consider an
eye-in-hand robotic system and a static target, the variations
of e are related to the camera motions by:

ė = Lev, (2)

where v is the instantaneous camera velocity, and Le is the
interaction matrix describing the variations of e with respect
to v.

A classical control law is obtained by setting an exponen-
tial decrease of the error. This is achieved by defining the
following differential equation:

ė = −λe, (3)

where λ ∈ R+ is used to tune the convergence speed.
Combining (2) and (3), a classical control law is obtained [2]:

v = −λ L̂+
e e, (4)

where L̂+
e is an approximation of the pseudo-inverse of Le.

When the interaction matrix Le is full column rank (ie
rank Le = 6, all the DOF are controlled), the control law (4)
converges locally to an unique position [19].

B. Qualitative visual servoing

Since control law (4) brings the controlled DOF to an
unique final position set by e = 0, it is not possible to apply
directly such a control law to unfastened constraint such as
the visibility constraint. Indeed, the visibility constraint does
not correspond to an unique camera pose but is realized in a
large region. A first solution to control a robot toward a region

was proposed in [20]. The authors propose a control law that
leads the robot end-effector into a region defined by a set
of analytical inequalities. Nevertheless, the only feature that
can be considered is the end-effector pose, and the extension
to visual features is not straightforward. We propose here to
develop a control law that manages to bring any kind of vision-
based features into a confidence interval.

Contrary to classical visual servoing, the qualitative method
requires e to reach a confidence interval, defined by a lower
and an upper bound, em and eM . The error is thus considered
satisfactory if:

∀i ∈ [1, n], emi
< ei < eMi

(5)

In the following, the method presented in Section II-A is used
to build a control law that meets this requirement (5), by
properly designing a task eq from e.

1) With one threshold: In a first time, only the upper bound
e = eM of the confidence interval is considered in order to
simplify the equations. The error function eq is defined to be:

eq = H(e−e) (e − e) , (6)

where:

H : a1×n → An×n

a �→ Ha = diag (hβ (a1) , . . . , hβ (an))
(7)

The activation function hβ(a) defines a continuous transition
between 0 and 1. The one used in the following is (see Fig. 1):

hβ(a) =




0 if a ≤ 0
1 if a ≥ β
1
2

(
1 + tanh

(
1

1−a/β − β
a

))
otherwise

(8)
where β is a positive scalar. This function has been chosen
for its nice properties. First it is C∞ everywhere (even at the
connection points 0 and β). It also remains constant outside the
transition interval ]0 β[ whose length is tuned by parameter β.
This means that the space is properly partitioned in three
regions: a region where the feature is fully active (h = 1),
a region where the feature is fully inactive (h = 0) and
the transient region used to ensure the continuity (this is not
the case when using more classical functions such as arctan
that are never equal to 0 or 1 but considered so in practice).
The parameter β is called transition smoothness and is used
to tune the trade-off between transition length and effective
smoothness (see Fig. 1).

Like in classical visual servoing, the error eq can be linked
to the camera velocity v by its interaction matrix Leq

:

ėq = Leq
v (9)

The analytic expression of ėq is easily deduced from (6):

ėq = H(e−e)

(
ė − ė

)
+ Ḣ(e−e) (e − e) (10)

Since e stays constant over time, and if we neglect the
transition interval ]0, β[ (that is to say that Ḣ(e−e) ≈ 0), a
good approximation of the interaction matrix is obtained:

Leq
= H(e−e)Le (11)
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Fig. 1. Activation function with different values of the transition smooth-
ness β.

Based on (4), the following control law is deduced:

v = −λ
(
H(e−e)Le

)+
eq = λ

(
H(e−e)Le

)+
H(e−e) (e − e)

(12)
This control law imposes an exponential decrease of the
error eq. When one feature reaches its confidence interval,
the corresponding component of eq becomes null. Thanks to
the use of the activation matrix into the interaction matrix
HLe, the corresponding line of the interaction matrix is
also composed of null terms. The feature is thus not taken
into account anymore in the least-square minimization when
computing the pseudo-inverse. The control law computed is
equal to the control law computed without the inactive feature.
The feature can evolve freely into the confidence interval.
It is automatically activated again if it leaves the confidence
interval due to inner motions.

2) Complete control law: Since the error eq is equal to
zero beyond the threshold e, the previous result can easily be
extended to both the lower bound em and the upper bound eM

of the confidence interval. The task error eq defined in (6)
becomes:

eq = Hm (e − em) + HM (e − eM ) , (13)

with Hm = H(em−e) and HM = H(e−eM ). If all the
components of the error bound respect em < eM (and we
of course assume that), then, for each component of eq , no
more than one term of (13) can be activated at a given time:
for each component, hm �= 0 (respectively hM �= 0)) imposes
hM = 0 (resp. hm = 0). This is obvious when considering
Fig. 2.

The control law (12) becomes:

v = −λL+
eq

eq (14)

with:
Leq

= (Hm + HM )Le (15)

If all components belong to their confidence area, then Hm =
HM = 0, which implies Leq

= 0. L+
eq

is then null, and no
camera motion is generated.

As long as visual servoing can manage at the same time
different types of visual features, the qualitative features
defined in this section can of course be mixed with other
classical ones. This will be the subject of Section III.
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Fig. 2. Control law activation for one component of the measure state e.

C. Comparison with other control laws

The introduction of an activation matrix within the control
law to activate or inactivate some features is also done in [21],
[3]. In these two papers, an activation matrix H is used to
discard non-satisfactory points or outliers. In [21], outliers
are points that are badly tracked. By removing these features
from the control law, the visual servoing is less sensitive to
tracking errors. In [3], the activation matrix enables to reduce
continuously the contribution of a point that is getting out the
camera field of view, as long as these features can not be
tracked and thus updated anymore.

Contrary to these two methods, we propose to reduce then
remove the contribution to the control law of a feature that
belongs to its confidence interval (that is to say when the error
is close to zero). This gives more freedom to the features that
are still out of their confidence area.

The proposed control law can be applied to different appli-
cations. In this paper, it is used for the visibility constraint.
Indeed, requiring that a point has to stay within the camera
field of view can be expressed as a qualitative feature whose
confidence interval corresponds to the image frame. The next
section explains how this constraint can be represented using
the qualitative servoing method, and how it can be taken into
account during a classical image-based positioning task.

III. POINT VISIBILITY CONTROL

In this section, we propose to apply the proposed scheme
to the visibility problem by realizing a trade off between a
vision-based positioning task and the visibility constraint.

The main task considered here is a positioning task with
respect to an object described by a set of points. An image-
based visual servoing is used to control the motion of the
camera. The basic control law that does not consider the
visibility constraint is defined as [2]:

v = −λL̂+
x (x − x∗) , (16)

where L̂x is an approximation of the interaction matrix asso-
ciated to the coordinates of the image points xi:

Lx =
(
Lx1 , . . . ,Lxp

)
, (17)



and:

Lxi
=

[ −1/Zi 0 ui/Zi uivi −(1+u2
i ) vi

0 −1/Zi vi/Zi 1+v2
i −uivi −ui

]
,

(18)
with xi = (ui, vi) and Zi the depth of the corresponding 3D
point. Different choices are available for L̂ [22]. We choose
L̂ = L∗ ie the interaction matrix computed at the desired
position. This choice is frequently done since it provides better
camera trajectories and reduces the risk of falling in local
minima. Nevertheless, we can not insure that the points will
stay inside the camera field of view during all the servo [4].
Next subsection proposes to add some qualitative features to
the control law, in order to control and improve the point
visibility.

A. Mixing classical and qualitative visual servoing

For each point xi, a qualitative feature xqi
is defined.

It manages to attract the associated point into a safe area
represented in Fig. 3. The positioning task should not be
perturbed as long as all the points belong to the safe area.
On the opposit, if one point leaves this region, the control law
should be adapted in order to get the point back into the safe
area.

This notion of safe area corresponds of course to the
confident interval of the qualitative servoing. The control law
is then obtained by combining the positioning task and the
visibility constraints:

v = −λ

[
Lx

Leq

]+ [
∆x
eq

]
, (19)

where ∆x = x − x∗, Lx is given in (17), while eq and Leq

are defined from respectively (13) and (15):

eq = Hm (x − xm) + HM (x − xM ) , (20)

Leq
= (Hm + HM )Lx (21)

On one hand, if all points belong to the safe area,
then Leq

= 0, since Hm = HM = 0. For the same reason,
eq is null. The control law can then be simplified:

v = −λ

[
Lx

0

]+ [
∆x
0

]
= −λL+

x ∆x (22)

As required, this last equation is the same as the control law
without the visibility constraint (16): all the points are in the
safe area, and the robot behavior is the one obtained with the
classical formalism.

On the other hand, if one point leaves the safe area, the as-
sociated qualitative constraint is activated and integrated in the
computation of the camera velocity, enforcing a compromise
between the positioning task and the visibility constraint.

B. Relaxing the system

Such a control law improves strongly the visibility of the
features during the servo (as it will be shown in Section IV).
However it is impossible to prove that this visibility is always

vM − αvm + α

um + α

uM − α

ψi

Isafe

Fig. 3. Safe area Isafe defined within the image ψi

ensured. Indeed the positioning task and the visibility con-
straint are not organized into any hierarchical way. A trade-
off is thus realized between them, which can sometimes result
to temporarily feature loss. An example of such a constraint
violation is given in the experiment section.

When a point is leaving the confidence area, it seems
logical to give more influence to its associated visibility
constraint. This can be performed by temporarily removing its
contribution to the positioning part of the control law. In this
case, we propose to relax the positioning task in an approach
similar to [3]:

v = −λ

[
DLx

Leq

]+ [
D∆x
eq

]
, (23)

with D a diagonal matrix defined as D = (I − Hm − HM )).
If a point xi is out of the free area, its associated positioning
constraint is reduced to zero (di = 0).

Once more, if all points belong to the confident area,
then Hm = HM = 0 and D = In. System (23) is then
equivalent to the classical visual servoing system.

IV. EXPERIMENTS

We present in this section two experiments realized with a
six-DOF eye-in-hand robot. In each experiment, the robotic
system is required to reach a desired pose with respect to a
3D object. In order to simplify the image processing, and
to focus on the control law validation, the visual target is
composed of easily-detectable white dots on black background
(see Fig. 4). Experiments involve large camera displacements,
and especially large rotations. For such displacements, it is
well-known that the camera motions often lead to feature-
visibility loss [22].

In the following, two typical experiments are presented.
In both experiments, applying a classical control law without
visibility control leads some points to leave the camera field of
view. Since the 3D object model is known, the point position
is predicted using 3D to 2D projections when out of the field
of view. The image tracking can thus start again as soon as the
point comes back into the image field of view. This scheme
enables us to compare the different executions, even if some
points get out the image frame.

A. First experiment

For this experiment, the camera displacement is:

t = (−45,−87, 50), and uθ = (−25,−20 − 90),



(a) Initial position (b) Desired position

Fig. 4. 3D Visual target used in the experiments

where the translation (respectively the rotation) is expressed
in cm (resp. dg). Three executions are presented here:

Exp. β (pixels) α (pixels)
(a) No visibility constraint
(b) 2 25
(c) 15 50

The execution (a) corresponds to a classical visual servoing,
using only point features to position the robot. The two
others use a qualitative visual servoing to take the visibility
constraint into account, as we have proposed in Sec. III-A.
Two different tunings of the transition smoothness have been
used to illustrate the proper effects of the activation function h
defined in (8). In the execution (b), the transition length is
very short or abrupt (numerically, it corresponds to an empty
interval). Furthermore, the visibility control part is activated
when a point is closer than 25 pixel to the image border.
The setting (c) provides a smoother transition, and a higher
activation threshold.

The experiment is summed up on Figures 5, 6, 7 and 8.
The image point trajectories are given in Fig. 5. The clas-
sical scheme is not able to keep Points 6 and 7 within the
image. The two other schemes which integrate the visibility
control (19) manage to keep all the points in the image plane.

The camera trajectories are given in Fig. 6. The two
trajectories obtained with (b) and (c) are very similar. The
camera enlarges the motion amplitude in order to stay further
from the object, which enables to keep all the features in its
field of view. One can also see that the trajectory (c) obtained
with a long transition length is smoother.

Next figures emphasize the differences between the two
parameter sets (b) and (c). The camera velocities are given
in Fig. 7. Using a small transition length, the velocities are
almost discontinuous at three occasions, when a qualitative
feature becomes active or inactive. This leads to very strong
accelerations of the robot. These discontinuities do not appear
in the case of a proper length setting. The positioning and
qualitative errors are presented in Fig. 8. As it was already
mentioned on Fig. 5, the positioning errors for settings (b)
and (c) are similar. However the qualitative error with abrupt
parameters is much lower than for smooth one. As expected,
the use of a small transition length leads to abrupt trajectories
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Fig. 5. First experiment. Point trajectories in the image: (a) without
considering the visibility constraint (b) with visibility constraints, using an
abrupt transition (c) with visibility constraints, using a smooth transition.
Two points leave the image frame with the classical visual servoing. The
qualitative servoing manages to keep all points within the camera field of
view. The image trajectories are quite similar when using smooth or abrupt
transition parameters.

and velocities, but makes the system much more reactive. So
it is possible to increase the qualitative threshold, enlarging
the confident image area in which the visibility constraint is
not taken into account.

B. Second experiment - 150 dg Z-rotation

The second experiment mainly consists in a very large
rotation around the optical axis. The camera displacement is:

t = (−25,−40, 20), and uθ = (−20,−15,−150),

For such a displacement, a classical visual servoing using
point features is totally unable to achieve the positioning [22].
Due to a strong coupling in the interaction matrix, the camera
translation, which should be very low, involves in fact a very
large motion along the optical axis in the direction of the object
(see Fig. 10). The loss of two many points causes the failure
of the servo (see Fig. 9-(a) for point trajectories). This is a
typical case where the visibility is a critical issue.

The results of three experiments are presented here to
compare the smoothness of the proposed control law with
respect to several setups:

Exp. β (pixels) α (pixels) relaxing
a No visibility constraint no relaxing
b 15 50 no relaxing
c 2 25 relaxing
d 15 50 relaxing

Two parameter sets are considered for the qualitative fea-
tures: a smooth transition (settings (b) and (d)) and an abrupt
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0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

position. error ( smooth)
position. error (abrupt)
visibility error (smooth)
visibility error (abrupt)

Fig. 8. First experiment. Positioning and visibility error norms. The
positioning error is the norm of the vector composed of all point errors.
The visibility error is the norm of the vector obtained by stacking all the
qualitative feature errors. The more points are close to the image borders, the
higher is this error. The positioning errors are similar when using a smooth or
an abrupt transition. However, the visibility error is much lower when using a
short transient time. The system is then more reactive to correct any visibility
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Fig. 9. Second experiment. Point trajectories in the image (a) without taking
the visibility constraint into account, (b) with visibility constraints, using a
smooth transition and no relax , (c) using an abrupt transition and relax, (d)
using a smooth transition and relax. Without any avoidance, the points are
quickly lost and the servo fails. Including the visibility constraint, enough
points still remain in the image frame to complete the servo. With all the
configurations, a point is still lost, and another is border-line. The smoothest
trajectories are obtained when using the relaxing strategy (d).

one (setting (c)). The two last settings (c) and (d) use the
relaxing strategy as proposed in Sect. III-B.

The executions are summed up on Fig. 9, 10 and 11.
Point and camera trajectories are presented on Fig. 9 and 10,
including the results from the classical servoing scheme. The
positioning task considered is very difficult, and even the
controller including the visibility criterion is unable to keep
all the points in the field of view. However, the avoidance
part of the control law suffices to keep enough point in the
image frame to complete the servo. A comparison of the
camera velocity smoothness for the three implementations
using the visibility constraint is given in Fig. 11. As in the
previous experiment, we can see that a short transition implies
a more abrupt camera behavior. Furthermore, both points
and camera trajectories for the control law without relaxing
strategy present some discontinuities (see Fig. 9-(b) and 11).
Indeed, the control law is less reactive, and it implies much
wider camera motions than when relaxing the lost points (see
Fig. 10).

The best execution, in term of smoothness, is obtained
with a large transition and with the relax formalism. The
combination of a smaller transition and relax gives a very
reactive control law, and all point loss can almost be avoided.
But this reactivity is obtained at the expense of the motion
smoothness.

These experiments show that the relax setup enables in all
cases to have a better behavior of the control law. The length
of transition leads to a trade-off between smoothness and
reactivity, which can be adapted depending on the application
considered.
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V. CONCLUSION

This paper has introduced the principle of qualitative visual
servoing. This servo scheme is not defined with respect to
a specific desired configuration, but it enables to define a
confident interval into which the visual features should remain.
A theoretical definition of the qualitative visual servoing
has been presented and illustrated with the example of the
visibility constraint. The combination of a classical control
law with the one proposed enables to realize a compromise
between the positioning task and the visibility constraint. It
has also been shown that the control law is reduced to the
classical one if all the points satisfy the visibility constraint.
Experimental results have shown that this formalism manages
to greatly improve the feature visibility during the servo.
Furthermore, it manages to realize difficult motions that can
not be performed by classical vision-based techniques.

The qualitative servoing approach is very general and we are
now considering other applications that can benefit from this
approach. Indeed, the possibility of adding specific constraints
during the servo can be useful for joint-limit avoidance, occlu-
sion avoidance, etc. Furthermore, the possibility of increasing
the desired position of a visual feature to an interval is a nice
property that could be useful within the redundancy formalism.

The stability analysis of the closed loop should also be studied,
doubtlessly by considering the system as a switching control
loop.
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