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Abstract— Image moments provide an important class of image
features used for image-based visual servo control. Spherical
image moments have the additional desirable property that
they are invariant under rotation of the camera frame. For
these features one can study the local and global stability and
performance of the position control independently of the rotation
control. In this paper we study a range of control algorithms in-
cluding the classical approximately linearising control, a recently
proposed robust control based on Lyapunov function design
methodology, and modifications of these designs to improve global
and asymptotic performance and robustness of the schemes.
The comparison of performance demonstrates that the choice of
image feature and control design for image-based visual servo are
each equally important and highly coupled. We finally propose
a control law using a modified image feature and a Lyapunov
control design that ensures global asymptotic stability and good
performance equally in image space as in task space.

I. INTRODUCTION

Visual servo algorithms have been extensively developed in
the robotics field over the last ten years [4], [13], [8]. Visual
servo systems may be divided into two main classes [12]:
Position-based visual servo (PBVS) involves reconstruction
of the target pose with respect to the robot and results in
a Cartesian motion planning problem. This approach requires
an accurate 3D model of the target, displays high sensitivity
to image noise, poor robustness of pose estimation and the
tendency for image features to leave the camera field of view
during the task [2]. Image-based visual servo (IBVS) treats
the problem as one of controlling features in the image plane,
such that moving features to a goal configuration implicitly
accomplishes the task [4], [14]. This approach does not require
a 3D model of the target, is robust to camera calibration errors
and can generally be implemented to ensure image features do
not leave the camera field of view during the task. However,
for an IBVS control system, good closed-loop behaviour in
image space does not necessarily imply good transient or
asymptotic behaviour in task space [2], [10]. Image moments
are a useful and robust image feature for IBVS control [3].
A desirable property of image moments is their invariance
properties [16]. In separate work, the invariance of first order

spherical moments to rotational motion was used to extend
IBVS techniques to a control design for an under-actuated
dynamic model of an aerial robotic vehicle [7]. With these
applications as a motivation it is now of interest to consider
the full response of the closed-loop system in task and image
space for IBVS control based on image moments.

In this paper we provide an analysis of image based visual
servo (IBVS) control for a class of image features based on
first order spherical moments. These features have been used
in recent work [6] and have a number of important properties
for the present study: they are invariant with respect to rotation
of the camera frame allowing us to decouple the position and
rotation dynamics of the servo problem. The interaction matrix
is a positive definite matrix and allows one to design globally
stable control laws. The goal of this paper is to investigate a
range of control designs based on the proposed image feature
and use this to demonstrate some important properties of visual
servo control algorithms. In particular, we are interested in the
properties of global asymptotic stability (GAS) and asymptotic
performance of the closed-loop system. Global asymptotic
stability (GAS) refers to the abstract property of a controller to
stabilise the pose of the camera from any initial condition. No
physical system is "actually" GAS and visual servo systems
where target may be occluded, or leave the field of view,
etc., are clearly never truly GAS. Nevertheless, by studying
the theoretical properties of the closed-loop system, assuming
that the target is always visible and well distinguished, we
can say a great deal about the properties of some of the
better known visual servo algorithms. Image based visual servo
systems that are not GAS have fundamental instability built
into their formulation. There are a number of examples of such
systems in the literature [2], [11]. The question of asymptotic
performance is also a key issue in the design of image based
visual servo controllers. Since the dynamics of the system
are controlled in image space, what guarantees do we have
that the closed-loop response in task space is suitable. The
most common problem that occurs is one of relative sensitivity
where not all coordinates of the pose in task space converge at



equal rates. This leads to poor performance of the closed-loop
system. To investigate these properties we propose a range
of locally exponentially stable feedback laws defined in the
image space. Analysis and experimental results are presented
that demonstrate the fundamental properties of the closed-loop
system for each result.

II. IMAGE BASED ERROR

In this paper we use an un-normalised first order image
moment along with an inertial goal vector that allows us to
fully decouple the position servo dynamics from the orienta-
tion servo dynamics.

Let A denote the inertial or task space reference frame
and let C denote the camera or body-fixed reference frame.
Let (U, V ) denote the 2D pixel locations of observed points.
Assume that an accurate camera calibration matrix K is
available. A spherical camera geometry with unity radius is
used for the mathematical construction in the sequel. Let p

denote a point on the spherical image plane corresponding to
pixels (U, V ), one has

p =
p̄

|p̄| , with p̄ = K





U

V

f



 . (1)

Let S denote the observed image of a target on the camera im-
age plane. The first order un-normalised moment (or centroid)
is

q :=

∫

p∈S
pdp.

In practice, a common approach is to use point targets rather
than continuous surfaces. Consider a point target consisting of
n points {Pi} ∈ C corresponding to image points {pi}. The
centroid of a target is defined to be

q :=

n
∑

i=1

pi ∈ <3. (2)

In both cases the centroid q is a three-dimensional number.
Thanks to the spherical model, the third entry of the centroid is
non-linearly related to depth of the camera from the observed
target constellation. Using centroid information is an old
technique in visual servo control [5], [1], [15], [9], [17], [3]
even if a classical perspective model was used in all these
works. Among the advantages one has that it is not necessary
to match observed image points with desired features as would
be necessary in classical image based visual servo control [8],
and the calculation of an image centroid is highly robust to
pixel noise and can be easily programmed in real-time.

For a point target comprising a finite number of image
points the kinematics of the image centroid are easily verified
to be [6]

q̇ = −Ω × q − QV, (3)

where V and Ω are respectively the linear and angular velocity
of the camera both expressed in the camera frame, and

Q =

i=n
∑

i=1

πpi

|Pi|
(4)

where πp = (I3 − ppT ) is the projection πp : <3 → TpS
2,

the tangent space of the sphere S2 at the point p ∈ S2 (see
Fig. 1).

Note that Q is a positive definite matrix if there are at least
two different points pi in the image space.
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Fig. 1. Image dynamics for spherical camera geometry.

Let b ∈ A denote the fixed set point for visual feature q.
The feature q is measured relative to the camera frame and not
in the inertial frame, and it is necessary to map the desired set
point into the camera frame before an image based error can
be defined.

Let q∗ := R>b ∈ C, where rotation matrix R between the
camera frame and the inertial frame is assumed to be known.
That is a common assumption when dealing with the control
of underactuated systems such as helicopters [6].

The image based error considered is

δ := q − q∗. (5)

The reason for choosing the image error in this manner is that
it ensures the passivity-like structure of the error kinematics.
That is, as we will see just below, |δ| is independent of the
rotational motion, as already shown in [6].

Since q∗ ∈ C, it inherits dynamics from the motion of the
camera: q̇∗ = −Ω × q∗. Thus, the image error kinematics are

δ̇ = δ × Ω − QV. (6)

This can be written as an interaction matrix

δ̇ =
[

−Q δ×
]

[

V

Ω

]

where δ× is the skew symmetric matrix such that δ×w = δ×w

for any vector w.
Taking the time derivative of |δ| and substituting for (6)

yield:
˙|δ| =

1

|δ|δ
>δ̇ =

1

|δ| (δ
>δ×Ω − δ>QV )

A well-known property of skew symmetric matrix gives
δ>δ× = 0. We finally obtain

˙|δ| = −δ>QV

|δ| (7)



We immediately deduce that |δ| is a function of position only.
Another important property is that the image error expressed

in the task space δ0 := Rδ is a function of position only.
Indeed, since Ṙ = RΩ×, and recalling (6) we obtain:

δ̇0 = R(δ×Ω − QV ) + RΩ×δ = −RQV (8)

The behaviour of δ0 will thus not be perturbed by the camera
rotational motion.

III. IMAGE BASED VISUAL SERVO CONTROL DESIGNS

In this section we propose a range of control design for
the translational motion of the camera based on the visual
feature q considered. Analysis and experimental results are
presented that demonstrate the fundamental properties of the
closed-loop system for each approach. System behaviour in
task space and in image space, and asymptotic stability are
analysed and compared.

A. Experimental conditions.
The visual feature q considered has been designed to control

underactuated systems such as helicopters [7]. However in or-
der to better compare the performance of the proposed control
laws, the experiments have been realized on an holonomic six
degrees of freedom robot. As can be seen on Fig. 2 the target
is a four white marks on the vertices of a planar rectangle (the
target size is 14×10 cm). In all the reported experiments, the
initial and desired positions in 3D are the same. The desired
vector q∗ is chosen such that the camera set point is located
at 0.5 m above the target. Fig. 2 shows the initial and goal
appearance of the target. The end-effector of the robot is
moved in translation according to the control law presented
below. A more classical IBVS control law is used to control
the rotational degrees of freedom. That is, the target centroid
and its orientation in the perspective image plane are used to
control these three degrees of freedom. Finally, we note that
the asymptotic value Q∗ of the matrix Q at the limit point is
Q∗ ≈ diag(7.73, 7.81, 0.226).

(a) (b)

Fig. 2. (a) Initial image, (b) Desired image

B. Stable control law.
This section presents a simple control law designed on

Lyapunov’s second theorem on stability. We obtain a globally
asymptotic stable system, with non acceptable performances.

We define as storage function L:

L =
1

2
|δ|2 (9)

From (7) we obtain immediately:

L̇ = −δ>QV (10)

The matrix Q is not exactly known, however, as already
said, it is known to be positive definite. Thus, a simple choice

V = kδδ, kδ > 0 (11)

is sufficient to stabilise L. Indeed, by substituting the control
input V by its expression in (10), it yields

L̇ = −kδδ
>Qδ

Since Q is a positive definite matrix, classical Lyapunov theory
guarantees that δ converges exponentially to zero.

Note however that the matrix Q is not well-conditioned:
in the general case λmin(Q) << λmax(Q). This means that
convergence rates of the components of δ are not the same and
the component which is affected by the eigenvalue λmin(Q)
is more sensitive to perturbations. By computing matrix Q

at the desired position (Q∗), it follows that λmin is the third
eigenvalue of matrix Q. The third component of q (or δ) is
thus sensitive to perturbations.

The experimental results obtained using control scheme
(11) are reported on Fig. 3. We have chosen to depict δ0 =
Rδ since, as shown in (8), it is independent of the camera
rotational motion, and is thus not perturbed at all by the
additional control law we have used to control these rotational
motion. The camera position ξ measured thanks to the robot
odometry is also depicted.

We can see on Fig. 3.a that the convergence of δ0z is very
slow compared to the convergence of the other components
δ0x and δ0y . Similarly, in task space, we must wait for a large
number of iterations so that the depth component converges
to the desired value, whereas the lateral and longitudinal
components converge in few iterations (Fig. 3.b).

Although this control law ensures global asymptotic stabil-
ity, the task space and image space behaviour are not suitable
since convergence rates of the components are not the same.

The control schemes presented below try to compensate this
sensitivity problem.
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Fig. 3. V = kδ: time evolution of the image feature δ0 = Rδ (a), and of
the pose ξ (b) for a real experiment.



C. Classical IBVS.
The first idea for compensating the poor sensitivity in the

previous control design is to use the inverse interaction matrix,
as in classical IBVS. Indeed the choice V = kQQ−1δ, kQ > 0
yields L̇ = −kQδ>QQ−1δ = −kQδ>δ. This choice guaran-
tees global asymptotic stability and equal convergence rates.
The problem is that the matrix Q−1 is not exactly known,
since it depends on the 3D depths |Pi|. In practice, we do not
estimate the pose and we cannot use this control law.

The idea is then to use the desired interaction matrix Q∗

instead of the current interaction matrix Q, as it is often done
in classical IBVS:

V = k∗Q
∗−1δ, k∗ > 0 (12)

As can be seen on Fig. 4, this control law enables equal
convergence rates of the visual error components (Fig. 4.a),
and equal convergence rates in task space (Fig. 4.b). However,
in practice, this control scheme is adequate only in a quite
small neighborhood of the desired position. Indeed we can
see on Fig. 4.b that the transient behaviour of the depth z in
task space is not suitable.

That is why we propose a new approach in the next section.
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Fig. 4. V = kQ∗−1δ: time evolution of the image feature δ0 = Rδ (a),
and of the pose ξ (b) for a real experiment.

D. Rescaled image feature.
Since the fundamental problem in sensitivity comes from

the nature of the image feature, it is natural to try to determine
an image feature that is as close to the 3D translation between
the camera and the target as possible.

A rough approximation leads to the relationship between
the actual depth z from the geometric center of the target and
the norm |q|:

z ∝ a|q|
√

n2 − |q|2

where n is the number of points observed and a is the
approximate radius of the target.

From Fig. 5, we can deduce that using the centroid q

to servo depth as well as lateral position works well for
manoeuvres where the camera is close to the target (where the
depth sensitivity is approximately linear with |q|). However,
there is a significant loss of sensitivity as the camera moves
away from the target.
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Fig. 5. Plot of the relationship between the depth z and the norm of the
visual feature |q| (with a = 1, n = 2). Note that for |q| < 1.5 then the
sensitivity of the image feature to depth is approximately linear z ≈ b|q|. For
|q| > 1.5 the sensitivity of depth to |q| is significantly reduced.

From this relationship we propose to consider as new image
feature

f = F (|q|)q0 (13)

that incorporates the normalised first order moments q0 = q
|q|

along with the scaled "depth" parameter F (|q|) defined by:

F (|q|) :=
a|q|

√

n2 − |q|2
(14)

• Remark: F (|q|) depends on the radius of the target a. In
fact this parameter acts only as a gain and the properties
of the control laws presented below are preserved as long
as a is positive.

The error δf is defined as follows

δf = f − f∗ = F (|q|)q0 − F (|q∗|)q∗0 (15)

Deriving (13) yields

ḟ =
∂F (|q|)

∂|q|
˙|q|q0 + F (|q|)q̇0

Using (3), we obtain after development :

ḟ = −Ω × f − MQV

where M(q) = ∂F (|q|)
∂|q| q0q

>
0 + F (|q|)

|q|
(

I3 − q0q
>
0

)

.
Since ḟ∗ = −Ω × f∗, we obtain immediately:

δ̇f = −Ω × δf − MQV (16)

Taking the time derivative of the storage function L =
1
2 |δf |2 and substituting for (16) yield:

L̇ = −δ>f M(q)QV (17)

With the new image feature f , we have considered two
control laws.



1) First control law: If we choose for the control law

V = kMMδf , kM > 0 (18)

we obtain using (17) L̇ = −kMδ>f M(q)QM(q)δf . Since Q

is a positive definite matrix and M(q) is a symmetric and non
singular matrix, classical Lyapunov theory guarantees that δf

converges exponentially to zero.
Note that convergence rates of the components of the error

δf are given by the eigenvalues of MQM .
• Remark: Let ξ denote the camera position. Classical

kinematic theory gives ξ̇ = Ω × ξ + V . Since ḟ =
−Ω × f − MQV and f ' −ξ, we deduce MQ ' I3.
Thus we have MQM ' Q−1.

As already said the eigenvalues of matrix Q are not the
same. This means that convergence rates of the components
of the error δf are not the same.

As can be seen on Fig. 6, components x and y converges
very slowly. This is due to the fact that Q−1 is not well-
conditioned. λmin(Q) becomes λmax(Q

−1) which is the third
eigenvalue of matrix Q−1, and affects the z component. This
situation is the opposite of the one exposed in Section III-
B where the z component was affected by λmin(Q) and
converged very slowly. In the present case, the z component is
affected by λmax(Q

∗) and converges very quickly with respect
to the others.
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Fig. 6. V = kMδf : time evolution of the image feature δ0 = Rδ (a), and
of the pose ξ (b) for a real experiment.

Although this control law ensures global asymptotic stabil-
ity, the task space and image space behaviour are not suitable
since, once again, convergence rates of the components are
not the same.

2) Second control law: Since MQ ' I3 an intuitive idea
is to modify the control law such that the convergence rates
are given by the eigenvalues of MQ. We choose

V = kfδf , kf > 0 (19)

Then recalling (17) we obtain for the derivative of the storage
function: L̇ = −kfδ>f M(q)Qδf .

Since MQ ' I3, we have approximately the same conver-
gence rate for the components of the error. Moreover we have
chosen an image feature close to the 3D position: ξ̇ ' −δ̇f .
Thus we should obtain a good task space behaviour with same
convergence rate for the components of the 3D position.

As expected the behaviour is very satisfactory in task space
and in image space (Fig. 7.a and 7.b). The three components

converge at equal rates, the transient behaviour is suitable,
and the desired position is reached in reasonable number of
iterations.
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Fig. 7. V = kδf : time evolution of the image feature δ0 = Rδ (a), and of
the pose ξ (b) for a real experiment.

However the limitation of this control scheme is that we
cannot demonstrate the global asymptotic stability because we
are not sure to have MQ > 0 in all the task space.

The control we propose in the following section combines
the properties we would like to ensure: good 3D behaviour,
good image error convergence, and global asymptotic stability.

E. Stable control law with modified rescaled image feature.
We try to determine a new feature g = G(|q|)q0 such that

ġ = −Ω × g − HQV (20)

Indeed, similar developments as in Section III-D to obtain M

give the relationship between matrix H and function G(|q|):

H(q) =
∂G(|q|)

∂|q| q0q
>
0 +

G(|q|)
|q|

(

I3 − q0q
>
0

)

(21)

Note that the kinematics relationship (20) and consequently the
form of matrix H in (21) have been selected to preserve the
decoupling between the translational and rotational motions.
Ensuring the properties we want (good 3D behaviour, good
image error convergence, and global asymptotic stability) will
allow us to determine H and G(|q|), as explained below.

The error δg is defined as follows

δg = g − g∗ = G(|q|)q0 − G(|q∗|)q∗0
Recalling (20) the dynamic of this error function is given

by: δ̇g = −Ω × δg − HQV .
If we choose as control law V = kgH(q)δg, kg > 0, we

obtain for the derivative of the storage function L = 1
2 |δg|2:

L̇ = −δ>g H(q)QV = −kgδ
>
g H(q)QH(q)δg (22)

Since Q is a positive definite matrix and H(q) is a symmetric
and non singular matrix (see (21)), classical Lyapunov theory
guarantees that δg converges exponentially to zero.

Since the image space convergence rates will be given by
the eigenvalues of HQH , the idea is then to choose H such
that HQH is well-conditioned and as near as I3 as possible.
Since M ' Q−1, an intuitive choice for H is

H =
√

M, (23)



since in that case we have HQH ' I3. Finally G(|q|) and
thus H(q) could be defined from the two equations (21) and
(23).

In practice, the problem above has no solution because the
constraints are too much restrictive. An intuitive idea to relax
this constraints is to introduce in (23) an additional parameter
α(|q|) such that α(|q∗|) = 1. The new form of matrix H is
given by H = α(|q|)

√
M . We obtain after developments

G(|q|) = α(|q|)
√

|q|F (|q|) (24)

with α(|q|) = C(n, |q∗|)D
1

4

|q|

√

n−
√

D

n+
√

D
, where D = n2 − |q|2,

C(n, |q∗|) is chosen such that α(|q∗|) = 1, and F (|q|) is the
scaled position parameter defined by (14).

If we choose as control law

V =
kg

α(|q|)2 H(q)δg, kg > 0 (25)

the derivative of the storage function is then given by

L̇ = −kgδ
>
g

H(q)QH(q)

α(|q|)2 δg (26)

and Lyapunov theory guarantees that δg converges exponen-
tially to zero.

The image space convergence rates are given by the eigen-
values of H(q)QH(q)

α(|q|)2 , and the feature δg has been designed
such that H(q)QH(q) ' α(|q|)2I3 and α(|q∗|)2 = 1. Thus
we should obtain good image space behaviour, and good
task space behaviour (since the feature is designed from the
position scaling G(|q|)).

As expected, in addition to the global asymptotic stability,
this control scheme ensures suitable image space convergence
as can be seen on Fig. 8.a: we have the same convergence rate
for the components of the error. Moreover the link between
task space and image space introduced with the position
scaling G(|q|) is almost linear which ensures a satisfactory
3D behaviour (see Fig. 8.b)
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Fig. 8. V = k
α(|q|)2

H(q)δg : time evolution of the image feature δ0 = Rδ

(a), and of the pose ξ (b) for a real experiment.

IV. CONCLUSION

This paper has provided an analysis of IBVS control for a
class of image features based on first order spherical moments.
A range of control laws defined in image space has been

proposed. Analysis in terms of stability and performance has
been also presented, and has been confirmed by experimental
results.

A simple Lyapunov control design provides global asymp-
totic stability. Then modifications (based on classical IBVS)
allow to improve asymptotic task and image space behaviour.
But even if the control is asymptotically stable, transient
behaviour in task space is not suitable. Thus we design a
new image feature to have a better link between task space
and image space. The last control law we have proposed
using this feature ensures global asymptotic stability and good
performance equally in image space as in task space. An
adequate design of image feature and control law allow thus
to improve drastically the obtained properties with respect to
simple and classical choices.
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