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Abstract:

Robustness and accuracy are major issues in real-time object tracking in image sequences.
This paper describes a reliable tracking for markerless objects based on the fusion of visual
cues and on the estimation of a 2D transformation. The parameters of this transformation
are estimated using a non-linear minimization of a unique criterion that integrates informa-
tion on both texture and edges of the tracked object. The proposed tracker is then more
robust and succeeds in conditions where methods based on a single cue fail. The tracker
can deal with polygonal shaped objects but also with those which can be modeled by a
B-spline. In the latter case, NURBS are used to reduce time processing. The efficiency
and the robustness of the proposed method are tested on image sequences as well as during
image-based visual servoing experiments.
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Suivi temps-réel d’objets planaires: approche contour et

texture

Résumé : Le suivi temps-réel d’un objet dans une séquence d’images reste un problème
sensible au niveau de la précision des résultats et de la prise en compte d’occultations.
La méthode décrite dans cet article permet un suivi plus efficace d’objets planaires sans
utiliser de marqueurs spécifiques. Elle se base sur la fusion d’informations visuelles et sur
l’estimation d’une transformation 2D. Les paramètres de cette transformation sont estimés
par une minimisation itérative d’un critère hybride qui intègre à la fois des informations sur
la texture et sur le contour de l’objet suivi. L’algorithme est alors plus robuste et permet
d’achever un suivi correct quand l’utilisation d’un seul type d’information n’aurait pas suffit
à obtenir un résultat satisfaisant. Ce suivi hybride a été développé pour des objets dont
le contour peut être modélisé par des lignes mais aussi par une B-Spline. Dans ce dernier
cas, l’implémentation est réalisée en utilisant les NURBS pour diminuer fortement le temps
de calcul. L’efficacité de ce suivi a été testée sur des séquences d’images mais aussi lors
d’expériences d’asservissement visuel avec une caméra montée sur un robot.

Mots clés : suivi de contour, template matching, estimation du mouvement robuste
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1 Introduction

Object tracking in image sequences is an important issue for research and applications
related to visual servoing and more generally for robot vision. A robust and real-time
spatio-temporal tracking process of visual cues is indeed one of the keys to success of a
visual servoing task. Fiducial markers have been used for a long time since they ensure
reliable and fast tracking. However, as these features are not present in realistic environ-
ments, it is no longer possible to be limited to such techniques. For the time-being, most
of the available tracking techniques can be divided into two main classes: edge-based and
texture-based tracking. The former approach focuses on tracking 2D or 3D features such as
geometrical primitives (points, segments, circles,. . . ), object contours, 3D object, etc. The
latter explicitly uses the texture or the luminance information that represents the tracked
object.

Edge-based trackers rely on the high spatial gradients outlining the contour of the object
or some geometrical features of its pattern (points, lines, circles, distances, splines,...). When
2D tracking is considered, such edge points enable to estimate the geometrical features
parameters whose values define the position of the object [12]. Snakes or active contours
are also based on high gradients and can be used to outline a complex shape [3]. If a 3D
model of the object is available [7, 8], edge-based tracking is closely related to the pose
estimation problem and is therefore suitable for any visual servoing approach. This implicit
3D information improves robustness and performance by being able to predict the hidden
movement of the object and acts to reduce the effects of outlier data in the tracking process.
As only planar structures are considered in this paper, these latter methods that require
a 3D model of the scene are not further detailed. In general, edge-based techniques have
proved to be very effective for applications that require a fast tracking process. On the other
hand, they may fail in the presence of highly textured environments.

Previous approaches rely mainly on the analysis of intensity gradients in the images.
When the scene is too complex (due for example to the presence of high texture or to the lack
of specific object contours), other approaches are required. Another possibility is to directly
consider the brightness values and to perform 2D matching on an area (a part of the image
or in some cases the whole image) without any feature extraction: we then refer to template-
based tracking or motion estimation (according to the problem formulation) [11, 22]. The
goal of such algorithms is to estimate a set of parameters that describes the transformation
or the displacement of the considered area by minimizing a given correlation criterion. It
is possible to solve this problem using efficient minimization techniques that are able to
consider quite complex 2D transformations (such as affine or homographic motions). Such
an approach has been proposed in [11]. In this work, Hager and Belhumeur define an
Jacobian matrix that links the variation of the motion parameters to the variation of the
brightness value. An extension of this approach has been proposed in [16] where the pseudo-
inverse of the Jacobian matrix is learned offline. Whereas in [11] an affine motion estimation
is considered, homography estimation is considered in [2, 4, 16]. Furthermore, [2] uses a
second order minimization based on Lie Algebra in order to speed up the minimisation
process. [20, 21] propose to update the texture template used in such methods to improve
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4 Pressigout & Marchand

the tracking. Let us note that these methods are closely related to classical image motion
estimation algorithms [22]. Such tracking techniques are also fast and reliable when a “good”
texture is present on the tracked object but fail otherwise.

One can notice that these two classes of approaches have complementary advantages
and drawbacks. In order to develop algorithms robust to aberrant measurements and to
potential occlusions, it is interesting to take into account visual information related to these
different types, i.e. exploiting either edge-based or texture-based features to track the object.
Some approaches rely on probabilistic frameworks. In [24], the authors consider a texture-
based approach to find the projected contour of a 3D object. The standard gradient-based
detection is substituted by a method which computes the most probable location of the
texture boundary. Some classical single-cue trackers, such as the condensation algorithm,
have been extended to multi-cue tracking [15]. 2D visual cues fusion using voting has also
been studied in [17] and considered for visual servoing applications. However, this work is
not directly related to edge and texture fusion. Some other methods use sequentially the
edge-based tracker and the texture-based one, in order to combine robustness and accuracy,
as in [1, 6, 18]. However in these cases motion estimation is mostly used to achieve a better
position of the edge (and therefore to ensure the robustness of the tracker). Thus these
latter approches do not take benefit of several advantages from using them simoultaneously,
like dealing with a wider range of objects and larger motions. Let us note that in a different
context (using 3D model), edge and texture information have also been fused for pose
computation in [26] where a model-based approach that considers both 2D-3D matching
against a keyframe and 2D-2D matching temporal matching is proposed.

The method presented in this paper integrates simultaneously both contour and texture.
Our goal was to define a unique state vector that describes both the appearance of the
template as well as its edge boundaries. Considering this state vector, we are able to compute
the parameters of a 2D transformation that minimizes the error between a current multi-cue
template and the displaced reference one. Both edges and texture tracking algorithms can be
seen as optimization algorithms: the hybrid tracking algorithm fuses the motion estimation
of edge locations and texture points in an unique non-linear minimization process. A similar
approach has been proposed in [19]. In this latter work, the template matching algorithm
is handled using the texture-based tracking algorithm proposed in [16] (the Jacobian is
learned offline) whereas ours uses an explicit formulation of the Jacobian [11]. Furthermore,
although the edge and texture points are exploited in a similar manner, the feature selection
is different. In [19], edge and texture points are classified according to the eigen-values of
the signal autocorrelation matrix. Sharp edges of the texture are then likely to be classified
as edge points. As a consequence, the remaining points that are classified as texture points
hold little information since they belong to smooth gradient varying regions. As it will
be further described, we choose another classification that is to our point of view a better
representation of the object: the edge location are evenly sampled along the geometrical
features outlining contours of the object and the texture points are the sharp edges of the
object pattern. As said in [25], better features enables a better tracking.

Irisa



Contour/Texture Approach for Model-Free Tracking 5

The paper is organized as follows. The tracker is presented in Section 2. Subsection 2.1
describes the general framework of the object tracking which is based on a 2D transformation
estimation and the 2D transformation estimation is developped in Subsection 2.2. Since data
are likely to be corrupted with noise, M-estimation is introduced in the minimization process
via an iteratively re-weighted least squares implementation as explained in Subsection 2.3.
Details about the edge-based and texture-based features are given in Subsection 2.4. Finally,
several experiments in Section 3 will illustrate the behavior of the tracker on real image
sequences and also during visual servoing experiment.

2 Hybrid tracking based on 2D transformation estima-

tion

2.1 2D transformation

The tracking of the object is performed by estimating the 2D transformation that best
describes its motion in the image. This transformation can be described by M parameters
stored in a vector θ. The 2D transformation θt of the object between the first image I0 and
image It is such that, if x0 = (x0, y0) is a point in I0 belonging to the object and xθt

its
corresponding point in It, then :

xθt
= Ψθt

(x0) (1)

where Ψθt
is the 2D transformation described by θt (see Figure 1). We note θt the current

values of the parameters and θ̂t their estimated values.

I
t

I
0

Ψθt

Figure 1: Estimating the object motion

Since planar structures are considered, the 2D transformation is an homography. x being
expressed in homogeneous coordinates, one has1,2 :

xh
θt

>
∼




θ0 θ1 θ2
θ3 θ4 θ5
θ6 θ7 θ8


xh

0

>
(2)

1
∼ is the notation for the equality up to scale.

2the superscript h is added when the homogeneous coordinates are used

PI n˚1698



6 Pressigout & Marchand

Therefore the parameters to be estimated are :

θt =
(
θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8

)
(3)

It is not required to choose a specific representation for the homography (for example setting
θ8 to 1) since the method proposed in this paper is invariant to the scale factor.

2.2 Transformation estimation

Let m = (m1, . . . ,mN ) denote the vector of dimension N that stores the value of the N
visual features. mi can be either a brightness value or a distance between a image point and
a 2D geometrical feature, etc. Its value measured in It is noted mt = (m1

t , . . . ,m
N
t ) and its

current value in It estimated according to the 2D transformation estimation θt is denoted
by mθt

= (m1
θt
, . . . ,mN

θt
).

The objective of our method is to estimate the 2D transformation that verifies (1). This
is achieved by minimizing the error between the current value mθt

and its value mt observed
in the current image It :

θ̂t = argmin
θt

‖ mθt
−mt ‖

2 (4)

One has θ̂t = θ̂t−1 + µ̂t, θ̂t−1 being the 2D transformation parameters estimated for the
previous image from the first image. The problem is then to estimate the value µ̂t that
minimizes :

µ̂t = argmin
µt

‖ m
θ̂t−1+µt

−mt ‖
2

︸ ︷︷ ︸
e

(5)

The error e as defined in (5) is regulated to zero by updating µ̂t with an iterative
minimization process based on a first order approximation. For the k-th iteration, one has:

µ̂t(k) = µ̂t(k−1) + δ̂µ(k)

with δ̂µ(k) = −λJ+
mθt (k−1)

e
(6)

where θt(k−1) = θ̂t−1 + µ̂t(k−1). The subscript k that denotes the iteration number is
suppressed from now to simplify the notations. Jmθt

is the Jacobian matrix of m with
respect to the M current 2D transformation parameters θt. It is a N ×M matrix storing
the N Jacobian matrices J

m
i
θt

of each visual feature mi
θt

:

Jmθt
=




J
m

1
θt

. . .
J
m

N
θt


 with J

m
i
θt

=
∂mi

θt

∂θt

(7)

Since the tracking must be as fast as possible, an interesting choice for the Jacobian matrix
is the one computed at the first iteration of the minimization process. Since the 2D trans-
formation is small between images, it is an sufficient solution. In the result section, it will
be shown that even large motions can be handled with this choice.

Irisa



Contour/Texture Approach for Model-Free Tracking 7

2.3 Robust estimation

The minimization process is sensible to outliers that can be due to occlusions or noise.
M-estimators are therefore introduced in (6) to eliminate these data:

δ̂µ = −λ(DJmθt
)+De (8)

where D is a N ×N diagonal matrix such as:

D = diag(w1, ..., wN ) (9)

The N weights wi reflect the confidence in each visual feature mi
θt

and are usually given
by [13]:

wi =
ψ(δi/σ)

δi/σ
(10)

with ψ(u) the influence function and δi the normalized residue given by δi = ∆i −Med(∆)
(where Med(∆) is the standard deviation of the inlier data). Various influence functions
have been studied in the literature. The Tukey’s hard re-descending function is considered
here since it completely rejects outliers.

2.4 Hybrid features

The approach described above is valid for any visual feature m as long as the associated
Jacobian matrix Jm is available. This provides a general framework to fuse different kinds of
visual features. Thus one can take benefit simoultaneously from the advantages of each one
to enlarge the convergence area of the tracker. Both edge-based and texture-based features
are exploited in our hybrid tracker. Each of them has different properties in the tracking
process. The first ones rely on the edge locations extracted in the current image, the second
ones on the brightness values of the pattern.

The edges extraction gives helpful information about the object location in the image
It relies on the current image analysis and therefore is less dependent on the past than
the features based on the brightness value. The use of the edge-based features enables the
current contour Cθt

estimated using parameters θt to lie on the edge locations extracted in
the current image. As it will be further detailed in part 2.4.1, the edge-based features are
point-to-contour distance d⊥

(
Cθt
,xi

t

)
. Using only such features is equivalent to estimate θt

exploiting only the edge information (see Figure 2(a)).
The texture-based features are the brightness values I t(xi

θt
) sampled at the texture

points xi
θt

. The tracking then depends on past information (a reference template). The
details about these features are given in part 2.4.2. Using only such features is equivalent
to estimate θt exploiting only the pattern information (see Figure 2(b)).

When the two kinds of feature are used, exploiting both information extracted in the
current image (edge locations) and information linking the past and the current image

PI n˚1698



8 Pressigout & Marchand

I
t

I
0

Ψθt

(a)

I
t

I
0

Ψθt

(b)

Figure 2: (a) Estimating the object motion using edge information,
(b) Estimating the object motion using texture information

(brightness value) enables an efficient spatio-temporal tracking. If there are Nc edge loca-
tions and Nt texture points, the feature vector m will be of size N = Nc +Nt, storing both
of them :

mθt
= (m1

θt
, ...,mNc

θt
,mNc+1

θt
, ...,mNc+Nt

θt
) (11)

where
(
mi

θt

)
i≤Nc

is the feature associated with the i-th edge location and
(
mi

θt

)
Nc<i=Nc+j

is the feature associated with the j-th texture point, i.e. :

mi
θt

=

{
d⊥

(
Cθt
,xi

t

)
if i ≤ Nc

It(xi
θt

)) if i > Nc
(12)

The error associated with a texture point (brightness value) and the one associated with the
edge locations (point-to-contour distance) are of a different order of magnitude. Therefore a
normalization must be performed to take into account the information given by the different
cues. The weights in (9) are now :

w′
i =

{
wi

maxj=1...Nc (|ej |)
if i ≤ Nc

wi

maxj=Nc+1...N (|ej |)
if i > Nc

(13)

where maxj=1...Nc
(|ej |) (resp. maxj=Nc+1...N (|ej |)) is the maximal absolute value stored

in the point-to-contour distance (resp. brightness difference) vector and wi is the weight
computed by the M-estimators.

The two following subsections are dedicated to the presentation of two kinds of features.

Irisa



Contour/Texture Approach for Model-Free Tracking 9

2.4.1 Edge-based features

the contours of the object and the geometrical features in the pattern of the object are
considered here. These edges are tracked from an image to another one using a search along
the contour normal. The points evenly sampled along the contours used for this low-level
tracking process are called the edge locations and are denoted xi

t in It (see Figure 3).

Ct

C ̂

θt−1

Cθt

at different steps of

the estimation process

x
i
t

x
i
̂

θt−1

x
i−1
t

x
i−1
̂

θt−1

edge extracted in the current image

estimated contour in the previous image

Figure 3: Edge-based tracking

As there is no matching correspondence between the edge locations in It−1 and those in It

(see Figure 3), a basic point-to-point distance minimization may lead to a mistaken motion
estimation. In [10], the Iterative Closest Point algorithm is used: at each iteration of the
minimization process, the point matching is updated before estimating the transformation
parameters. To avoid the matching step in the proposed method, the point-to-contour dis-
tance d⊥

(
Cθt
,xi

t

)
is the feature used in the minimization process (8), where Cθt

= Ψθt
(C

θ̂t−1
)

is the contour estimated from the current parameters of the 2D transformation θt. Referring
to (5), mi

θt
= d⊥

(
Cθt
,xi

t

)
whereas mi

t = d⊥
(
Ct,x

i
t

)
which obviously is equal to zero since xi

t

is located on the contour Ct observed in It (although Ct is never really computed).
For the J

d⊥

(
Cθt

,xi
t

) computation, let us express d⊥
(
Cθt
,xi

t

)
as a function of the current

contour parameters εj (for example lines or curves parameters) that depend on θt. One then
has :

J
d⊥

(
Cθt

,xi
t

) =
∑

j

∂d⊥
(
Cθt
,xi

t

)

∂εj

∂εj
∂θt

(14)

From this latter equation, one can easily obtain the analytical form of the Jacobian matrix.

The computation of d⊥
(
Cθt
,xi

t

)
depends on the geometrical features outlining the con-

tours. The framework has been applied to objects outlined by lines as well as by a NURBS
(Non Uniform Rational B-Spline) [23]. In the case of a polygonal object, let us note l

j
θt

the
lines modeling its contours according to the current 2D transformation parameters. The
distance mθt

is then given by :

mi
θt

= d⊥
(
l
j
θt
,xhi

t

)
= l

j
θt
.xhi

t

>
(15)
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10 Pressigout & Marchand

where xhi
t are the edge locations extracted in image It using homogeneous coordinates and

l
j
θt

= (aj
θt
, bjθt

, cjθt
) the normalized line parameters estimated using the current parameters

of the 2D transformation..
For more complex shapes, NURBS (Non Uniform Rational B-Spline) [23] can be used

rather than B-Spline. NURBS are invariant to perpective transformation thanks to a weight
associated with each control point of the curve. The curve Cθt

(s) = (xθt
(s), yθt

(s))> is then
defined by :

Cθt
(s) :





xθt
(s) =

∑
j

α
j

θt
w

j

θt
Nj(s)∑

j
w

j

θt
Nj(s)

yθt
(s) =

∑
j

β
j

θt
w

j

θt
Nj(s)∑

j
w

j

θt
Nj(s)

(16)

where Q
j
θt

= (αj
θt
, βj

θt
)> are the control points of the curve and Nj(s) are the B-spline basis

functions. wj
θt

is the weight associated with the control point Q
j
θt

. It could be interpreted
as the third homogeneous coordinate of the control point, which enables to deal easily with
homography saving time-consuming least-square estimations [23]. The distance between a
point and the curve is approximated by the distance between the point and the line tangent
to the NURBS. The minimization problem is then similar to the polygonal object case since
a distance between a point and a line is considered. In the result section, both cases are
presented.

If only such edge-based features are used in the minimization process (8), the output of
the tracker is accurate when the tracked object is not textured. However, jittering happens.
Furthermore, it requires a good initialization and it is sensitive to texture/cluttered envi-
ronment.

2.4.2 Texture-based features

the features considered here are the classical one in template-based matching, the brightness
values of the object pattern :

mi
θt

= It(xi
θt

) (17)

where It(xi
θt

) is the current brightness value sub-sampled at the location xi
θt

= Ψθt
(xi

0).

The locations xi are called the texture points. With the constant illumination assumption,
one has mt = m0 where m0 is the template sub-sampled in the first image. To improve the
tracking as it is proposed in [25], xi

0 are Harris points.
The Jacobian matrix of m

j
θt

is [11] :

JIi
θt

=
∂It(xi

θt
)

∂θt

= ∇It(Ψθt
(xi

0))
> ∂Ψθt

(xi
0)

∂θt

(18)

where ∇It(x) is the spatial gradient of It at the location x. From (1), one gets easily
∂Ψθt

(xi
0)/∂θt (see [11] for the complete derivation and speed-up computing).

Irisa



Contour/Texture Approach for Model-Free Tracking 11

If only such texture-based features are used in the minimization process (8), the output
ofthe tracker is robust to large 2D transformation and to occlusions. It is very smooth as
the tracker uses information about the whole object. On the other side, the drawbacks of
such an approach are that it requires a well-textured object and it is sensitive to changes of
illumination.

3 Results

To initialize a tracking, the contour selection is performed by an operator. From there, the
Harris points are selected automatically. They are chosen such that they cover as much as
possible the whole pattern.

The four following subsections present some tracking results on video sequences. Our
hybrid tracker is compared to an edge-based one and a texture-based one [11]. These two
latter ones are similar to our hybrid tracker but using only the kind of feature associated
with. The same amount of data is used for each tracker: if 2n features are tracked using a
single cue tracker, then n of each kind of features are tracked using our hybrid tracker. In
the first image of these tracking experiments, the edge locations and texture points used in
the minimization process are displayed (red crosses for inliers and green ones for outliers).
The object position in each image is given by the current contour in red.

The objects to track in the two first experiments are polygonal shaped and in the two
following ones they outlined by a NURBS.

In the last subsection, a tracking performed during a visual servoing task is presented.

3.1 The Van Gogh “starry night” sequence

In this first sequence (about 45 images), large displacements are considered. Inter-frame
displacement may reach about 14 pixels as shown in Figure 5(a). The initial and final
images for each tracker are shown in Figure 4. The texture-based tracker loses the object
and the edge-based one gives quite good results but some little imprecisions are sometimes
observed (see Figure 5(b)). The only tracker that gives a good position of the object is the
hybrid one. 470 points are tracked in each case. The hybrid tracker runs at an average rate
of 13 Hz.

3.2 The mouse pad sequence

In this experiment (600 images), the background is highly textured. The initial images,
some intermediate and the final ones are shown in Figure 6. As it could be expected with a
textured background, the edge-based tracker is disturbed by the neighbouring contours and
finally loses the object. The texture-based and the hybrid ones succeed to track correctly
the mouse pad.

PI n˚1698



12 Pressigout & Marchand

(a) Texture-based (b) Edge-based (c) Hybrid

Figure 4: Van Gogh sequence: polygonal outline tracking. Initial and final images. The
texture-based tracker fails to track the object. On the contrary, the two other ones succeed.
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Figure 5: Van Gogh sequence: polygonal outline tracking. (a) Maximum motion between
two successive frames. (b) Detail of the last image of Figure 4b: imprecisions are observed
in the object position estimation when using the edge-based tracker.
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Contour/Texture Approach for Model-Free Tracking 13

The difference between the whole initial template and its reprojection in the current
image is displayed for the three trackers in Figure 7. Let us note that although the texture-
based tracker is based on the brightness difference minimization, this brightness difference
on the whole template is smaller in the hybrid case. This means that the hybrid tracker
estimates better the 2D transformation parameters thanks to the complementarity of each
kind of features.

For this sequence, 340 points are tracked in each case. The hybrid tracker runs at an
average rate of 16 Hz.

(a) Texture-based

(b) Edge-based

(c) Hybrid

Figure 6: Mouse pad sequence. Initial images, some intermediate and the final ones. The
edge-based tracker fails to track the object. On the contrary, the two other ones succeed.
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Figure 7: Mouse pad sequence. Difference between the initial template and its reprojection
in the current image for the texture-based tracker (blue), the edge-based tracker (green) and
the hybrid tracker (red)

3.3 The apple sequence

The framework described in this paper has been applied to objects outlined by a NURBS.
Figure 8 is an example of such a tracker. The object to track is a picture of an apple. The
challenge here is to obtain an accurate contour, which is quite difficult due to the background
and the shadow. The only tracker that succeeds to track the object is the hybrid one. As
previously, the selected features are shown in the first image. The red crosses are for the
inliers ones and the green crosses for the features considered as outliers. For this sequence,
450 points are tracked in each case.

3.4 The vase sequence

In this sequence of 410 images, the picture of a vase is tracked. The difficulties here come
from the complex environment and the large occlusions.

The initial, intermediate and final images of the sequence for each tracker are showned
in Figure 9. As the background is highly textured, the edge-based tracker loses the object
during the second occlusion. The two others ones succeeds to track the object. As observed
in the second experiment, although the texture-based tracker and the hybrid one tracked
correctly the object, when comparing the difference between the current template and the
initial one reprojected in the current image (see Figure 10, one can see that the hybrid one
best estimates the 2D transformation parameters. Let note that the two peaks are due to
occlusions.

440 points were used for each tracker. The hybrid one runs at an average rate of 15 Hz.
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(a) Texture-based (b) Edge-based (c) Hybrid

Figure 8: Apple sequence: NURBS tracking. Initial and final images. The hybrid tracker
succeeds to track the object while the two other ones fail.
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(a) Texture-based (b) Edge-based (c) Hybrid

Figure 9: Vase sequence: NURBS tracking. Initial, intermediate and final images. The
edge-based tracker fails to track the object while the two other ones succeed.
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Figure 10: Vase sequence: NURBS tracking. Difference between the initial template and
its reprojection in the current image for the texture-based tracker (blue), the edge-based
tracker (green) and the hybrid tracker (red)

3.5 Visual servoing experiment

The hybrid tracker has been used successfully in image-based visual servoing . Visual ser-
voing aims to control a system dynamically by exploiting the visual information captured
by a visual sensor [9, 14]. The task is specified by a set of desired features associated to
its desired position in the image. The velocity of a camera mounted on the end-effector of a
6 d.o.f robot is controlled such that the error between the desired features and the current
value of the features gets minimized. The features chosen for this experiment are based on
the image moments of the object as defined in [5].

The tracking process is a really important step in a visual servoing task. Using inertial
moment as visual feature requires a very precise estimation of the object localization. If the
tracking lacks of precision, the task may diverge or may be not accurately achieved.

The task is performed four times: once to test the output of each tracker when no occlu-
sion occurs and once again to test the output of the hybrid tracker when multiple occlusions
occur. Let us note that no information about the camera motion is used in the tracking
process. The desired position of the object in the image is given by hand.

The initial and final images of the experiment performed without occlusion are shown in
Figure 11. The desired position of the object in the image is drawn in green.

The visual servoing task was stopped when a part of the object is out of the image. Even
if it may not be a failure, one can see the tracking was bad in the single cue cases. Although
the tracker proposed in this paper is slower than the single-cue trackers, the experiments
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(a) Texture-based (b) Edge-based (c) Hybrid

Figure 11: Visual servoing experiments without occlusion. Green rectangle: desired position
of the object in the image. Initial and final images. Only the hybrid tracker performs a
good tracking. The edge-based tracker completely diverges and the texture-based lacks of
accuracy.

Figure 12: Visual servoing experiment with occlusions. Green rectangle : desired position
of the object in the image. The green crosses are points associated with features considered
as outliers (due to noise, occlusions or shadow) and the red ones are for the inliers ones.
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show that it is better than the single-cue ones. Using only texture information is not accu-
rate enough because of the object scale changes during the experiment. In such cases, the
edge-based features are important to adjust more accurately the object position in the image.

The initial image, some intermediate and the final ones of the experiment performed with
occlusions are shown in Figure 12. The green crosses are points associated with features
considered as outliers (due to noise, occlusions or shadow) and the red ones are for the inlier
ones. Hidden edge locations are represented in blue. One can see that the occluded parts
are well detected.

The output of the hybrid tracker enables a good behavior of the camera and the posi-
tionning task is correctly achieved. In Figure 13(a), the evolution of the camera velocity is
shown, as well as the error between the desired features and the current ones in Figure 13(b).
The camera displacement is smooth and the accuracy of our tracker enables to achieve a
very good positioning. In Figure 14, the desired position and the two final ones (without
and with occlusions) obtained using the hybrid tracker are presented. The positionning is
well achieved in both cases: the error on the camera pose is below 1 degree on rotation and
5 mm on translation when no occlusion occurs and below 1.5 degree on rotation axis and 10
mm on translation when occlusions occur.
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Figure 13: Visual servoing without occlusion using our hybrid tracker. (a) camera velocity,
(b) error in the image of each visual feature

PI n˚1698



20 Pressigout & Marchand

Axes tx ty tz rx ry rz

Desired 403.3 -51.3 300 17.8 0 5.2
pose
Final 408.7 -51.3 299.4 18.4 0 4.7

pose (a)
Final 413.8 -48.9 300.2 18 -0.2 4

pose (b)

Figure 14: Visual servoing using our hybrid tracker: desired and final positions (a) case
without occlusion, (b) case with occlusions (tx, ty and tz are in mm while rx, ry and rz are
in degrees)

4 Conclusion

In this paper a reliable 2D tracker has been presented. It is based on a multi-cue template
matching where an object is represented by the most relevant points of its brightness pattern
and a regular sampling along its contours. By fusing the motion estimation of the edge
locations and the texture points, the proposed approach enables an accurate tracking of
textured objects in a textured background. It relies on a non-linear minimization process.
Furthermore the minimization handles outlier rejection and the tracking is therefore robust
to noise and partial occlusion.

Different experiment situations have been described which point out the robustness of
the tracker to the nature of the tracked object, to the complexity of the environment or to
the motion range. Since this tracker is precise and fast enough, it has been used successfully
in visual servoing experiments where single cue trackers have failed or were not accurate
enough.

The 2D transformation presented in this paper is valid only for planar objects. There does
not exist any 2D transformation that accounts for a generic 3D object motion. Therefore to
handle such cases, we are now interested in hybrid 3D tracking, by fusing pose computation
and motion estimation. Such a tracker should be more robust and smoother than traditional
3D trackers.
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