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Statistically robust 2D visual servoing
Andrew I. Comport,Éric Marchand, François Chaumette

Abstract— A fundamental step towards broadening the use
of real world image-based visual servoing is to deal with
the important issue of reliability and robustness. In order to
address this issue, a closed loop control law is proposed that
simultaneously accomplishes a visual servoing task and is robust
to a general class of image processing errors. This is achieved
with the application of widely accepted statistical techniques such
as robust M-estimation and LMedS. Experimental results are
presented which demonstrate visual servoing tasks that resist
severe outlier contamination.

Index Terms— Visual servoing, Robust control law, M-
estimators, LMedS.

I. I NTRODUCTION

V ISUAL servoing is known to be a very efficient method
for positioning and target tracking tasks [1]. However,

its efficiency relies on correspondences between the position
of tracked visual features in the current image and their
position in the desired image which define a set of errors to be
minimized. If these correspondences contain errors then visual
servoing usually fails or converges upon a wrong position.

Overcoming these errors is often achieved by improving
the quality of tracking algorithms [2], [3], [4] and feature
selection methods [5]. This class of methods uses information
measurements which are not directly related to the set of errors
but based on external cues such as color and global motion
estimation. These approaches provide a robust input estimate
to the control loop, and as such treats outlier rejection in the
image processing step, prior to the control step (see Fig. 1a).
Considering redundant features [6] is also a simple way to
improve positionning accuracy and reduce the sensitivity to
noise. However it cannot allow to suppress completely the
final positionning error in the presence of erroneous data.

Alternatively, the method proposed in this paper is based
on a well founded and efficient formalism which directly
uses the feature error vector to compute a statistical measure
of confidenceat the control law level(see Fig. 1b). In
related literature, many different approaches exist to treat
external sources of error. Amongst the robust outlier rejection
algorithms [7], methods in computer vision have included
the Hough Transform, RANSAC [8] and statistical methods
such as Least Median of Squares (LMedS) [9] and M-
estimators [10]. In this paper robust M-estimators [10] are
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employed because their formulation in terms of an Iteratively
Re-weighted Least Square (IRLS) method allows its efficient
integration directly into the control law. Weights that reflect
the confidence in each visual feature location are computed
and used in the control scheme. For the very first iteration
of the control scheme, a more conservative robust estimator
(LMedS [9]) is used and provides a more efficient rejection
process when the errors due to outliers are of the same order
of magnitude as the good measures.

Our approach features three main advantages. With respect
to more classical robust visual servoing techniques that rely
on a robust extraction of the visual features (Figure 1a), it
bypasses intermediary decision steps which usually require
thresholds to be tuned for each specific application. Second,
the confidence in each visual feature relies on the value of all
the other features. Finally, the computed uncertainty values do
not act as a binary weight which completely rejects or accepts
the feature. Each feature may either gain or loose certainty
over time and during the execution of the control law.

Extract features

and reject outliers
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Fig. 1. (a) Traditional outliers rejection, (b) New proposed control law (see
Section II-B for details)

Following an introduction to the method, the robust control
scheme based on the M-estimators is detailed in Section II-B.
In Section II-C, a method to initialize the weights based on
LMedS is presented and finally in Section II-D we show how
to combine both techniques. Experimental results are presented
in Section III.

II. ROBUST V ISUAL SERVOING

A. Overview and motivations

The goal of visual servoing is essentially to minimize the
error∆ between a set of visual featuress(r), that depends of
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the camera poser, and a set of desired visual featuress
∗:

∆ =

k∑

i=1

(
si(r) − s∗i

)2
. (1)

wherek is the number of visual features ins. Considering
that s(r) is computed (from the image) with a sufficient
accuracy is an important assumption. The control law that
performs ∆ minimization is usually handled using a least
square approach [11], [1]. However when the data contains
outliers, such a classical approach is no longer efficient.
A solution to handle this problem is to perform a robust
minimization. M-estimators can be considered as a more
general form of Maximum Likelihood Estimators [10] because
they permit the use of different minimization functions not
necessarily corresponding to normally distributed data. Many
functions have been presented in the literature which allow
uncertain measures to be less likely considered and in some
cases completely rejected [10], [9]. In the following,ρ is
the objective function considered. The metric function to be
minimized is modified to reduce the sensitivity to outliers.The
new error to be minimized is then given by:

∆R =

k∑

i=1

ρ
(
si(r) − s∗i

)
(2)

whereρ(u) is a robust function that grows sub-quadratically
and is monotonically nondecreasing with increasing|u| [10].

B. Robust Control Law

Classical visual servoing control scheme have the following
forms [11], [1]:

v = −λL̂s

+
(s − s

∗) (3)

where v is the camera velocity sent to the low-level robot

controller andL̂s

+
is the pseudo-inverse of a model or an

approximation of the interaction matrix related tos (defined
so thatṡ = Lsv) [11].

To embed a robust minimization in visual servoing, a
modification of the control law is required to allow outlier
rejection. For that, a weight is associated to each feature to
specify a confidence in its location. This leads to the following
new control law (see Fig 1b and [12]):

v = −λ(DL̂s)
+
D

(
s(r) − s

∗
)
, (4)

whereD is a diagonal weighting matrix given by

D = diag(w1, . . . , wk)

As for all image-based visual servoing that use redundant
features, it is unfortunately impossible to demonstrate the
global asymptotic stability of the system. As demonstrated
in [12], it is possible to demonstrate the local asymptotic sta-
bility when the outliers are assumed to be correctly detected,
as soon as a sufficient number of features are not rejected so
that DLs is always of full rank (6 to control the 6 dof of the
robot).

We now describe how the weightswi are computed. In
classical robust estimation algorithm, they are given by [10]:

wi =
ψ(δi/σ)

δi/σ
(5)

whereψ(u) = ∂ρ(u)
∂u

(ψ is the M-estimate and is also called
the influence function),δi is the normalized residue given by

δi = si − s∗i − med(s − s
∗)

where med(s − s
∗) corresponds to the median value taken

across all the residues, and whereσ is a scale that corresponds
to a robust estimate of the standard deviation of the inlier data.
It will be explained in full details later.

Of the various influence functions that exist in the literature
we consider Tukey’s hard re-descending function [10]. Tukey’s
function completely rejects outliers and gives them a zero
weight (see Figure 2). This is of interest in visual servoing
so that detected outliers have no effect on the robot motion.
Its corresponding influence function is given by:

ψ(u) =

{
u(b2 − u2)2 , if |u| ≤ b
0 , else

(6)

where the proportionality factor for Tukey’s function isb =
4.6851 which represents 95% efficiency in the case of Gaus-
sian noise [13].

Typically, if the error is similar for most features and
different for other features, the first ones will be considered as
inliers (δi will be small andwi near one) while the other ones
will be considered as outliers (sinceδi will be large withwi

near zero). For very particular geometrical configuration this
statistical method may not be efficient, but in most cases, it
allows to reject correctly erroneous data.
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Fig. 2. Weight computed using Tukey’s function forσ = 1 versus simple
least-square method (wherew = 1)

As already stated, the scaleσ which appears in (5) is a
robust estimate of the standard deviation of the good data. It
is at the heart of the robustness of the function since, in visual
servoing, this scale can vary dramatically during convergence.
For voting methods and traditional M-estimators, scale has
usually been treated as a tuning constant which can be chosen
manually for a specific application. Alternatively, a robust
statistic can be used to calculate it. One robust statistic,that
allows to reject up to 50% of outliers, is the Median Absolute
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Deviation (MAD) given by:

σ̂ =
1

Φ−1(0.75)
med

i
(|δi − med

j
(δj)|). (7)

whereΦ() is the cumulative normal distribution function and
1

Φ−1(0.75) = 1.48 represents one standard deviation of the nor-
mal distribution and is used to make the MAD consistent with
the normal distribution. To date, a convergence proof for non-
linear regression using the MAD only exists if it is calculated
once as an auxiliary scale estimate due to the median’s lack
of asymptotic properties [13]. However, although convergence
has not yet been proved due to discontinuities introduced by
the median, experiments show that recomputing the MAD at
each iteration gives better results. Other measures of the scale
exist that reject a higher percentage of outliers than the MAD
or simple median (see for example [14] or [15] when small
datasets are considered). These methods do not, however,
address the issue of computational efficiency which is of
paramount importance in real-time frame-rate applications.
The MAD is then a very good tradeoff between outliers
rejection efficiency and computation efficiency.

C. Weights initialization using the LMedS approach

The weightswi are computed from a statistic that depends
only on the errors(r) − s

∗. When this error is large, it is
difficult to detect outliers. Indeed, the error∆i = si + εi −
s∗i (where εi is an “aberration” due to imprecision in data
extraction) may not be statistically significant wrt. the other
errors. If some outliers are not detected as such, corresponding
weights are not equal to zero and the robot trajectory can
be strongly perturbed. Therefore it is important to detect the
features that are likely to be outliers prior the beginning of the
servo process and to initialize adequately the weights. This can
be achieved using the LMedS robust estimator.

The LMedS [9] method estimates the parameters by solving
the non-linear minimization problem:

min
x

med
i=1,...k

r2i

whereri is the residual for each available measure andk is
the number of measures. In our case, we are looking for the
solutionx of the linear system̂Lsx = (s−s

∗), and the residual
ri is given by:

r2i =
(
L̂si

x − (si − s∗i )
)2

where L̂si
, si and s∗i are, respectively, the i-th line of the

interaction matrixL̂s and the i-th component of vectorss
ands

∗.
Unlike M-estimators, the LMedS method cannot be reduced

to a weighted least squares problem. It must be solved by a
search in the space of possible estimates generated from the
data. This space is usually very large (and this is why we do
not use it inside the control law but only for the initialization).

The algorithm described below enables a robust detection of
the outliers within the whole set of features. Givenk features
si, i = 1 . . . k:

1) drawN subsamplessJ , J = 1 . . .N of n independent
visual features. The maximum number of subsamples is

Nmax =
(
k
n

)
wheren is the minimal number of features

that allows to perform a positioning task (6 ≤ n ≤
k). Therefore if k is large,Nmax may be very large
and a Monte Carlo technique can be used to drawN
subsamples (N << Nmax) that ensure a good outlier
detection probability (see [9] for details).

2) for each subsampleJ , we compute the solutionxJ

according to:

xJ = L̂
+
sJ

(sJ − s
∗

J)

3) For eachxJ , we determine the median of square resid-
uals, denotedMJ , with respect to the whole set of
features, that is:

MJ = med
i=1...k

(
L̂si

xJ − (si − s∗i )
)2

4) We retain the valueM∗ that is minimal among allN
MJ ’s. The correspondingxJ could be also of interest
to control the robot, but we prefer to use a weighted
control as described in Section II-B for such purpose
since onlyn features would be considered regardless of
the number of inliers.M∗ will now be used to detect
outliers.

LMedS must be carefully designed to detect and remove
outliers. Following the work of Rousseeuw [9], we assign a
binary weight to each feature according to:

wi =

{
1 if |ri| ≤ 2.5σ̂
0 else

(8)

where σ̂ is (as in (7)) a scale estimate defined by the robust
statistic given by (see [9] for details):

σ̂ = 1.4826(1 + 5/(k − n))
√
M∗ (9)

where 1 + 5/(k − n) is a small-sample correction factor
which makes the scale unbiased when a small dataset is
considered [9], [15], [14].

D. Full weights computation

Though not very complex, the LMedS-based outliers rejec-
tion algorithm requires some processing time that is not yet
compatible with a 25Hz loop. That is why we consider it only
for initialization. If we denotewtukey the weights computed
from (5) andwLMedS the weights obtained from (8), a global
weight can be defined as:

wi = (1 − α)wtukey
i + αwLMedS

i (10)

whereα = 1−exp(−β1‖D(t)(s(t)− s
∗)‖). WhenD(t)(s(t)−

s
∗) is large,α is close to 1 andwLMedS is mainly considered.

However, since LMedS are conservative, features considered
as outliers by this method may be in fact inliers. Considering a
combination between LMedS and M-estimators allows one to
reconsider the LMedS initialization during the servo. Similarly,
if a feature has been considered as an inlier, the M-Estimator
influence increases in order to consider that the feature may
become an outlier during the task execution (note thatα
decreases sinceD(t)(s(t) − s

∗) decreases progressively).
Furthermore, to smooth the weight evolution (and then the

camera trajectory) it is also possible to introduce a memory



418 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO2, APRIL 2006

process. The first possible solution is to smooth the weights
evolution such that :

w′

i(t) = β2wi(t) + (1 − β2)wi(t− 1) (11)

with β2 ∈ [0 : 1] has to be tuned. The second solution is to
smooth in a similar way the median computed in (7). Indeed,
noise in the weights computation is mainly due to instability
in the median computation due to the small number of data.
Such a problem does not arise when the number of datak
increases. In the presented results, the later solution hasbeen
retained and we have setβ2 = 0.2.

III. E XPERIMENTAL RESULTS

The complete implementation of robust visual servoing,
including tracking and control, was carried out on an experi-
mental test-bed involving a CCD camera mounted on the end
effector of a six degrees-of-freedom robot. We have considered
a positioning task. From an initial position, the robot has to
reach a desired position expressed as a desired position of the
object in the image.

A. Visual features and weights computation.

In these experiments visual features are given as a
set of point coordinates extracted from the image. Ifn
points are considered,s is a vector defined ass =
(x1, y1, x2, y2, . . . , xn, yn) where(xi, yi) are the coordinates
of the i − th point. Interaction matrixLs is a 2n× 6 matrix
given byLs = (Ls1, . . . ,Lsn) with:

Lsi =

[ − 1
Zi

0 xi

Zi
xiyi −(1 + x2

i ) yi

0 − 1
Zi

yi

Zi
1 + y2

i −xiyi −xi

]

Weights are computed considering the two residual vectors:

∀k = 1 . . . n,

{
∆2k = xk − xkd

∆2k+1 = yk − ykd

Since weightsw2k andw2k+1 reflect the confidence we have
in the same point, we define elements of the weights matrix
D asD2k,2k = D2k+1,2k+1 = min(w2k, w2k+1).

B. Experiments with dots

In the first experiment a pattern made with twelve white
dots is considered. Tracking such a simple pattern allows to
validate the efficiency of the new control law.

1) Effect of large errors: In this first set of experiments,
four cases are compared:

• [Exp 1] a reference experiment with no error and using
the control law given in (4) withD = I ;

• [Exp 2] an experiment with the same control law (D =
I) but artificial noise has been added in data extraction:
a large error (more than 60 pixels at convergence) was
introduced into the extracted coordinates of two points
which were voluntarily inverted ;

• [Exp 3] this experiment is similar to [Exp 2] but weights
are computed as described by equation (5) using the
Tukey M-estimator ;

• [Exp 4] in this experiment we extend [Exp 3] by ini-
tializing weights using the LMedS method presented in
section II-C ;

As expected, the classical visual servoing converges suc-
cessfully toward the desired position when no error is in-
troduced. A large error on two points [Exp 2] implies the
convergence of the control law toward a position that is not
the desired one (see Table 1 and Fig. 3c). The distance between
theoutlierspoints is of 38 pixels in the initial image and of 68
pixels at the end of the positioning task. An error on the final
coordinates of each inlier point can also be observed. Let us
note that, in some cases, a complete divergence of the control
law can even be observed (which means that the global error
‖s − s

∗‖ along with the camera velocity increases and the
robot moves rapidly toward its joint-limits).

a b

c d

Fig. 3. Result of a positioning task using classical and robust control
law. Image (a) shows the initial camera position, image (b) shows the final
camera position for the reference experiment, image (c) shows the final camera
view when no robust control law is considered (an error may beobserved)
and image (d) shows the final camera view when the robust control law is
considered.

Our new method improves the behavior of the positioning
task. Indeed in the two other experiments where a weighting
matrix is introduced in the control law [Exp 3-4], the camera
reaches its desired position with a very good accuracy despite
the errors introduced in the data.

However when only M-estimation is considered, the outliers
are not detected at the beginning of the task (see weights
evolution on Fig. 4) since their error is not statistically
significant wrt. the other errors. This leads to disturbances in
the camera trajectory which is different from the “reference”
trajectory (see Fig. 5). When the more conservative LMedS-
based weight initialization process is considered, it is possible
to detect outliers before the beginning of the positioning task.

2) Effect of small errors:In the next experiments [Exp 6-7-
8] a small error is added to the extracted position of four dots.
A partial occlusion is made by sticking a rubber on the target,
so that it does occur equally during the whole experiment,
from the initial image to the final image. Since this occlusion
of the dots (around 60%) does not exist in the reference image,
it adds a small error (5 pixels) onto the position of the center
of gravity of these features (see Fig. 6). Even though the
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Position Tx Ty Tz Rx Ry Rz
no error reference [Exp 1] -0,1 -0,1 0,1 -0,01 -0,02 0,07
large no robust [Exp 2] -127,3 -102,9 29,9 -3,14 -15,63 22,70
errors Mest Tukey [Exp 3] -0,1 -0,1 -0,1 -0,02 -0,03 0,12

LMedS+Mest [Exp 4] -0,2 0,1 -0,2 -0,02 -0,07 0,07
small no robust [Exp 6] -35,6 -12,8 3,0 -1,42 -1,43 6,47
errors LMedS+Mest [Exp 7] -0,4 -0,5 -0,3 -0,04 -0,11 0,30

LMedS+Mest (no MAD) [Exp 8] 11,9 6,2 9,7 0,61 1,87 -2,19

TABLE I

POSITIONING ACCURACY: EACH LINE DISPLAYS THE ERROR(IN MM AND DG ) BETWEEN THE DESIRED AND FINAL CAMERA POSITION.
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Fig. 4. Weight evolution for the two points detected as outliers using only
M-estimators.
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Fig. 5. Camera trajectory for large matching errors.

error is quite small, the positioning errors are significantusing
classical visual servoing (see Fig. 6.b and Table I [Exp 6] wrt
[Exp 1]).

Even with the conservative LMedS estimator, the small
errors cannot be detected at the very first iteration. When
the standard deviation of the noise measure (MAD)σ̂ is
recomputed at each iteration of the control law [Exp 7], after
several iterations (that is whenδ has decreased and therefore
when the effects of the outliers are more visible) the outliers
are detected and the positioning task is achieved with a very
good accuracy. However, if the MAD is not recomputed at
each iteration [Exp 8], since the outliers are very difficultto
detect from the first computation of the errorδ, the initial

computed MAD is not adapted and robot converges to a
wrong position. These experiments underlines the fact that
recomputing the MAD at each iteration ensures a far better
behavior of the control law. Although in this experiment, the
outliers were present at the beginning of the positioning task,
this approach is also efficient for transient outliers that appear
during the task, as can be seen in the next experiment.

C. Experiments with SSD trackers.

In the last experiment we have considered far more complex
textured images (see Fig. 7) acquired by a low quality camera
that provides poor quality image. In such condition tracking
features is difficult and is not very reliable. The chosen
algorithm is based on a classical SSD algorithm (Shi-Tomasi-
Kanade). We defined the position to reach with a reference
image (see Fig. 7b). Points of interest are extracted (usingthe
Harris detector) and are matched with similar points, extracted
from the image acquired from the initial camera location, using
the Image-Matching software [16]. Therefore at the beginning
of the task there is no matching error (as detected by the
LMedS at initialization since all the weights are set to 1).

Firstly, it can be noted that with the use of a classical control
law and due to excessive mis-tracking, the camera was not
able to reach the desired position. Fig. 7c shows the difference
between the desired image (Fig. 7b) and the last one acquired
by the camera (Fig. 7d). In Fig. 7d and 7f, red crosses are the
initial points location, blue crosses are their desired locations
while the green crosses are the final points location. Point
trajectories are in red (60 points are tracked). Next the robust
control law was applied. The desired position was obtained
with good accuracy (less that 7 mm in translation) even with
very poor experimental conditions as can be seen from the
difference (see Fig. 7e) between the desired image (Fig. 7b)
and the last one acquired by the camera (see Fig. 7f). Fig. 7f
shows that many points have been detected has outliers during
the task.

IV. CONCLUSION

Previous visual servoing methods have only considered
outlier rejection in the image processing step. In this paper
a novel visual servoing method has been proposed that rejects
errors in feature extraction, tracking and matching at the
control law level. Experimental results show the efficiencyof
the approach for a positioning task on case-study examples
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a b c

Fig. 6. Small errors on many points (a “row” of points is partially hidden): (a) Initial image, (b) Final image with classical control law [Exp 6] (c) Final
image with robust estimation [Exp 7]

a b

c d

e f
final position Tx Ty Tz Rx Ry Rz

Desired -131.2 -17.6 259.2 -0.1 19.2 -0.5
Without robust -257.6 -356.7 295.8 -0.9 -5.1 8.0
Robust -137.3 -16.4 258.6 -0.1 19.2 0.1

i

Fig. 7. Visual servoing based on the tracking of points of interest: (a)
initial image, (b) desired image, (c-d) classical visual servoing control law
(difference image and point trajectory on the final image), (g-h) same with
robust visual servoing, (i) positioning errors (mm and dg)

and on real images. In all cases a great improvement in the
positioning accuracy has been observed wrt. a non robust
control law.
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