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Abstract— This paper focuses on the problem of realizing a
plane-to-plane virtual link between a camera attached to the
end-effector of a robot and a planar object. In order to do
the system independent to the object surface appearance, a
structured light emitter is linked to the camera so that 4 laser
pointers are projected onto the object. In a previous paper we
showed that such a system has good performance and nice
characteristics like partial decoupling near the desired state
and robustness against misalignment of the emitter and the
camera [10]. However, no analytical results concerning the global
asymptotic stability of the system were obtained due to the high
complexity of the visual features utilized. In this work we present
a better set of visual features which improves the properties of
the features in [10] and for which it is possible to prove the
global asymptotic stability.

Index Terms— Visual servoing, stability analysis, robustness,
structured light.

I. INTRODUCTION

Image-based eye-in-hand visual servoing [5] is a robot
control technique based on visual features extracted from the
image acquired by a camera attached to the robot end-effector.
The goal consists of moving the robot to a desired position
where the visual features contained in a k-dimensional vector
s become s∗. The velocity of the features ṡ is related to the
relative camera-object motion according to the well-known
equation

ṡ = Lsv (1)

where Ls is the so-called interaction matrix and v =
(Vx, Vy, Vz,Ωx,Ωy,Ωz) is the relative camera-object velocity
(kinematic screw). This linear relationship is usually used to
design a control law whose aim is to cancel the following
vision-based task function

e = C(s− s∗) (2)

where C is a combination matrix chosen as In when n = k,
n being the number of controlled axes (hereafter we assume
this choice). Then, by imposing an exponential decrease of
the task function a simple proportional control law can be
synthesized

v = −λL̂s

+
e (3)

with λ a positive gain and L̂s a model of the interaction matrix
which is usually chosen as its value in the desired state (noted
as L∗s ) [4].

During the last years, an important part of the visual ser-
voing research has been focused on investigating approaches

enlarging the convergence domain, which ensure that the
camera will reach the desired position even if the initial state
is quite far from the desired one [1], [9], [12]. A necessary
condition for this is that the interaction matrix must be non-
singular. A design strategy which can avoid singularities of
Ls is to obtain decoupled visual features, so that each one
only controls one degree of freedom (dof). Even if such
control design seems to be out of reach, there are several
works concerning the problem of partially decoupling dofs.
Hybrid techniques are based on controlling rotational dof in
the cartesian space while the translational ones are controlled
by image information [3], [9]. However, they require partial
pose estimation of the object at each iteration. On the other
hand, some pure image-based techniques have succeed to
decouple rotational dof from translational ones near the
desired state [2], [13]. Concerning the stability analysis, most
part of techniques for which it has been possible to find
analytical conditions are hybrid approaches like in [1], [9] or
more recently, the extended-2D visual servoing [12]. Usually,
the global asymptotic stability analysis of pure image-based
techniques is too complex even in absence of calibration
errors.

Another important research topic in image-based visual
servoing is to improve the camera trajectory in the cartesian
space. It is well known that even if an exponential decrease
on the task function is achieved, it does not imply a suitable
camera trajectory. This is mainly due to strong non-linearities
in the interaction matrix. Important efforts have been done in
order to improve the mapping from the feature space to the
camera velocities [8], [13].

In this paper we propose an image-based visual servoing
approach based on visual features provided by a structured
light emitter attached to the camera. The goal of our task
consists on fixing a plane-to-plane virtual link between the
camera and a planar object. A first advantage of using
structured light is that the image processing is highly sim-
plified and the application becomes independent to the object
appearance. Furthermore, the projected pattern can be chosen
in order to produce a suitable set of visual features in the
image which optimizes the interaction matrix and contributes
to a better 3D trajectory. Some works combining visual
servoing and structured light can be found in [1], [6], [7].
The main contribution of our approach is that the desirable
characteristics previously mentioned are achieved in the ideal
case of a calibrated system. Concretely, the interaction matrix



decouples rotational dof from translational ones in all the
workspace. This nice structure of the interaction matrix allows
the global asymptotic stability to be proven when using
two different control laws based on (3). Furthermore, one
of the control laws generates monotonic camera velocities
producing suitable camera 3D trajectories which can be easily
accomplished by the robot. Moreover, the local asymptotic
stability is also proved in presence of large calibration errors.

The paper is structured as follows. First, in Section II the
architecture and model of our approach is presented. Sec-
ondly, a new set of visual features which achieve decoupling
in all the workspace is presented in Section III. Afterwards,
the global asymptotic stability of the system is developed
in Section IV. In Section V a simple transformation of the
proposed visual features is explained in order to increase the
convergence domain in front of laser-cross misalignment. Sta-
bility analysis taking into account misalignments is presented
in Section VI. Some experiments validating the analytical
results are shown in Section VII. Finally, conclusions are
discussed in Section VIII.

II. SYSTEM MODELLING

Our system is composed of a camera and a structured
light emitter both attached to the end-effector of a robot
manipulator. The structured light emitter is composed of 4
laser pointers and has been modelled assuming that all the
lasers have the same direction and that they are symmetrically
distributed with respect to the center of the laser-cross frame
{L} (see Fig. 1a). In this model the camera frame coincides
with the laser-cross frame as in Fig. 1b. In Section VI we
will see that the system is robust even if these modelling
assumptions are violated.
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Fig. 1. a) Scheme of the structured light emitter. b) Ideal linking of the
camera and the laser-cross.

We face the problem of designing a robust image-based vi-
sual servoing approach to fulfill the plane-to-plane positioning
task. Such a task requires to control only 3 combinations of
degrees of freedom, so that a set of 3 independent visual
features is enough. Then, the task function is defined as
e = s− s∗. Let model the planar object by the equation

n>X +D = 0 (4)

being n = (A,B,C) the unitary normal vector to the plane
and D its distance to the origin of the camera frame. We take
as convention C > 0 which implies that D < 0. Then, the

interaction matrix of the point projected by a laser pointer
attached to the camera is [10]

Lx =
1

Π0

( −AX0
Z

−BX0
Z

−CX0
Z

X0ε1 X0ε2 X0ε3

−AY0
Z

−BY0
Z

−CY0
Z

Y0ε1 Y0ε2 Y0ε3

)
(5)

with

Π0 = n>(X0 − xZ) (6)
(ε1, ε2, ε3) = n× x (7)

where x = (x, y, 1) = (X/Z, Y/Z, 1) are the normalized
coordinates of the projected point, and X0 = (X0, Y0, 0) is
the origin of the laser pointer defined as the intersection of
the laser pointer direction and the image plane Z = 0.

When the laser-cross is perfectly aligned with the camera,
the interaction matrices of the 4 projected points can be
calculated by using the parameters presented in Table I. In our

TABLE I
IDEAL MODEL PARAMETERS

Laser X0 Y0 x y Zi
1 0 L 0 L/Z1 −(BL+D)/C
2 −L 0 −L/Z2 0 (AL−D)/C
3 0 −L 0 −L/Z3 (BL−D)/C
4 L 0 L/Z4 0 −(AL+D)/C

previous work [10], a set of 3 visual features was proposed
based on the area enclosed by the four points in the image and
angles between virtual segments passing through these points.
These features showed a local decoupling of the rotational
dof (Ωx and Ωy) from the depth control (Vz) near the desired
state (A = B = 0, C = 1 and D = −Z∗). However, no
results about global asymptotic stability were reported due
to the high complexity of the general interaction matrix. In
the following section, we present a new set of visual features
which allows global asymptotic stability to be demonstrated.

III. DECOUPLING VISUAL FEATURES FOR THE ENTIRE
WORKSPACE

We look for a set of 3 visual features which decouples as
much as possible the controlled degrees of freedom not only
near the desired position but for any camera-object pose. Let
us take a look at the interaction matrices of y−1

1 , y−1
3 , x−1

2

and x−1
4 , noting that Ls =

(
LVs LΩ

s

)

LV
y−1

1

=
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)
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1
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C K1L
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with

K1 =
A

LC
K2 =

B

LC
K3 =

1

L

It is obvious that simple combinations of such features can
lead to a decoupled system. We have chosen the following
set of visual features

s =
(
y−1

1 − y−1
3 , y−1

1 + y−1
3 , x−1

2 + x−1
4

)
(8)

whose interaction matrix is

Ls =



− 2A
LC − 2B

LC − 2
L − 2BD

LC2
2AD
LC2 0

0 0 0 − 2(1−A2)
C2

2AB
C2

2A
C

0 0 0 − 2AB
C2

2(1−B2)
C2 − 2B

C




(9)
which is always rank 3 unless for degenerated cases. Note
that the rotational part is decoupled from the translational
one for any camera-object pose. To our knowledge, there are
no other image-based approach where the interaction matrix
has such a high order of decoupling for any state. Another
interesting characteristic of this interaction matrix is that it
can be expressed in terms of the task function components. By
using the normalized image points coordinates for the ideal
case (presented in Table I), the components of e = s− s∗ =
(e1, e2, e3) can be expressed as follows

e1 =
−2(D + CZ∗)

LC
, e2 = −2

B

C
, e3 = −2

A

C
(10)

We remember that n is a unitary vector so that
C =

√
1−A2 −B2. Thus, we have a system of 3 equations

and 3 unknowns (A, B and D) whose unique solution is

A = −e3

h
, B = −e2

h
, D = −e1L+ 2Z∗

h
(11)

with h =
√
e2

2 + e2
3 + 4 and therefore C = 2/h. Using these

equivalences, the interaction matrix can be expressed in terms
of the task function components as follows

Ls(e)=




e3
L

e2
L − 2

L −
e2(e1L+2Z∗)

2L
e3(e1L+2Z∗)

2L 0

0 0 0 − 1
2e

2
2 − 2 1

2e2e3 −e3

0 0 0 − 1
2e2e3 2 + 1

2e
2
3 e2




(12)
This allows us to decide which model of interaction matrix
is used in the control law (3). The first choice consists of a
non-constant control law where an estimation of Ls at each
iteration is used. On the other hand, a constant control law
based on L∗s can be used

L̂s = L∗s =




0 0 −2/L 0 0 0
0 0 0 −2 0 0
0 0 0 0 2 0


 (13)

Note that this matrix does not contain any non-linearities nei-
ther depth information. Therefore, each visual feature varies
proportionally to the dof which controls. Thus, if the task
function has a good decreasing, suitable camera velocities
will be produced [8].

IV. STABILITY ANALYSIS OF THE IDEAL SYSTEM

In this section we present the global asymptotic stability
analysis of the ideal system, that is, when the laser-cross is
perfectly aligned with the camera. Given the general control
law in (3) the closed-loop equation describing the dynamics
of the task function in terms of time is

ė(t) = −λLs(e(t))L̂s

+
e(t) (14)

As can be seen, e = 0 is an equilibrium point since when
e = 0 then ė = 0. The uniqueness of the equilibrium point
is demonstrated by showing that the kernel of the product of
matrices M = LsL̂s

+
is empty. In the following subsections

we show that the equilibrium point is unique and globally
asymptotically stable both for control laws.

A. Non-constant control law
The global asymptotic stability of the ideal system is

obvious since Ls can be perfectly estimated at each iteration
so that L̂s = Ls. Then M is the identity, whose kernel is
empty and therefore the equilibrium point is unique, and the
closed-loop equation becomes simply ė(t) = −λe(t) which
ensures a pure exponential decrease of the task function.
However, it is not easy to predict the camera velocities.

B. Constant control law
When using the constant diagonal matrix in (13) the

determinant of M is 1/C2, which is always different to 0
and therefore the equilibrium point is unique. Hereafter, we
solve the differential equation in order to obtain the behavior
of the task function and to demonstrate its convergence to the
equilibrium point. The differential system (14) can be written
as

ė1(t) = − λ

4L

(
e1(t)

(
4L+ e2(t)2L+ e3(t)2L

)

+ 2Z∗
(
e2(t)2 + e3(t)2

))
(15)

ė2(t) = −λ
4

(e2(t)3 + 4e2(t) + e2(t)e3(t)2) (16)

ė3(t) = −λ
4

(e3(t)3 + 4e3(t) + e3(t)e2(t)2) (17)

After some tedious developments we find the solutions [11]

e1(t) =
2e1(0)

a(t)
−

2bZ∗ arctan
(
b(a(t)−2)
b2+2a(t)

)

a(t)L
(18)

e2(t) = 2e2(0)/a(t) (19)
e3(t) = 2e3(0)/a(t) (20)

with

a(t) =
√

(e2
2(0) + e2

3(0)) (exp2λt−1) + 4 exp2λt(21)

b =
√
e2

2(0) + e2
3(0) (22)

Let us start by demonstrating the global asymptotic stability
of the rotational subsystem defined by (16) and (17). The sub-
system formed by e2(t) and e3(t) is globally asymptotically
stable if

lim
t→∞

e2(t) = 0, lim
t→∞

e3(t) = 0 (23)



Both functions clearly tend to 0 when time approaches infinity
since limt→∞ a(t) = ∞. Moreover, it is easy to show that
e2(t) and e3(t) are strictly monotonic functions looking at
their first derivative

ėi(t) = −2λei(0) exp2λt
(
e2

2(0) + e2
3(0) + 4

)

a(t)3
(24)

with i = {2, 3}. Note that the functions e2 and e3 are
monotonic since the sign of their derivatives never changes
and it only depends on the initial conditions. Furthermore,
they are strictly monotonic since their derivative only zeroes
when t → ∞ or when the function at t = 0 is already 0.
Therefore, for any initial condition, e2(t) and e3(t) always
tend towards 0 strictly monotonically.

The global asymptotic stability of the translational subsys-
tem depends on the behavior of e1(t). It is easy to show that
e1(t) converges to 0 for any initial state since

limt→∞
(
b(a(t)−2)
b2+2a(t)

)
= b

2

limt→∞ a(t) =∞

}
⇒ lim

t→∞
e1(t) = 0 (25)

In [11] it is shown that e1(t) is either strictly monotonic or it
has an unique extremum before converging monotonically to
0. In fact, a peak appears in e1(t) when the camera is initially
very close to the desired distance and it is largely rotated with
respect to the object [11].

We remember that given the control law (3) and the
constant diagonal interaction matrix L̂s in (13) a proportional
mapping from e to v is made. Therefore, the rotational
velocities Ωx and Ωy converge strictly monotonically to 0
since e2(t) and e3(t) do. The camera orientation control can
be considered as optimal and also the depth control when
e1(t) is monotonic.

V. MAKING FEATURES ROBUST AGAINST LASER-CROSS
MISALIGNMENT

During the modelling of our system we have assumed
that the laser-cross can be perfectly aligned with the camera
frame. However, this is not always possible because of the
structure of the robot or because the optical center position
is not exactly known. Therefore, it is important to study
the robustness of the visual servoing approach against laser-
cross misalignment with respect to the camera. Unfortunately,
simulations have shown that the set of visual features studied
in the last section is quite unstable against small misalignment
of the laser-cross for both control laws. We present now
a simple method to enlarge the robustness domain of the
features against laser-cross misalignment.

We are interested in defining a corrected set of visual
features s′ which is analytically and experimentally robust
against laser-cross misalignment. Fig. 2 shows the image
point distribution in the desired state when different types
of misalignment take place. As can be seen, a general
misalignment of the laser-cross produces that the polygon
enclosing the 4 points in the desired image appears misaligned
and translated from the image center (indicated in Fig. 2 with
a small cross).
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Fig. 2. Effects of laser-cross misalignment in the desired image. a) Ideal
image. b) The laser-cross is horizontally displaced or rotated around CY . c)
The laser-cross is vertically displaced or rotated around CY . d) Laser-cross
rotated around CZ.

The idea consists of defining an image transformation
which minimizes the misalignment observed in the image.
This image transformation will be constrained as follows:
in absence of laser-cross misalignment, the corrected set of
visual features s′ must be equal to the uncorrected one s.
First of all, we eliminate the misalignment exhibited by the
polygon in Fig. 2d which is produced when the laser-cross is
rotated around the optical axis. Let us define the following
unitary vectors

x∗42 =

[
x∗42

y∗42

]
=

x∗4−x∗2
‖x∗4−x∗2‖

, x∗13 =

[
x∗13

y∗13

]
=

x∗1−x∗3
‖x∗1−x∗3‖

(26)

Then, a simple 2D transformation matrix of the form

T∗=
[
x∗24 x∗13

]−1
=

1

x∗42y
∗
13−x∗13y

∗
42

[
y∗13 −x∗13

−y∗42 x∗42

]
(27)

is defined so that T∗ uses the desired image points in order
to align the unitary vector corresponding to x4 − x2 with
the image axis Xp and the unitary vector corresponding to
x1 − x3 with the image axis Yp. Let us note the transformed
image points as follows

x′′i = T∗xi (28)

Then, it only rests to define a translation vector which is able
to center the polygon in the image. The most intuitive choice
is the center of gravity of the polygon xg . An expression of
the center of gravity ensuring that xg = 0 when the laser-
cross is perfectly aligned is

xg =
1

2

(
x′′1 + x′′3
y′′2 + y′′4

)
(29)

Note that these expressions are 0 in the ideal case according
to the image point coordinates in Table I. Then, the corrected
image points are obtained as follows

x′i = x′′i − xg = T∗xi − xg (30)

And the corrected set of visual features s′ is therefore

s′ =
(
y
′−1
1 − y′−1

3 y
′−1
1 + y

′−1
3 x

′−1
2 + x

′−1
4

)
(31)

We remark that in the ideal case these corrected features are
equal to the uncorrected ones, so that the global asymptotic
stability under ideal conditions is also ensured. In addition to
this, next section demonstrates that the corrected version is
more robust against laser-cross misalignment.



VI. STABILITY IN CASE OF LASER-CROSS MISALIGNMENT

This section analyzes the stability of the system when using
the corrected set of visual features s′ and when the laser-
cross frame {L} is misaligned with respect to the camera
frame {C}. This misaligment can be modelled by using
a frame transformation formed by a rotation CRL and a
translation CTL. By using this frame transformation, all the
parameters in Table I can be recalculated and consequently the
real interaction matrix Ls′ . Finally, the closed-loop equation
describing the dynamics of the task function including the
misalignment can be obtained.

A. Global asymptotic stability

Unfortunately, in presence of misalignment errors the dif-
ferential system (14) becomes strongly coupled so that the
global asymptotic stability analysis is too complex. In order to
simplify the problem we address the local asymptotic stability
analysis around the desired state.

B. Local asymptotic stability

The local asymptotic stability analysis consists of lineariz-
ing the closed-loop equation of the system (14) around the
desired state

ė = −λL∗s′L̂s′
+

e (32)

where L∗s′ is the interaction matrix containing the misalign-
ment parameters and evaluated in the desired state. The
computation of L∗s′ for different relative camera-lasers poses
is presented in [11]. On the other hand, L̂s′ is the interaction
matrix used in the control law which is based on the ideal
model and evaluated in the desired state. Therefore, for any
of the two control laws L̂s′ is the diagonal matrix in (13).

The system is said to be locally asymptotically stable if and
only if the eigenvalues of the matrix M = L∗s′L̂s

+
have all

positive real part. The eigenvalues calculation is too complex
if a whole model of misalignment is applied. We first consider
that the laser-cross is displaced from the camera origin but
it preserves the same orientation that the camera frame, i.e.
CTL = (tx, ty, tz) and CRL = I3. In this case, one can
show that the eigenvalues are all equal to 1 so that the local
asymptotic stability in front of this type of misalignment is
ensured. On the other hand, when the laser-cross is rotated
with respect to any one of the camera axis, the eigenvalues are
always positive so that the local asymptotic stability against
this type of misalignment is also ensured.

The proof that the set of visual features s′ is more robust
against laser-cross misalignment is clear if we develop the
local asymptotic stability analysis of the set s. For s, when
the laser-cross is displaced, the positivity of the eigenvalues
is only ensured when

|tx| < L, |ty| < L (33)

And for the case of a rotated laser-cross, the positivity
of the eigenvalues is neither ensured [11]. Therefore, the
convergence domain in presence of laser-cross misalignment
is actually larger with the corrected set of visual features.

VII. EXPERIMENTAL RESULTS

In this section we present experimental results which show
the performance of the corrected set of visual features s′. The
experimental setup is based on a six dof robot with a 8.5 mm
focal length camera coupled to the end-effector. The laser-
cross was built so that L = 15 cm. The desired position
was defined so that the camera is at 60 cm parallel to a plane
situated in front of the robot.

In the first experiment, the laser-cross was approximately
aligned with the camera frame. The initial position was
defined by moving the robot backwards 45 cm from the
desired position and rotating −20 and 20 degrees around the
X and Y axis, respectively. The initial and desired images of
the experiment are shown in Fig. 3a-b. We first note that the
image point trajectories shown in the desired image follow
straight lines as explained in [10]. On the other hand, since
these trajectories are not perfectly aligned with the image
axis it means that the laser-cross and the camera are slightly
misaligned. When using the non-constant control law, the
task function response is shown in Fig. 3c and the camera
velocities are plotted in Fig. 3d. The task function has not a
pure exponential decrease as expected in the ideal case due
to the calibration errors. Note that the behavior of the camera
velocities is strongly non-monotonic. On the other hand, when
using the constant control law, the analytic model predicts
that both the task function and the camera velocities should
be monotonic under ideal conditions. In Fig. 3e-f the task
function and camera velocities obtained in the experiment
using the constant control law are shown. Note that both
the task function and the camera velocities follow the model
prediction.

The aim of the second experiment was to check the
robustness of the system in front of a large misalignment
of the laser-cross. The laser-cross was displaced about 6 cm
along the X camera axis, rotated about 7◦ around the Z axis
and smaller rotations were applied around X and Y . The large
misalignment is clearly observed in the initial and desired
images shown in Fig. 4a-b. With such a large misalignment,
the non-constant control law has failed for different initial
positions because the robot has reached a joint limit. Actu-
ally, the non-monotonic behavior of the camera velocities is
stronger due to the large calibration errors, producing some
joint motions which are unfeasible. On the other hand, when
using the constant control law the camera reaches the desired
position with no problems. The task function still converges
almost monotonically to 0 as shown in Fig. 4c. Concretely,
the visual feature controlling the depth is unaffected by the
misalignment, while the monotonic decrease of the features
controlling the rotational part is slightly affected. Note that the
camera velocities shown in Fig. 4d still have a nice decrease
to 0 which implies that the camera trajectory is only slightly
affected by the large misalignment of the laser-cross.

VIII. CONCLUSIONS

This paper presents an image-based visual servoing ap-
proach based on structured lighting for plane-to-plane po-
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Fig. 3. Experimental results. Coarse alignment of the laser-cross: a) Initial
camera image including image axis. b) Laser points trajectory from initial to
desired position. c-d) Results using the non-constant control law. e-f) Results
using the constant control law. c) and e) show the task function vs. time (in
seconds). d and f) show the camera velocities vs. time in m/s and rad/s.

sitioning. The paper presents a new set of 3 visual features
which decouples rotational from translational dof in the entire
workspace. Thanks to the decoupled form of the general
interaction matrix, we have succeeded in proving that, in
absence of calibration errors, the system converges to the
desired state for any initial camera-object pose when using
two different control laws. The first control law uses an
estimation of the interaction matrix at each iteration and the
second one uses the interaction matrix evaluated in the desired
state. In both cases we have succeed on demonstrating that
the task function converges monotonically to 0. The paper
also presents a simple feature transformation which enlarges
the convergence domain in presence of large misalignments
between the camera and the laser-cross. Real experiments
have been carried out in order to validate the analytic re-
sults. They clearly show that the task function has a nice
decrease for both control laws even in presence of large
misalignment of the laser-cross. However, the non-constant
control law produces non-monotonic velocities which under
large calibration errors may become unfeasible. On the other
hand, the constant control law has shown better performance
since it provides a linear mapping from the task function space
to the camera velocities so that the latter are also monotonic
even in presence of large calibration errors.
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