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Abstract— In this paper, the coupling between Jacobian learn-
ing and task sequencing through the redundancy approach is
studied.

It is well known that visual servoing is robust to modeling
errors in the jacobian matrices. This justifies why jacobian
estimation does not usually degrade the system convergence.
However, we show that this is not true anymore when the
redundancy formalism is used. In this case the jacobian matrix
is also necessary to compute projection operators for task
decomposition, which is quite sensitive to errors. We show that
learning improves the servoing performance, when task sequenc-
ing is used. Conversely, sequencing improves the convergence of
learning, especially for tasks involving several degrees of freedom.
Eye-in-hand and eye-to-hand experiments have been performed
on two robots with six degrees of freedom.

I. INTRODUCTION

Visual servoing methods provide very efficient and robust
solutions to control robot motions [7]. It provides high accu-
racy for the final pose and good robustness to camera calibra-
tion and other setting parameters. The redundancy formalism
[10], [14] extends the task-function approach [16] to compute
a control law that realizes a main task, while simultaneously
taking supplementary constraints into account. It can be used
when the main task does not constrain all the robot degrees of
freedom (DOF). A secondary task can then be added to meet
a second objective without disturbing higher priority tasks.
The control law for the second task is projected into the set
of motions constituting the null space of the first task, thus
leaving the first tasks unmodified. The computation of the
projection operator is based on the jacobian of the first task.

This approach involves the computation of the task jacobian,
linking the evolution of the visual features to the robot
articular motion. It thus requires knowledge about the camera-
world and world-actuator transformations that influence the
interaction matrix (relating image and camera velocities) and
the robot jacobian (relating end-effector and joint velocities).
Such transformations are usually obtained during an offline
calibration phase.

However, full system calibration (and even a coarse one) is
not always possible and/or desirable. Some robots may lack
proprioceptive sensors to provide the necessary information
and some parameters may vary over time, due to malfunction,
changes in mechanical parts or modification in the camera
lenses. Even when calibration information is available, the

analytic computation of the interaction matrix often requires
an estimate of the depth of the tracked features. For all these
reasons, a perfect computation of the task jacobian can be very
difficult or even impossible in practice.

Several methods have already been proposed to estimate
the interaction matrix, the robot jacobian or the task jacobian.
One of the first works was [6], where robust learning rule was
derived and a convergence proof given. This method is based
on the Broyden update rule, well known from optimization
theory [5] and has been widely used in robotic applications
with visual control. In [8], it was used for visually-guided
grasping. Ad hoc task sequencing was used in [3] to separate
the reaching phase and the grasping phase. Another object-
grasping task is presented in [12], where the estimation
algorithm is used to provide an approximation of a highly
non-linear mapping, using several local linear models. An error
function for the jacobian approximation is defined. By min-
imizing this function with a Newton method, a time-varying
system is obtained. This work was applied to both eye-in-
hand and eye-to-hand systems with moving targets [15]. It was
also suggested to learn the inverse jacobian directly, instead
of the jacobian [9], although only an offline formulation was
proposed in that work. A complete discussion about adaptive
identification methods for slowly varying parameters is pre-
sented in [2]. It also presents a new method to improve the
robustness of parameter identification, by combining directions
with new information with those where the information had
been lost and had to be recovered.

All these works are only focused in the jacobian estimation
itself. It is well known that visual servoing offers a high level
of robustness to jacobian errors. As a consequence, learning
the jacobian usually provides satisfactory results. However,
when computing the control law for a set of tasks using the
redundancy formalism, the jacobian is also used to compute
a projection operator. As will be shown in this paper, this
computation is not robust at all, and the highest priority
task may be strongly disturbed by the projector estimation
errors. Learning the jacobian for a redundancy-based servo
scheme turns out to be more demanding than for single-
task scheme and has to be studied with care, which is one of
the scope of this paper.

In [13] a solution was presented to stack redundant tasks
on top of the others, until all degrees of freedom of the robot



are constrained, and the desired pose is reached. It is based
on a generalization of the redundancy approach to several
tasks [17].

In this work, we apply the sequencing method to coarsely
calibrated systems. Hence, errors in the jacobian will cause
errors in the computation of the projection operators, dis-
turbing higher priority tasks. To overcome this problem, we
use the disturbance itself as an error signal used to improve
the jacobian online. We compare several estimation methods,
in order to access their quality in terms of real-parameter
estimation and online behavior of the system.

Our results show that it is possible to estimate the jacobian
online, in the context of task sequencing for visual servoing. In
addition, the learning stability is greatly improved by the task
sequencing approach. Hence, task sequencing and learning
are intertwined, mutually constrained processes that bring
additional performance and flexibility to the control of
complex robotic systems, when calibration information is
unavailable or highly uncertain.

In Section II the stack of tasks structure used to sequence
redundant tasks is defined, together with a control law that
maintains all the tasks. Section III recalls several jacobian
estimation methods, that are discussed in the experiments.
Several sets of experiments have been realized to support our
conclusions using two different six DOF robots (Section IV).

II. VISUAL SERVOING USING A STACK OF TASKS

In this section, we recall how to sequence redundant tasks
and to maintain the tasks already achieved [13].

A. Redundancy formalism for two tasks

Let q be the articular vector of the robot. Let e1 and e2 be
two tasks, Ji = ∂ei

∂q (i = 1, 2) their jacobian, defined by:

ėi =
∂ei

∂q
q̇ = Jiq̇ (1)

Since the robot is controlled using its articular velocity q̇, (1)
has to be inverted. The general solution (with i = 1) is:

q̇ = J+
1 ė1 + P1z (2)

where P1 is the orthogonal projection operator on the null
space of J1 and J+

1 is the pseudo-inverse of J1. Vector z can
be used to apply a secondary command, that will not disturb
e1. Here, z is used to carry out at best a task e2. Introducing
(2) in (1) (with i = 2) gives:

ė2 = J2J+
1 ė1 + J2P1z (3)

By inverting this last equation, and introducing the computed
z in (2), we finally get:

q̇ = J+
1 ė1 + P1(J2P1)+(ė2 − J2J+

1 ė1) (4)

Since P1 is Hermitian and idempotent (it is a projection
operator), (4) can be written:

q̇ = J+
1 ė1 + J̃2

+˜̇e2 (5)

where J̃2 = J2P1 is the limited jacobian of the task e2, giving
the available range for the secondary task to be performed
without affecting the first task, and ˜̇e2 = ė2 − J2J+

1 ė1 is
the secondary task function, after subtracting the part J2J+

1 ė1

already accomplished by the first task. A very good intuitive
explanation of this equation is given in [1].

B. Extending the redundancy formalism for several tasks

Let (e1,J1) ... (en,Jn) be n tasks so that Task ei should
not disturb task ej if i > j. A recursive extension of (5) is
proposed in [17]:

q̇i = q̇i−1 + (JiPA
i−1)+(ėi − Jiq̇i−1) (6)

where PA
i is the projector onto the null-space of the aug-

mented Jacobian JA
i = (J1, . . .Ji). The recursion is initial-

ized by q̇0 = 0. The robot velocity is q̇ = q̇n.
Using this recursive equation directly, a projector has to

be computed on each step of the computation. A recursive
formula for the computation of the projector is proposed in
[1]. We recall this equation here

PA
i = PA

i−1 − J̃i

+
J̃i (7)

where J̃i = JiPA
i−1 is the limited jacobian of the task i. The

recursion is initialized by PA
0 = I (identity matrix).

The control law is finally obtained by setting an exponential
decrease for each task:

∀i = 1..n, ėi = −λiei (8)

where the parameters λi are used to tune the convergence
speed of each task.

In this control law, two matrices have to be learned: Ji and
PA

i . Since PA
i can be computed from Ji, we will learn only

the jacobian and then compute the projection operator from it.
In this sense, the two matrices are learned. The effect of the
learning can be considered from two different points of view:
convergence of a task while the jacobian is learned online and
the disturbances caused upon higher priority tasks due to the
effect of learning the projection operator.

C. Application to visual servoing

In this article, we propose an implementation of this control
law using visual servoing. The task functions ei used in the
remainder of the text are computed from visual features:

ei = si − s∗i (9)

where si is the current value of the visual features for task ei

and s∗i their desired value.
The interaction matrix Lsi related to si is defined so that

ṡi = Lsiv, where v is the camera kinematic screw. From (9),
it is clear that the interaction matrix Lsi and the task jacobian
Ji are linked by the relation:

Ji = LsiJq (10)

where the matrix Jq denotes the robot jacobian (v = Jqq̇).
In the following section we will see several methods that can
be used to learn the jacobian matrix.



III. JACOBIAN ESTIMATION METHODS

A large amount of information is required to recompute
the jacobian at each iteration. As presented just above, the
jacobians can be divided in two parts: the articular jacobian
Jq, and the interaction matrix Ls (see (10)). The articular
jacobian can only be computed if the full arm-eye calibration
is available. Instead, the interaction matrices require some
3D parameters of the observed object. This can be estimated
using pose computation (if the object model is available)
or using homographies [4] between the image and relevant
scene planes. In this last case, the scale parameters cannot be
estimated, and the object depth has to be fixed a priori or
estimated using other methods. All these parameters can lead
to errors in the computation of the interaction matrix.

Different approaches can be used to estimate the tasks
jacobians. Learning the task jacobian, Ji, is quite difficult,
due to the numerous non-linear terms involved in its analytical
form. The experiments have proved the extreme difficulty in
obtaining a good estimation of Ji. In [12], a mixture of several
linear models was described to tackle this problem.

Instead of trying to estimate Ji, we have chosen to use an
approximation of the articular jacobian, Ĵq, computed from
coarse robot calibration data. Then, since an approximation of
v can be computed, only the matrices L̂si need to be estimated.
Furthermore, estimating Lsi will allow to “absorb” some of
the errors in Jq, caused by the coarse robot calibration. This
solution is also able to take into account the uncertainties in
the target model, yielding better results, even when using a
properly calibrated robot, as it will be shown in Section IV-B.
In the following sub-sections, we present the methods used in
the experiments to learn the jacobian.

A. Broyden Update

The first work presented for jacobian estimation in visual
servoing was [6]. This method is based on the Broyden update
rule. The Jacobian estimation is given by:

Ĵ(t + 1) = Ĵ(t) + α

(
∆e − Ĵ(t)∆x

)
∆x�

∆x�∆x
(11)

After observing some image motion, ∆e, caused by a motor
command ∆x, the Jacobian is updated directly, with α defining
the update speed. This method has several positive aspects:
low memory usage because only the last observation is used;
low computational cost and a single parameter to be tuned.
When the motions are too small, this computation may become
unstable. One solution consists in including a regularization
term in the denominator to prevent singularities. Alternatively,
the learning can simply be switched off, whenever the motion
falls below a certain threshold.

In practice, it can be used to compute offline an estimation
of the jacobian from a set of simple motions. Or the estimation
of the jacobian can be updated online, using at the first
iteration the result of the offline learning or an estimation of
the analytical jacobian.

B. Correlation

A different approach can be made with least squares esti-
mation [2]. Considering the cost function l as:

l =
t∑

i=0

γi−t(∆e − J∆x)�(∆e − J∆x)

The minimization off-line gives the usual least squares solu-
tion:

J = QR+

where Q and R are:

Q =
t∑

i=0

λ(t−i)∆e�i ∆xi

R =
t∑

i=0

λ(t−i)∆x�
i ∆xi

or in an online formulation;

Q = λQ + ∆e�t ∆xt

R = λR + ∆x�
t ∆xt

(12)

Like the Broyden update, the correlation learning can be
used offline or online. However, it can not be used to update an
approximation of the analytical jacobian since the two matrices
Q and R are required. In practice, it is difficult to start the
learning online without any offline training. In the experiment,
a short offline training composed of some simple motions has
always been used to initialize the online learning.

C. Direct-Inverse

Learning the jacobian boils down to minimizing the predic-
tion error of the image velocities. Yet, for control purposes,
we need the inverse map J+, that corresponds to the “recon-
struction” of the robot joint velocities from image velocities.
Thus, in [9], it was suggested that one should learn the inverse
Jacobian directly, instead of the Jacobian. The cost function
becomes:

l =
t∑

i=0

γi−t(∆x − H∆e)�(∆x − H∆e)

where H = J+. This cost function can be seen as a recon-
struction error, as opposed to the prediction error used before.
The main advantage is that we no longer need to invert the
Jacobian for computing the control law. An additional benefit
is that the least-squares fitting requires the inversion of a
smaller, possibly better conditioned, information matrix, R.
This is particularly relevant for the task sequencing approach
whereby the (sub-)task dimension is much smaller than the
control space.

Using the online formulation (12) it is possible to propose
an online version of the direct-inverse learning method. In
the experiment, both the offline and the online version of the
method were used. As for the classical correlation method, the
online learning can not be initialized from an analytical value
of the jacobian, and requires thus a short offline training.



IV. EXPERIMENTS AND RESULTS

In this section we present results comparing the quality of
tasks sequencing using several methods of jacobian estimation.
Two robots with different kinematics and servoing architec-
tures were used for the experiments. We first describe quickly
the selected visual features used for the experiments. Four
representative experiments are then presented in detail.

A. Visual features for vision-based control

In order to have a better and easier control over the robot
trajectory, approximately decoupled tasks were chosen. We
have used visual features derived from the image moments.
To simplify the image processing as we mainly focus on the
control part, we have used a simple white-points-on-black-
board target as shown Fig 1. The first task eg - centering -
is based on the position of the center of gravity of the four
points. The second task eZ - zooming - uses the area of the
object in the image to control the range between the robot and
the target. The third task eα - Z-rotation - rotates the camera
around the optical axis, so that the object will be correctly
oriented in the image. It uses the orientation of the object
in the image, which can be obtained from the second order
moments. The last task eR - perspective correction - uses third
order moments to decouple υx from ωy and υy from ωx. The
reader is invited to refer to [18] for more details.

B. Results

The three first experiments were realized with the robot
Baltazar. Baltazar is an anthropomorphic robotic torso [11]
equipped with a six DOF arm, an eleven DOF hand and
a four DOF head. In the presented experiments, the target
was attached to the robot hand. An eye-to-hand visual servo
was used to position the hand parallel to the eye image
plane, centered at a distance of 20cm. This robot has a high
payload/weight ratio causing some elasticities, its motors are
equipped with position sensors but the lack of an home sensor
causes some errors if a precise calibration is needed. The
camera is coarsely calibrated and for the experiments a 4.5mm
lens had to be used. Figure 1 presents the robot and the
initial and final hand position. The total motion is about 30cm
corresponding to a maximum joint translation of 90 dg.

The first experiment includes a comparison of the estimation
methods presented in Section III. The second experiment
shows that it is possible to correct the robot (coarse) calibration
by learning only the interaction matrix when realizing a full
sequencing. The third experiment is a first step to show
(experimentally) that the trajectory obtained when applying
a sequencing control law provides a very good dataset for
learning. The last experiment was realized on an accurately
calibrated robot (see Section IV-F). It shows that a small
uncertainty can result in a big perturbation, and that the online
estimation is able to provide a nearly perfect behavior.

C. Experiment 1 - online learning

In this first experiment, the stack has two tasks: centering
(eg) and Z-rotation (eα). The goal consists in testing how the

Fig. 1. Initial and final position. Top: outside view, Down: camera view

jacobian estimation errors influence the task sequencing, due to
errors introduced in the projection operator. When the jacobian
of the first task is mis-estimated, the centering is lost with the
activation of the second task. When the error increases, the
target moves further away from the image center, and could
even leave the image if the disturbance is too strong (which
results of course in the visual servoing failure).

Figure 2 presents the evolution of the error for the first
task using analytic/offline learning versus online estimation
methods. Figure 3 shows the result for the second (rotation)
task. Offline learning relies on simple motions of the arm,
done during approximately 250 iterations. Online learning was
carried out at every frame.

As can be seen in Fig. 2, analytic or offline learning are
worse, in terms of having a larger perturbation and longer
convergence times. The perturbation is very important and it
can not be reduced before the secondary task completion.

On the opposit, online estimation methods lead to much
better results, outperforming the results with the analytical
jacobian. Although a large disturbance appears when the
second task is added, it is quickly reduced afterward. For
online estimation, the amplitude of the perturbation ranged
from 20 to 30 pixels. Broyden and Correlation methods were
able to eliminate the error after 30 iterations. The maximal
perturbation is equivalent to the one obtained with analytic
computation, but the duration is much shorter.

The online Direct-inverse method was unable to reduce the
error as fast as the two other methods or the analytic version,
whatever the tuning realized. The advantage of directly mini-
mizing the reconstruction errors instead of the prediction error
does not appear significant in this setting. Indeed, to compute
the projection it is necessary to have the direct map and the
result, in the end, is worst.

It is also interesting to see that the task-error convergence
is very similar for all methods (for Task eg, Fig. 2 before
Iteration 50, and for Task eα, Fig. 3). This emphasizes that the
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Fig. 2. Temporal evolution of the image error during servoing using offline
(top) or online (bottom) learning methods. The vertical line shows the time
instant where the second task started.

Fig. 3. Convergence rates for the second task (rotation) while trying to keep
the centering at zero (refer to Figure 2). Due to robustness to jacobian error,
the convergences are the same for all the tasks.

reduction of the perturbation is not made at the cost of worse
convergence. The convergence is very robust to jacobian error,
since all the task convergences are the same. It is nevertheless
not true for the projection operator estimation, which is very
sensitive and requires an accurate estimation.

Finally, we can note from several experiments starting from
different initial positions and using different tasks that the
online Correlation method produced better results in sense of
perturbation amplitude, perturbation average and perturbation-
correction time, when properly tuned. However, it is not as
robust to gain-tuning as the Broyden approach that could solve
the task in all situations with the same parameters settings
(note the Broyden performances for offline learning).

D. Experiment 2 - generalization to more tasks

To verify that the method it is possible to learn all tasks, a
complete sequence was done, consisting in: centering, zoom-
ing, Z-rotation and perspective. All online learning methods
have been able to achieve the sequencing. The lowest pertur-
bations were obtained using the Correlation method. Figure
4 cares the results of this method (on the bottom) with the
analytical one (on the top). The vertical lines represent the
time instant where a new task is added to the stack, after
all the tasks already in the stack have converged to zero. It is
interesting to see that in a badly calibrated system, the learning
scheme yields better results than using the analytic solution,
in terms of convergence speed, amplitude and average of the
perturbations.

E. Experiment 3 - better learning through task sequencing

A very important point was to note that learning improves
the sequencing quality by reducing convergence time and the
size of the perturbations. At the same time, the sequencing
generates more efficient trajectories for learning. This exper-
iment tests the hypothesis that learning four simpler tasks in
sequence is easier than learning four tasks at the same time.

We compared the learning when running the robot under
three different control laws. During the first run, task sequenc-
ing was used, in the same way as in previous experiments. In
the second trial, all tasks are active at the same time. In other
words, the same formalism is used but every task is active from
the beginning, as opposed to starting a new task only after all
the previous ones are completed. The last trial consisted on
classical visual servoing, using only one single task of full
rank. The condition number of the full-rank jacobian matrix
was then estimated at each iteration. When a sequencing was
used, the jacobians of all tasks were piled up and the overall
condition number evaluated.

For Correlation and Direct-inverse methods, the condition
number was the same for the three experiments. For these
learning methods, the sequencing does not improve the learn-
ing.

On the opposite, the hypothesis has turned out to be correct
when using Broyden algorithm. Figure 5 shows that for the
Broyden method, the condition number of the matrices are
much worse for the full task and convergence cannot be
attained.



Fig. 4. Results for a sequence of four tasks. Top: Analytic method. Bottom:
Correlation. The vertical line shows the time instant where a new task is added
in the stack. Due to calibration errors, the analytical solution is not able to
ensure the stack priorities. When a perturbation appears, it is not corrected
until the active task has converged. The online estimation is able to quickly
correct the perturbations. The perturbation average is thus much lower. The
perturbation amplitudes are also lower.

F. Experiment 4 - calibrated robot

The last experiment was realized with an industrial robot.
This robot is a six-DOF eye-in-hand robot with a very low
payload/weight ratio. It has position and home sensors and its
high repeatability allows to do a very precise calibration. Full,
accurate calibration is available and the articular jacobian is
no longer an approximation. However, the depth of the target
is unknown and must be estimated to compute the correct
jacobians. Mis-estimating depth induces scale errors in the
interaction matrices.

The experiments consist in a sequencing of the four tasks.
The tasks were introduced in the same order as before, at fixed
time for a better comparison (eg at t = 0, eα at t = 150, eZ

at t = 60, and eR at t = 110). For each experiment, we
vary the method used to compute the interaction matrix. The
evolution of the perturbation norm is shown on Fig. 6 for each
estimation scheme. The complete results are detailed for the
Broyden method in Fig. 7.
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Fig. 5. Condition-number evolution of the estimated interaction matrix during
the servo. The matrix is learned from three different trajectories. The first one
is a sequencing as done above (first experiment). The second uses the stack of
task (control law (??)), but all the tasks were activated at the same time at the
first iteration (that is to say, no task sequencing). The last one is obtained from
a classical visual servoing using a six-DOF task composed of all the visual
features (third experiment). The matrix learned from a classical servo has a
very large condition number. It increases until the servo becomes impossible.
The learning realized from sequencing provides a properly conditioned matrix.

The first test (“current”) shows that a perfect behavior is
obtained when all the required knowledge is available. Depth
was estimated with a pose computation algorithm, using the
object geometric model and camera calibration. In the second
trial (“misestimated”), depth was mis-estimated by a factor of
2. In the third experiment (“desired”), the interaction matrices
were computed at the desired position using the desired depth.
As can be shown on the top of Fig. 6, inaccuracies in the
projection operators introduce large perturbations.

In a second set of experiments presented on the bottom of
Fig. 6, we analyze the use of estimated jacobian matrices. The
first two trials use both the online and offline versions of the
Correlation. The third one starts with the analytical matrix,
that is updated with the Broyden rules. These methods are
compared with the same analytic version (“curent”) as before.

Figure 6 shows the perturbations for each estimation
scheme. As expected, the use of the “perfect” analytical
solution leads to better results than the versions with estimated
jacobians. However, the use of an estimation of the jacobian
matrix (such as the matrix computed at the desired value, or
from a misestimated depth parameter) produces large pertur-
bations during a long time. It is also true when used the results
of some offline learning. On the opposite, the use of online
estimations always outperforms approximations the analytical
jacobian. The best behavior is obtained with the Broyden
algorithm, using the true interaction matrix as initialization.
It provides a robust and fast online estimation without the
need of a first offline learning.

Finally, Fig. 7 shows the results using the Broyden method.
We can note that the perturbation amplitudes are very small
(almost invisible) for all tasks. They are also quickly reduced.
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Fig. 6. Perturbation norm (i.e. norm of the error of the tasks already
completed) during the positioning. Top: results obtained with the true jacobian
(“current”) and two approximate versions where the depth is misestimated by a
factor of 2 or set to the desired value in the goal position. Bottom: comparison
of the true jacobian version (“current”) with learned jacobians (Correlation
offline and online) and Broyden. Approximations in the analytic solution (on
the top) can generate disturbance that are reduced using a learning scheme
(on the bottom).
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Fig. 7. Correcting a depth mis-estimation by an online estimation of the
interaction matrix. Results for a sequence of four tasks sequencing on the full-
calibrated robot Afma6. The jacobian estimation method is Broyden, using the
analytical solution as an initialization of the learning.

V. CONCLUSION

In this paper several learning methods have been tested for
jacobian estimation in task sequencing. The tested methods
were Broyden method, Correlation method and Direct-inverse
method. The Direct-inverse method was adapted to have an
online update rule. All methods were able to learn the jacobian
and accomplish the sequence of tasks, both in eye-in-hand and
eye-to-hand configuration.

Of course, if all the necessary knowledge is present (that is
if the system is perfectly modeled and calibrated), the control
scheme using the analytical jacobian performs better than any
learning-based scheme. However, as soon as some errors or
misestimations appear in the model, the performances of the
analytical solution become lower while the learning improves
the quality of the servo. If the calibration is not accurate, the
learning methods perform always better.

When comparing the learning schemes, an online update of
the jacobian produces better results than an offline learning
when considering the number of iterations required to nullify
the perturbation, and also when considering the perturbation
amplitude. In terms of comparison, the best estimation was
obtained using the Correlation method. But it requires a tuning
and a training step. Another very interesting solution is to use
the analytical approximation of the jacobian to initialize the
Broyden online learning. This solution is very robust, it does
not require any tuning, and can perform all the tasks with
the same parameters. Moreover, it does not require any offline
learning phase.

It was verified that learning improves the task sequencing
by reducing the perturbations. It was also shown that the
sequencing helps the learning by estimating a mixture of
smaller subtasks successively. The condition number of the
obtained jacobian, and the stability of the global system
(control+learning) are more satisfactory.
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