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Abstract— Robotized ultrasound examination offers on one
hand more accuracy for the medical diagnostic and on the other
hand a suitable assistance to radiologists. In the literature, very
few researches deal with ultrasound image-based control of a
medical robot holding the ultrasound probe. This paper presents
a new visual servoing approach allowing the automatic guidance
of the ultrasound probe. This technique is based on the modeling
of the coupling between the ultrasound probe and egg shaped
objects. The robotic task consists in reaching a desired image
from an arbitrary initial position. The aim of this task is to
assist the radiologist diagnostic by automatically moving the
ultrasound probe in order to find the ultrasound image view of
a tumour cross-section registered in a previous date. This work
presents simulation results of the proposed ultrasound vision-
based control scheme.

Index Terms— Visual servoing, ultrasound images, medical
robotics.

I. INTRODUCTION

Nowadays, the ultrasound imaging is extensively used in
medicine. This widespread use is due to the non invasive
aspect and the low cost of ultrasound imaging systems. Since
few years, several research works have been led to assist the
ultrasound examination by the use of medical robots. In [1],
a robotic system holding an ultrasound probe is designed.
The robotic task consists in moving the ultrasound probe on
the patient skin along a preset trajectory. The force applied
by the probe to the patient skin is also controlled in order
to improve the imaging quality. Other research teams have
developed robotic systems for tele-echography purpose (e.g.
[2], [3]) which allow the clinicians to perform echographic
diagnostics without being present in the examination room.
In spite of the numerous developments of robotic systems
for ultrasound medical applications, only few robotic systems
involve the visual information provided by the ultrasound
sensor in their control scheme. Indeed, in the previous
mentioned works, the ultrasound probe is only used to acquire
the ultrasound images necessary to the medical diagnostic.
Nevertheless, in [4], the guidance of a robotic system is shared
between an human operator and a vision-based control. This
system allows to compensate the physiological motion of an
artery during probe displacement along an one-dimensional
trajectory. In this work, the ultrasound probe is controlled in
three degrees of freedom (DOF) which are constrained to lie
in the ultrasound observation plane. In [5], the authors present
a robotic system including a motionless ultrasound probe
and a two DOF needle manipulator. An automatic needle
insertion for a percutaneous cholecystostomy is performed

using ultrasound image-based visual servoing. However, in
this work, the actuated needle is constrained to lie in the
ultrasound observation plane.
Recent studies get rid of the above constraint. In [6], a
laparoscopic surgical instrument actuated by a four DOF
medical robot is automatically moved to a 3D location
thanks to a visual servoing using the ultrasound images
provided by a motionless probe. The visual features used in
the control scheme are the images coordinates of the points
corresponding to the intersection of the instrument with the
ultrasound plane. In [7], a visual servoing technique based on
ultrasound images is presented to automatically perform the
calibration of a robotized 3D ultrasound imaging system. In
this work the visual features correspond to the intersection
points of a cross-wire object with the ultrasound plane. The
weakness of these last works is that objects of interest used
to obtain visual information are too restricted (straight lines).
In this paper, we propose to consider more complex shaped
objects. This implies the use of new modeling techniques,
since the ultrasound transducer does not involve any camera
perspective projection. Consequently, classical visual servo
control features [8] can not be used in our study. Our work is
focused on the study of the coupling between the ultrasound
plane and egg shaped objects, but it could be extended to any
3D shape that can be modeled by an algebraic curve. The
choice of the egg shape is motivated by the likeness of this
form to usual tumors.
The paper is organized as follows: the next section introduces
the medical motivation of this study and the robotic task
to perform. In section III, the ultrasound sensor model is
quickly recalled and the geometrical model of the intersection
between the ultrasound plane and an egg shaped object is
presented. A set of useful visual features is chosen from
this modelling and their interaction with the probe motion is
derived (section IV). This interaction allows then to develop a
new vision-based control. After this modeling issue, a method
used to extract the visual features from the ultrasound images
is proposed in section V. Results obtained from simulations
are presented and discussed in section VI.

II. ROBOTIC TASK FOR MEDICAL PURPOSE

In order to assist radiologists, we plan, in further works,
to automatically position the ultrasound probe held by a
medical robot. The medical application will consist in reaching
a tumor cross section having the maximum likelihood with



Fig. 1. (a) Test bed including the ultrasound imaging system, an six DOF
medical robot holding the ultrasound probe (with a force sensor) and an 3D
ultrasound phantom - (b) Ultrasound image of the egg shaped object

a registered one. This will allow the radiologist to analyze
quantitatively the tumor evolution using similar 2D ultrasound
views captured on different dates.
In order to carry on researches related to ultrasound image-
based visual servoing, we dispose of the test bed shown in
fig. 1.a. This experimental setup is composed of an ultrasound
imaging system (see section V), a 3D ultrasound phantom (a
box containing egg shaped objects which are similar to tumors)
and a six DOF medical robot.
In this paper, the robotic task that we propose to accomplish

is described in fig.2. The goal is to automatically move the
probe in order to reach a desired ultrasound image.
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Fig. 2. Robotic task: automatically move the probe to obtain a desired
ultrasound image

As mentioned before, we propose to perform it by the means
of an ultrasound image-based visual servoing.

III. GEOMETRICAL MODELING

The ultrasound image corresponds to the 2D cross-section
of the scene with respect to the observation plane of the
ultrasound probe. Modeling this cross-section consists in es-
tablishing the equation of the contour that can be extracted
from the ultrasound image (see fig 1.b). Let Ro and Rs be
respectively the frames of reference attached to the egg shaped

object and the ultrasound probe (see fig. 2). As illustrated in
fig. 2, the 2D image frame Ri lies in the probe observation
plane defined by the (x,y) plane of Rs. The coordinates of
a point P that belongs to the object and to the observation
plane are defined by:

• oP = [ox, oy, oz]T in the object frame Ro

• sP = [sx, sy, 0]T in the probe frame Rs

• iP = [ix, iy]T in the 2D image frame Ri.

The pixel coordinates iP of the point P expressed in the
image frame are obtained from sP using the following
expression :(

ix
iy

)
=

(
1/Sx 0

0 1/Sy

) (
sx
sy

)
+

(
ixc
iyc

)
(1)

where :

• Sx and Sy are respectively the height and the width of
an image pixel (scaling factors of the image)

• ixc and iyc are the pixel coordinates of the image center.

For convenience, we will assume hereafter that Sx = Sy = 1
and ixc = iyc = 0. Subsequently, the image coordinates of
a point P are equal to those expressed in the probe frame.
Therefore, we will not distinguish (ix, iy) and (sx, sy) in the
sequel of this paper. Of course, the obtained results can be
easily extended to the general case. We will also denote by:

sMo =
(

sRo
sto

0 0 0 1

)
(2)

the homogeneous transformation matrix that represents the
pose between the probe and the object frames. sRo and sto

define respectively the rotational matrix and the translational
vector from the probe frame to the object frame. Given this
matrix, the coordinates of point P expressed in Ro (oP) can
be obtained from sP using the following equation:

oP = sRT
o

sP − sRT
o

sto (3)

and the previous relation can be written as :


ox = f1(sMo,
sx, sy)

oy = f2(sMo,
sx, sy)

oz = f3(sMo,
sx, sy)

(4)

where f1, f2 and f3 are linear functions of sx and sy.

If we choose an adequate object frame, the egg shaped object
can be modeled by the following algebraic equation (obtained
by modifying the ellipsoid equation):

ox2

a2
+

oy2

b2
(1 +

d2 + 2dx

a2
) +

oz2

c2
(1 +

d2 + 2dx

a2
) = 1 (5)

with (a, b, c) the egg parameters that we denote by S.

By substituting (4) in (5), we obtain :∑
i,j≥0,i+j≤3

aij
sxi syj = 0 (6)



with :
 aij




i,j≥0,i+j≤3

=


 fij(S, sMo)




i,j≥0,i+j≤3

(7)

So, the contour representing the intersection between the
ultrasound observation plane and the egg shaped object can
be defined as a third order polynomial.

IV. VISUAL SERVOING

The robotic task can be formulated as a regulation problem.
The goal consists in moving by visual servoing [9] the probe
such as pertinent visual features reaches desired ones. In this
section, a useful set of visual features is first chosen. Then the
interaction matrix, that links the image features variation to the
relative kinematic screw between the probe and the scene, is
determined. In our approach all the parameters required to the
calculus of this matrix will be estimated. Finally an adequate
control law is given.

A. Interaction Matrix

Since we obtain the image of different 3D points whenever
the ultrasound sensor moves, it doesn’t seem obvious to try to
establish an image point interaction matrix. Thus, nice visual
features like image moments [10] can not be simply employed
in the current study. In fact, the interaction matrices of these
primitives are directly derived from a point interaction matrix
by applying the Green theorem [10].
As all the images of the egg represent a curve that can be
modeled by a third order polynomial (6), we propose to take
the set of polynomial coefficients as visual features.
However this representation of the algebraic curve is ambigu-
ous. Indeed, the multiplication of all the coefficients by a non-
null real doesn’t modify the contour shape. To cope with this
problem, the equation (6) is rewritten as :

sx3 +
∑

i,j≥0,i+j≤3,i<3

pij
sxi syj = 0 (8)

with :

s =


 pij




i,j≥0,i+j≤3,i<3

=


 aij

a30




i,j≥0,i+j≤3,i<3

(9)

Here s is the considered visual features vector we retain. Now
let us calculate the interaction matrix Ls such as :

ṡ = Lsv (10)

with v = [v,ω]T the velocity screw of the probe frame
expressed in Rs. v = [vx, vy, vz]T and ω = [ωx, ωy, ωz]T are
respectively the translational and the angular velocity vectors.
In order to establish Ls, the time derivative of the image
features vector s is calculated:

ṡ =


 ṗij




i,j≥0,i+j≤3,i<3

=


 hij(S, sMo,

sṀo)



(11)

where hij are function of S, sMo and sṀo. sṀo is obtained
using the following well known kinematic fundamental laws :{

sṘo = −[ω]×sRo
sṫo = −v + [sto]×ω

(12)

where [ω]× and [sto]× are the skew symmetric matrices
associated respectively with ω and sto.
By employing (12) in (11), we obtain the analytical form of
the interaction matrix such as:

ṡ =


 ṗij




i,j≥0,i+j≤3,i<3

= Ls(S, sMo)v (13)

The condition to compute Ls is that a30 �= 0. For a lake of
place, the matrix components are not given here.

B. Pose estimation

The interaction matrix Ls depends on the egg model S and
the homogeneous matrix sMo. The model parameters of the
egg shaped object S are assumed to be provided. However,
sMo is not known and has to be estimated. It can be written
as :

sMo = sMb
bMo (14)

with :

• sMb the homogeneous matrix representing the pose be-
tween the probe and the robot base frames.

• bMo the constant homogeneous matrix representing the
pose between the robot base and the object frames.

This decomposition allows us to estimate constant parameters
instead of varying ones. Indeed, sMb corresponds to the robot
geometric model provided by the robot controller. Conse-
quently, only the constant matrix bMo has to be estimated.
As we can see in equations (7) and (9), the visual features
vector elements also depend on sMo. These elements can be
expressed in terms of bMo coefficients using (14).
If the rotation of Ro with respect to the robot base frame
Rb is described by the minimal representation θu, we can
represent the homogeneous matrix bMo by a 6 dimension
vector x including a translational vector and a θu angle vector.
Therefore, it can be written :
 pij




i,j≥0,i+j≤3,i<3

=


 lij(S, sMb, x)




i,j≥0,i+j≤3,i<3
(15)

where lij are function of S, sMb and x. As mentioned
previously, S and sMb are provided, so we can rewrite (15)
by:
 pij




i,j≥0,i+j≤3,i<3

=


 mij(x)




i,j≥0,i+j≤3,i<3

(16)

The pij can be directly computed from the ultrasound image.
So, computing the pose consists in solving the previous
nonlinear 9 equations system. As the pose to estimate is
constant, many images can be used to determine x. If we



denote gij = pij − mij , we have to solve the following
nonlinear equations system in order to estimate the pose.

g(x) =


 gi(x)




1≤i≤9N

= �0 (17)

where N is the number of images used in the estimation. This
system can be solved iteratively by finding the solution of the
following least squares problem :

x∗ = argminx{G(x) =
1
2
g(x)gT (x)} (18)

We propose to solve this problem by means of the Levenberg-
Marquardt algorithm. This algorithm implies a damping pa-
rameter that allows us to get the robustness of the steepest
descent method when x is far from x∗ and the faster con-
vergence of the Gauss-Newton technique if x is close to the
solution. We use the strategy proposed in [11] to update the
damping parameter.
In practice, the following estimation process is applied: at
each iteration k of the visual servoing loop, the solution x∗

obtained in the precedent iteration is used as a starting point.
The images acquired in the k−1 and the k iterations are used
to process the estimation. In order to have a total control on
the processing time, the number of iterations is restricted to
10.
Using the proposed algorithm, the interaction matrix can be
fully estimated on-line.

C. Control laws

The vision-based task function approach [12] is adopted to
perform the robotic task. The control problem can be expressed
as a regulation to zero of the following task function [9]:

e = C(s − s∗) (19)

where :
• s is the current visual features vector (9 dimension)

measured from the ultrasound image,
• s∗ is the reference image features vector (9 dimension)

to be reached,
• C is a 6 × 9 combination matrix. A judicious choice of

C is C = L̂s

+

|s=s∗ with L̂s

+

|s=s∗ an approximation of the
pseudo inverse interaction matrix at the desired position
(see [9]).

Generally, the control law is defined such as the task e
decreases exponentially and is given by [9]:

v = −λ(L̂s

+

|s=s∗ L̂s)−1e (20)

where :
• λ is a proportional coefficient involved in the exponential

convergence of e,
• L̂s is an approximation of the current interaction matrix.

The on-line estimation method is presented in IV.B,

• L̂s

+

|s=s∗ is an approximation of the pseudo inverse inter-
action matrix at the desired position.

A second-order minimization technique can also be used [13]
in order to improve the probe trajectory in the 3D space (a
straight line for the translation and a rotation around the axis
of rotation).
The corresponding control law becomes then:

v = −λ

2
(L̂s

+

|s=s∗ (L̂s + L̂s|s=s∗))−1e (21)

V. IMAGE PROCESSING

A. Imaging system

The ultrasound imaging system is composed of a SonoSite
180PLUS (2D imaging system) connected to a broadband 5-
10 MHz curvilinear probe. A Pentium IV PC running under
a Linux operating system is used to grab via a capture board
gray level 576 × 768 images at 25 fps and to perform the
image processing. The figure 8 shows the ultrasound image
of a 2D cross section of the egg shaped object included in
the ultrasound phantom. The first step consists in extracting
a set of contour points from the image. Then the polynomial
coefficients of the curve are estimated from these points by
using a least-squares algorithm.

B. Visual features extraction

For real-time purpose, only a sub-block (which contains the
contour) of the acquired image is processed. In each frame a
first Gaussian filter is applied to the whole defined sub-block
image in order to reduce the speckle noise. Then 20 angular
equidistant radius are projected from a point positioned inside
the contour. This point is the center of mass of the contour
points obtained in the previous image. As the image is still
noisy, a second Gaussian mask is applied to all the pixels along
each radius. Then a mono-directional gradient is computed
from the grey level of the considered points. Finally, for each
radius, the pixel point that presents the highest gradient value
is retained as a contour point of the object image. In order to
estimate the polynomial coefficients from the extracted contour
points, the ”Gradient-one Fitting” [14] algorithm is used.

VI. RESULTS

A. Visual servoing

The results of the proposed control laws (20) and (21) are
described and discussed in this section. Only simulation results
are given but we plan to perform our task with a 6 DOF
medical robot specially designed for 3D ultrasound imaging.
A software simulator was programmed in Matlab environment
from the geometrical modeling described in section III. The
parameters for the egg shaped object are S(a = 2, b = 3, c =
2.5, d = 0.7)(cm). Hereafter, the roll-pitch-yaw representation
is used to describe rotations.
The first task to perform is shown in fig.3. In fact the goal
is to automatically move the ultrasound probe such as the
original contour (colored in red) reaches the desired one (col-
ored in blue). The displacement required from the ultrasound
probe is a translation of [2.0, 0.3, 0.2]T (cm) and a rotation of
[10, 20,−5]T (deg).
In this simulation a comparison between the two control



laws ((20) and (21)) presented in paragraph IV.C is achieved.
This comparison highlights the advantages of the second-order
minimization technique given in (21). In one hand we can
easily see on fig.4.b that the 3D translation movement is almost
a straight line and on the other hand a poor 3D behaviour
is observed when using the classical control law (fig.4.a).
Moreover the use of the efficient control law provides more
decoupled 3D movements which can be seen on the velocity
screw response (fig.4.b). As optimal 3D displacements are
necessary in our future medical application, the second order
minimization based control law is then retained.
The figure 5 shows a second robotic task to perform.
The required displacement is defined by a translation of
[1.6,−0.5,−0.4]T (cm) and a rotation of [10, 20, 15]T (deg).
For this task the homogeneous matrix bMo is defined by
oRb(−10,−10,−10)(deg) and otb = [−1,−1,−1](cm)).
During the simulation we put significant error on the ini-
tial value of bMo (we set oRb(5, 10, 20)(deg) and otb =
[−0.5,−0.5,−0.5](cm)) and the visual servoing is performed
using the on-line estimation described in paragraph IV.B. The
simulation results related to this task are given in fig.6. The
convergence of the task function and the visual features error
are shown in fig.6.a. We can remark that the propsed task
is performed even with the set error. Therefore our visual
servoing is robust to the initial errors on bMo. As seen in
fig.6.b, the on-line estimation of the pose x converges to real
value.
The same task was achieved a second time. But in the
last simulation, we not only set an error on bMo (with
oRb(5, 10, 20)(deg) and otb = [−0.5,−0.5,−0.5](cm)) but
also simulate some noise on the current visual features (the
equivalent of +/-1 pixel assuming that a pixel is a square of
10−2cm × 10−2cm). This additional noise allows us to test
the ”Gradient-one-fitting” algorithm mentionned in paragraph
V.B while processing the visual servoing loop. The results
presented in fig. 7 show the robustness of our visual servoing
to these measurement disturbances.
The obtained simulation results are promising, so the next step
in this work is to validate them experimentally. One important
issue is to study the robustness of the proposed visual servoing
scheme to the model errors. In fact a tumour can only be
approximately fitted by a third order polynomial. One can
use higher order polynomials to have more accurate modeling,
but this will create more local minima. So other geometrical
representations like splines could be considered.

B. Image processing

The ultrasound images segmentation is a well visited field
and many robust algorithms are available in the litterature.
Nevertheless, when real time processing constraints are in
concern the existent methods are generally limited.
That’s why we have propopsed a simple way to extract the nec-
essary visual features. Figure 8 represents the curves obtained
using the contour detection algorithm and the polynomial
fitting technique proposed in section V. The processing time
of each image is about 30 ms. So it can be performed in real-

time for a standard image rate of 25 fps. Moreover we dispose
of 10 ms to compute the control law.
The obtained result is satisfying. However, the segmented im-
ages have a relatively good quality compared to in-vivo ones.
So, the robustness of the proposed segmentation technique has
to be extensively tested.
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Fig. 3. The first task to perform
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(a) Results using the classical control law given in (20)
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(b) Results using the second order minimization technique given in (21)

Fig. 4. Results of the comparison between the classical control law and
second order minimization technique
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Fig. 5. The second task to perform
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Fig. 6. The visual servoing robustness to initial modeling errors when using
the second order minimization technique given in (21)
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Fig. 7. The visual servoing robustness to the image noise
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Fig. 8. Image processing results : the estimated contour on the ultrasound
image

VII. CONCLUSION

In this paper, an original ultrasound image-based visual
servoing was proposed. The considered task consists in
automatically moving the ultrasound probe in order to reach
a desired image from an arbitrary initial position. In our
approach a set of complex visual features was defined and

the corresponding interaction matrix was derived from the
geometrical model of the ultrasound system. All the unknown
parameters necessary to compute this matrix were estimated.
Two adaptive control laws, with an on-line pose estimation
technique, were tested by simulation. A method to extract the
visual features was also given. As the simulation results are
promising, we plan to validate experimentally this ultrasound
image-based visual servoing by using a medical robot. A
hybrid force/vision control scheme will also be developed
in order to control the force necessary to keep the probe
on the patient skin in order to perform robotized medical
applications. One can imagine other medical applications
such as automatically finding the tumor largest section in
order to evaluate the pathology characteristics.
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