
S
everal software packages or toolboxes written in vari-
ous languages have been proposed in order to simu-
late robotic manipulator control. The MATLAB
Robotics Toolbox [8] allows for the simple manipu-
lation of serial-link manipulator; Roboop [14] is a

manipulator simulation package (written in C++). On the
other hand, only a few systems allow a simple speci-
fication and the execution of a robotic task
on a real system. Some systems,
though not always related to
vision-based robotics, have been
described in [9].

Visual servoing is a very
important research area in
robotics. Despite all the
research in this field, it
seems there is no software
environment that allows the
fast prototyping of visual ser-
voing tasks. The main reason is
that it usually requires specific
hardware (the robot and specific
framegrabbers). Consequently, the resulting
applications are not portable and can only adapted to
other environments. Today’s software design allows us to pro-
pose elementary components that can be combined to build
portable high-level applications. Furthermore, the increasing
speed of microprocessors allows the development of real-time
image processing algorithms on a simple workstation. A visual
servoing toolbox for MATLAB/Simulink [3] has been
recently proposed, but it features only simulation capabilities.

Chaumette et al. [6] proposed a “library of canonical
vision-based tasks” for visual servoing that catalogs the most
classical linkages. Toyama and Hager describe in [32] what
such a system should be in the case of stereo visual servoing.
The presented system (called Servomatic) is specified using the

same philosophy as the XVision system [16] and would have
been independent from the robot and the tracking algorithms.
Following these precedents, ViSP (that is, Visual Servoing
Platform), the software environment we present in this article,
features all these capabilities: independence with respect to the
hardware, simplicity, extendibility, and portability. Moreover,

ViSP features a large library of elementary tasks
with various visual features that can be

combined together, an image process-
ing library that allows the tracking

of visual cues at video rate, a
simulator, an interface with
various classical framegrab-
bers, etc. The platform is
implemented in C++
under Linux.

ViSP: Overview and
Major Features

Control Issue
Visual servoing techniques consist of

using the data provided by one or several
cameras in order to control the motion of a robotic

system [13], [19]. A large variety of positioning or target
tracking tasks can be implemented by controlling from one to
all degrees of freedom of the system. Whatever the sensor
configuration, which can vary from one camera mounted on
the robot end effector to several free-standing cameras, a set of
visual features s must be designed from the visual measure-
ments x(t) (s = s(x(t))), allowing control of the desired
degrees of freedom. A control law also must be designed so
that these features s reach a desired value s∗, defining a correct
realization of the task. A desired trajectory s∗(t) can also be
tracked [1], [29]. The control principle is thus to regulate the
error vector s − s∗ to zero.

BY ÉRIC MARCHAND, FABIEN SPINDLER, AND FRANÇOIS CHAUMETTE

ViSP for
Visual Servoing

A Generic Software Platform
with a Wide Class of Robot Control Skills

1070-9932/05/$20.00©2005 IEEEIEEE Robotics & Automation Magazine DECEMBER 200540

IRIS: ©1998 CORBIS CORPORATION,
COMPUTER KEYS © DIGITAL VISION

Control Law
To ensure the convergence of s to its desired value s∗, we
need to model or approximate the interaction matrix Ls ,
which links the time variation of the selected visual features to
the relative camera-object kinematics screw v and is defined
by the classical equation [13].

ṡ = Lsv. (1)

If we want to control the robot using the joint velocities, we have

ṡ = Jsq̇ + ∂s

∂t
, (2)

where Js is the features Jacobian and where ∂s/∂t represents
the variation of s due to potential motion of the object (for an
eye-in-hand system) or to potential motion of the camera (for
an eye-to-hand system). More precisely, if we consider an eye-
in-hand system we have

Js = Ls
c Vn

nJn(q), (3)

where
◆

nJn(q) is the robot Jacobian expressed in the end-
effector frame Rn

◆
c Vn allows the transformation of the velocity screw
between the camera frame Rc and the end-effector
frame Rn. It is given by

c Vn =
[

c Rn [c tn]× c Rn

03
c Rn

]
, (4)

where c Rn and c tn are the rotation and translation
between frames Rc and Rn and [t]× is the skew matrix
related to t. This matrix is constant if the camera is
rigidly linked to the end effector.

Now, if we now consider an eye-to-hand system we have

Js = −Ls
c VF

F Jn(q), (5)

where
◆

F Jn(q) is the robot Jacobian expressed in the robot
reference frame RF

◆
c VF allows the transformation of the velocity screw
between coordinate frames (here the camera frame Rc

and the robot reference frame RF). This matrix is con-
stant if the camera is motionless.

In all cases, a control law that minimizes the error s − s∗ is
then given by

q̇ = −λĴ+s (s − s∗) − ∂̂s

∂t
, (6)

where λ is the proportional coefficient involved in the expo-
nential convergence of the error and ∂̂s/∂t is an estimation of
the object/camera motion. ViSP allows the consideration of
both eye-in-hand and eye-to-hand configurations. Finally, note
that a secondary task e2 can be simply added (as reported in

“Introduce More Complex Image Processing and a Sec-
ondary Task”) when all the degrees of freedom are not con-
strained by the visual task. In that case, we have [13]

q̇ = − λ
(
W+WĴ+s (s − s∗) + (I − W+W)e2

)
+ (I − W+W)

∂e2

∂t
, (7)

where W+ and I − W+W are projection operators that guar-
antee the camera motion due to the secondary task is compat-
ible with the regulation of s to s∗.

If we consider here, without loss of generality, the case of
an eye-in-hand system observing a motionless target we have

ṡ = Lsv, (8)

where v = c Vn
nJn(q) q̇ is the camera velocity. If the low-

level robot controller allows v to be sent as inputs, a simple
control law can be obtained:

v = −λL̂+
s (s − s∗), (9)

where L̂s is a model or an approximation of the interaction
matrix. It can be chosen as [4]

◆ L̂s = L̂s(s, r), where the interaction matrix is comput-
ed at the current position of the visual feature and the
current three-dimensional (3-D) pose (denoted r) if it is
available

◆ L̂s = L̂s(s∗, r∗), where the interaction matrix is com-
puted only once at the desired position of s and r

◆ L̂s = 1/2(L̂s(s, r) + L̂s(s∗, r∗)), as reported in [23].
These possibilities have been integrated in ViSP, but other

possibilities (such as a learning process of the interaction
matrix [18], [20], [21]) are always possible, although they are
not currently integrated in the software. Let us point out that
in this case (7) can be rewritten by [13]

v = − λ
(
W+WL̂+

s (s − s∗) + (I − W+W)e2

)
+ (I − W+W)

∂e2

∂t
. (10)

A Library of Visual Servoing Skills
With a vision sensor providing two-dimensional (2-D) mea-
surements x(t), potential visual features s are numerous.
Two-dimensional data (such as coordinates of feature points
in the image), as well as 3-D data (provided by a localization
algorithm and exploiting the extracted 2-D measurements),
can be considered. It is also possible to combine 2-D and 3-
D visual features to exploit the advantages of each approach
while avoiding their respective drawbacks [24].

A systematic method has been proposed to derive analytical-
ly the interaction matrix of a set of visual features defined upon
geometric primitives [13], [5], [6]. Any kind of visual features
can be considered within the same formalism (coordinates of

DECEMBER 2005 IEEE Robotics & Automation Magazine 41

points, straight line orientation, area, or more generally, image
moments, distance, etc.) Knowing these interaction matrices,
the construction of elementary visual servoing tasks is straight-
forward. As explained in [6] a large library of elementary skills
can be proposed. The current version of ViSP has the following
predefined visual features:

◆ 2-D visual features: 2-D points, 2-D straight lines, 2-D
ellipses

◆ 3-D visual features: 3-D points, 3-D straight lines, θu
where θ and u are the angle and the axis of the rotation
that the camera must realize. These visual features are
useful for 3-D [34] or 2 1/2-D visual servoing [24].

Using these elementary visual features, more complex
tasks can be considered by stacking the elementary interac-
tion matrices.

For example, if we want to build a 2 1/2-D visual servoing task
defined by s = (x, y, log(Z /Z ∗), θu) , where (x, y) are the
coordinates of a 2-D point, Z /Z ∗ is the ratio between the cur-
rent and the desired depth of the point and desired position, and
where θ and u are the angle and the axis of the rotation that the
camera must realize, the resulting interaction matrix is given by

Ls =
[Lp

Lz

Lθu

]
, (11)

where Lp, Lz, and Lθu have the following forms:
Lp =[−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
,

(12)

Lz = [0 0 −1/Z −y x 0] , (13)

Lθu = [03 Lω]

with

Lω = I3 − θ

2
[u]× +

(
1 − sincθ

sinc2 θ
2

)
[u]2×. (14)

All these elementary visual features are available in ViSP or
can be simply built. The complete code that allows this task to

be built is given in “Building a 2 1/2-D
Visual Servoing Task.” This way, more
feature-based tasks can be simply added
to the library.

Vision-Based Tracking
The definition of objects-tracking algo-
rithms in image sequences is an impor-
tant issue for research and applications
related to visual servoing and more gen-
erally for robot vision. A robust extrac-
tion and real-time spatio-temporal
tracking of visual measurements x(t) is
one of the keys to a successful visual ser-
voing task. To consider visual servoing
within large-scale applications, it is now
fundamental to consider natural scenes
without any fiducial markers and with
complex objects in various illumination
conditions. From a historical perspec-
tive, the use of fiducial markers allowed
the validation of theoretical aspects of
visual servoing research. If such features
are still useful to validate new control
laws, it is no longer possible to limit
ourselves to such techniques if the final
objective is the transfer of these tech-
nologies in the industrial world.

Most of the available tracking tech-
niques can be divided into two main
classes: feature-based and model-based
tracking (see Figure 1). The former
approach focuses on tracking 2-D fea-
tures such as geometr ic pr imitives
(points, segments, ellipses) or object

IEEE Robotics & Automation Magazine DECEMBER 200542

Figure 1. Increasingly difficult examples of feature tracking in visual servoing experiments.

(a) (b)

(c) (d)

(e) (f)

contours, regions of interest, etc. The latter explicitly uses a 3-
D model of the tracked objects. This second class of methods
usually provides a more robust solution (for example, it can
cope with partial occlusions of the object). If a 3-D model is
available, tracking is closely related to the pose estimation and
is then suitable for any visual servoing approach. The main
advantage of the 3-D model-based methods is that the knowl-
edge about the scene allows improvement of robustness and
performance by predicting hidden movement of the object
and reducing the effects of outliers. Another approach may
also be considered when the scene is too complex (due to
texture or the lack of a specific object). This approach is not
based on feature extraction and tracking as in the other two
cases but on the analysis of the motion in the image sequence.
Two-dimensional motion computation provides interesting
information related to both camera motion and scene struc-
ture that can be used within a visual servoing process.

Fiducial Markers
Most of articles related to visual servoing consider very basic
image-processing algorithms. Indeed, the basic features con-
sidered in the control law are usually 2-D points’ coordinates.
Therefore, the corresponding object is usually composed of
“white dots on a black background.” Such a choice allows the
use of various real-time algorithms (e.g., [33]). The main
advantage of this choice is that tracking is very robust and very
precise. It is then suitable for all visual servoing control laws
(2-D but also 2 1/2-D and 3-D since the position between
camera and target can easily be obtained
using a pose computation algorithm).
From a practical point of view, such
algorithms are still useful to validate the-
oretical aspects of visual servoing
research or for educational purposes.
Furthermore, in some critical industrial
processes, such a simple approach ensures
the required robustness (see Figure 2).

2-D Contour Tracking
In order to address the problem of 2-D
geometric feature tracking, it is neces-
sary to consider at the low level a
gener ic framework that allows the
local tracking of edge points. From the
set of tracked edges, it is then possible
to perform a robust estimation of fea-
tures parameters using an iteratively
reweighted least-squares method based
on robust M-estimation.

For the first point, few systems allow
real-time capabilities on a simple work-
station. The XVision system is a nice
example of such a system [16]. In our
case, we decided to use the moving
edges (ME) algorithm, which is adapted
to the tracking of parametric curves [2].

It is a local approach that allows the matching of moving
contours. When dealing with low-level image processing, the
contours are sampled at a regular distance. At these sample
points, a one-dimensional search is performed to the normal
of the contour for corresponding edges. An oriented gradient
mask is used to detect the presence of a similar contour. One
of the advantages of this method is that it only searches for
edges that are oriented in the same direction as the parent
contour. This is therefore implemented with convolution
efficiency and leads to real-time performance.

DECEMBER 2005 IEEE Robotics & Automation Magazine 43

Figure 3. Tracking 2-D features using the Moving Edges algorithm within visual ser-
voing experiments: (a) the 3-D reconstruction of a sphere using active vision, (b)
contour following, (c) positioning with a cylinder with joint limits avoidance, and (d)
ellipses tracking (which corresponds to the projection of 3-D straight lines in cata-
dioptric images).

(a) (b)

(c) (d)

760

L
T

R
A

C
M P U

T
IN

O

U
O

Figure 2. Visual servoing using fiducial markers for a grasping
task. The image was acquired by the camera on the front and
the eye-in-hand camera on the back.

Figure 3 shows several results of features tracking (line, circle,
contours) in visual servoing experiments that use the ViSP
library. The proposed tracking approach based on the ME algo-
rithm allows a real-time tracking of geometric features in an
image sequence. It is robust with respect to partial occlusions
and shadows. However, as a local algorithm, its robustness is
limited in complex scenes with a highly textured environment.

Pose Estimation
In particular visual servoing types (most 3-D visual servo-
ing, some 2 1/2-D visual servoing, and the 2-D visual
servoing where the depth information must be recomput-
ed at each iteration), the 3-D pose of the camera with
respect to the scene is required. This pose estimation
process has been widely considered in the computer
vision literature. Purely geometric or numerical and itera-
tive approaches may be considered [11]. Linear approach-
es use a least-squares method to estimate the pose.
Full-scale nonlinear optimization techniques (e.g., [22],
[7], [12]) consist of minimizing the error between the
observation and the forward projection of the model. In
this case, minimization is handled using numerical itera-
tive algorithms such as Newton-Raphson or Levenberg-
Marquardt. The main advantage of these approaches is
their accuracy. In ViSP, various algorithms are available:
mainly, the iterative approach proposed by Dementhon
[11], which is suitable for applications that consider fidu-
cial markers, and a full-scale nonlinear optimization based
on the virtual visual servoing approach [27].

Other Tracking Capabilities
ViSP also features other tracking capabilities that can be con-
sidered within visual servoing experiments [28]. It integrates

◆ an algorithm to estimate a homography and camera dis-
placement from matched coplanar or not coplanar
points [25]

◆ a version of the Hager Belhumeur [15] tracking algo-
rithm that allows the matching of image templates at
video rate.

Though not directly integrated into the software, ViSP
provides a direct interface with third-party tracking or image
processing algorithms. For example, we propose interfaces

◆ with a point-of-interests tracker library. We have con-
sidered a tracker, built on a differential formulation of a
similarity criterion: the well-known Shi-Tomasi-
Kanade algorithm [31].

◆ with a motion estimation algorithm (Motion 2D [30]
available in open source), which has been used for
motion-based visual servoing [10]. Such image process-
ing algorithms can be used to handle very complex
images, as shown on Figure 1(f), and for applications
dealing with complex object tracking, the stabilization
of a camera mounted on a submarine robot, etc.

◆ with a 3-D model-based tracking algorithm based on the
virtual visual servoing approach [7]. In that case, the
image processing is potentially very complex. Indeed,
extracting and tracking reliable contour points in real
environments is a nontrivial issue. In the experiment pre-
sented in Figure 4, images were acquired and processed at

video rate (50 Hz). Tracking is always
performed at below frame rate (usually in
less than 10 ms). All the images given in
Figure 4 depict the current position of the
tracked object in green while its desired
position appears in blue. The considered
object is a video multiplexer. It was
placed in a highly cluttered environment.
Tracking and positioning tasks were cor-
rectly achieved. Multiple temporary and
partial occlusions were made by hand and
various work tools.

Simulation Capabilities
In order to allow fast prototyping of new
control laws, ViSP also provides simula-
tion capabilities. Three-dimensional
geometric primitives can be forward-
projected on the image plane of a virtual
camera, and a virtual robot can then be
controlled. In order to obtain realistic
simulation, it is possible to consider vir-
tual robots with specific Jacobian, joint
limits, etc. Furthermore, noise can be
added to measures computation and
robot motion and in the intrinsic para-
meters of the camera. An advantage of

IEEE Robotics & Automation Magazine DECEMBER 200544

Figure 4. A 2 1/2-D visual servoing experiment in which the tracked object appears
in green and its desired position in blue.

(a) (b)

(c)

this approach with respect to MATLAB simulation (such as
the Visual Servoing Toolbox for MATLAB/Simulink [3] or
the MATLAB Robotics toolbox [8]) is that the written code
can then be used with only minor modifications on a real
robot with real images. Figure 5 shows an example of the sim-
ulation output. The display interface is written using the
Open Inventor library (a C++ layer of OpenGL).

Implementation Issues
As already stated, while developing this software, our goal
was to allow a portable (independent from the hardware),
fast, and reliable prototyping of visual servoing applications.
We also wanted to provide a package that is suitable for real-
time implementation and that allows the performance of
both simulations and real experiments from the same (or at
least very similar) code. Object-oriented programming lan-
guages feature these qualities and, therefore, we chose the
C++ language for the implementation of ViSP.

The first part of this section presents the internal architec-
ture of the system and how it has been implemented. Describ-
ing the full implementation of the software is not in the scope
of this article; we will focus on the notion of extendibility and
portability. The second part describes how to use the available
libraries from an end-user point of view. Let us note that all
the functionalities described in this section have been imple-
mented and are fully operational.

An Overview of the ViSP Architecture
To fulfill the extendibility and portability requirements, we
divided the platform into three different modules: a module

for visual features, visual servoing control laws, and robot con-
troller; a module for image processing, tracking algorithms,
and other computer vision algorithms; and a module for a
visualization library. Figure 6 summarizes the basic software
architecture and module dependencies.

Visual Features and Control Law
Each specific visual feature is derived from a virtual class
vpBaseFeatures . This class mainly defines a few variables
(e.g., a vector that describes the parameters s) and a set of vir-
tual members that are feature dependent (e.g., the way to
compute the interaction matrix Ls or the virtual function that
allows the computation of the visual features s from the mea-
surements in the image x(t)). It is important to note that all
the relations between the control laws library and the visual
features library are done through this class. The virtual func-
tions defined in vpBaseFeatures can be directly used by
the controller vpServo, even if they are not yet defined. The
consequence is that the controller class never knows the
nature of the manipulated features and manipulates only
vectors and matrices. Another consequence is that it is not
necessary to modify the controller library when adding a new
feature. On the other hand, when adding a new feature in

DECEMBER 2005 IEEE Robotics & Automation Magazine 45

Figure 5. A VISP simulation module built using the Open Inventor library: (a) an external view and (b) a view from the camera.

Examiner Viewer

File

Fenetre Simu

X

(a)

Motion X Motion Y

(b)

In order to allow fast prototyping
of new control laws, ViSP also

provides simulation capabilities.

the visual features library, the programmer must define the
number of its components, the way to compute the inter-
action matrix, etc. This is done at a lower level (e.g.,
vpFeaturePoint , vpFeatureLine.). A generic feature
vpGenericFeature allows the user to simply define a new
feature and to easily test its behavior.

Therefore, the controller (provided in the vpServo class)
itself provides a generic interface with the visual features. It

computes the control law that minimizes the error s − s∗ as
described in “ViSP: Overview and Major Features” according
to a list of visual features that defines the task. Various control
laws have been implemented as proposed that consider the
eye-in-hand or eye-to-hand systems and various formulations
of the model of the interaction matrix L̂s. Along with the
interaction matrix Ls, Jacobian Ĵs (which depends on a partic-
ular robot, as discussed below) and its pseudoinverse Ĵ+s and its
null space, the corresponding projection operator (W+ and
I − W+W) is also computed if a secondary task must be
added to the main visual task [see (7)].

Hardware Portability
One of the challenges dealing with a visual servoing package is
that it must deal with multiple robotic platforms as well as with
various framegrabbers. Obviously, the package does not (and
cannot) provide an interface with all possible robots and grab-

bers, but we built it in order to facili-
tate adding new hardware.

A new robot class can be derived
from the vpRobot virtual class.
Although vpRobot defines the pro-
totypes of each member, it does not
provide any interface with a real
robot. The new class that must be
implemented for each new robot
redefines some pure virtual methods
defined in vpRobot, such as robot
motion orders or Jacobian computa-
tion generally specific to a given robot
and inherits all the methods and
attributes of vpRobot (i.e., generic
control issues). Simulated robots are
considered and can be controlled
exactly as real robots (specific Jaco-
bian, inverse and forward kinemat-
ics, joint limits, and singularities can
be modeled and simulated).

Similarly, dealing with framegrab-
bers, a generic vpVideo class has
been developed from which a

IEEE Robotics & Automation Magazine DECEMBER 200546

Figure 6. VISP software architecture.

Visual
Servo

Visual
Features

Tracking
Image Processing
Computer Vision

Image

Trackers

Dots
Forward

Projection

Model-Based
Tracking

Moving
Edges

Pose Homography

Robot
Controller

Simulation

Visualization

Display

Video
Device

External World

Transformation Estimation

Visual Servoing

Figure 7. Typical code for ViSP initialization.

Today’s software design allows us
to propose elementary components
that can be combined to build
portable high-level applications.

particular framegrabber class can be derived. Some vpVideo
pure virtual methods must be defined within this new class
(mainly initialization, acquisition, closing methods). Such an
interface with ViSP is very simple to add since such methods
should already exist on the user’s system. In the current version
of ViSP, some classical framegrabbers are already supported
(IEEE 1394, Video4Linux2, Matrox Meteor, IT ICcomp).
Along with these acquisition capabilities, ViSP provides various
classes to display images using either the X11 system or higher-
level libraries such as OpenGL or QT.

Image Processing and Tracking
A template image class vpImage is provided. It has allowed
the development of the various trackers described in the pre-
vious section. Along with elementary image processing func-
tions, it provides an interface with the images acquisition and
display classes. Dealing with the tracking algorithms, a virtual
class vpTracker is defined and is then derived according to

each particular tracking algorithms. An interface with the
visual features class is provided.

Matrices
Furthermore, C++ provides capabilities to handle matrices
operation using a MATLAB-like syntax. Various numerical
analysis algorithms (e.g., SVD and LU decompositions provid-
ed by the GSL library) are widely used throughout.

DECEMBER 2005 IEEE Robotics & Automation Magazine 47

Figure 8. An example of task definition: positioning with four points.

Figure 9. Typical code for the visual servoing closed loop.

ViSP is a fully functional modular
architecture that allows fast

development of visual servoing
applications.

ViSP from an End-User Point of View
Our other claim was that ViSP is simple to use. We will
descr ibe the software environment, from the
end-user point of view, using three simple examples imple-
mented using ViSP.

Build a Basic 2-D
Visual Servoing Task
Figure 7 defines a typical initialization process that can be used
in most programs using ViSP. These lines define the
framegrabber (here an IEEE 1394 camera), the display system
(here X11R6), a robot (the 6-DOF Afma gantry robot of

IRISA), and a camera (with given calibration parameters) and
finally create a task.

Once these initializations have been achieved, the user is
ready to define the tracker of the visual cues and the visual
servoing task. In this first example, we chose the classical
positioning task with respect to four points, using their x and
y coordinates in the image. Dealing with the tracking
process, in this example we chose to track fiducial markers
(vpDot). The features (vpFeaturePoint) are created from
the tracked markers (vpDot) using member functions of the
vpFeatureBuilder class (in this simple case, it mainly
achieves a pixel-to-meter conversion). The desired values of

the visual feature s∗ are also defined, and
a link between the current value (s[i])
of the visual feature in the image and
the desired value (sd[i]) is then created.
To initialize sd , the buildFrom
method (that allows x and y 2-D coor-
dinates to be set along with the desired
depth Z used in the interaction matrix
computation) is used. Each call to the
addFeature method creates a 2 × 6
interaction matrix which is “stacked” to
the current one. At the end of this
process, an 8 × 6 matrix and the cor-
responding error vector are then creat-
ed. Line 38 specifies that we consider
an eye-in-hand configuration with
velocity computedi n the camera
frame. Furthermore, the interaction
matrix will be computed at the desired
position L̂s = L̂s(s∗, r∗) (Line 39) and
the control law will be computed
using the pseudoinverse of the interac-
tion matrix (other possibilities such as
considering the transpose of Ls also
exist, even if we do not recommend
their use at all). See Figure 8.

IEEE Robotics & Automation Magazine DECEMBER 200548

Figure 10. A pipe-following task: three images acquired during the task with
tracked curve (red) and tangent to the curve (green).

(a) (b)

(c)

Figure 11. Code for a curve-following task: task definition and visual servoing closed loop.

It is then a straightforward task to
write the control loop itself. It features
the image acquisition (Line 43) and
the current visual features computa-
tion from the result of the dots track-
ing (Lines 46 and 47). The task is
then automatically updated. Finally
the control law given in (9) is com-
puted and the result is sent to the
robot controller (see Figure 9).

Introduce More Complex Image
Processing and a Secondary Task
Let us consider now a curve-fol-
lowing task [26]. This problem
can be divided into two subtasks.
The primary task consists of ser-
voing the tangent to the curve
(for instance, maintaining this
tangent horizontal and centered
in the image). The positioning
skill used in this experiment is
therefore a 2-D line-to-2-D line
link and visual features used here
are s = (ρ, θ), where ρ and θ are
the cylindric parameters of the
straight line that is the tangent to
the curve. A secondary task can
be added, and it has been specified as a trajectory tracking
at a given constant velocity Vx in the X direction of the
camera frame (see Figure 10).

Image processing here consists of tracking a spline in the
image sequence and in computing the equation of the tan-
gent to the curve from which we can control the camera

DECEMBER 2005 IEEE Robotics & Automation Magazine 49

Figure 12. An example of pose estimation.

Figure 13. 2 1/2-D visual servoing task as implemented in “Building a 2 1/2-D Visual Ser-
voing Task.”

Grasping, 2 1/2 D Visual Servoing
IRISA-INRIA Rennes, Lagadic Project

Grasping, 2 1/2 D Visual Servoing
IRISA-INRIA Rennes, Lagadic Project

(a) (b)

Grasping, 2 1/2 D Visual Servoing
IRISA-INRIA Rennes, Lagadic Project

(c)

motion. In our software environment, there is no direct rela-
tion between the tangent to a curve (that is, here, the mea-
surement x) and a straight line (that is the visual feature s). As
explained in the previous example, ViSP normally allows the
user to avoid explicit access to the tracker, but the number of
relationships among the visual cues and control features is vir-
tually infinite. Therefore, direct access to the trackers is nec-
essary. In this example, the spline tracker is defined in Line 1,
whereas the visual features (represented by parameters ρ and
θ of a straight line) are associated to this tracker in Line 5.
Then in the control loop, the spline is tracked in each frame,

and the new visual features are computed (Line 14) and
introduced in the task. The secondary task is then considered
in Line 17, where g = −Vx corresponds to ∂e2/∂ t in (7).
For simplicity we have considered that e2 = X − X 0 − Vx t
is always equal to 0. This visual servoing task also features the
use of a secondary task. Vector g is combined with the
primary task using the projection operator I − W+W.

This example allows us to show the importance of the
three libraries (the trackers library, the visual features library,
and the controller library) and how they interact with each
other (see Figure 11).

IEEE Robotics & Automation Magazine DECEMBER 200550

Figure 14. An example of a 2 1/2-D visual servoing task.

Building a 2 1/2-D Visual Servoing Task
We now consider the 2 1/2-D visual servoing task present-
ed in “Control Issue.” The visual features s are defined by
s = (x, y, logZ /Z ∗, θu). To achieve this task, one solution
is to consider an estimation of the 3-D position of the
point and the camera pose with respect to the object. Fig-
ure 12 shows how to get the pose c Mo from a set of seven
points (also see Figure 13). The class vpPose provides
functions that compute the pose from a list of points (the
list was built using the addPoint method). Different
methods can be considered in order to compute the pose.
In this example, it is first initialized using the Dementhon-
Davis [11] approach and improved using a nonlinear mini-
mization method.

Figure 14 shows how to build the 2 1/2-D visual servo-
ing control law. In the first time, we initialized the current
and desired value of the visual features. The basic features
related to a point and to θu are available in the visual fea-
ture library (vpFeaturePoint and vpFeatureThetaU).
However, there is no predefined basic feature for
log(Z /Z ∗). In such a case, it is possible to use a generic
vpGenericFeature feature. The user must then compute,
at each iteration, the state vector, the interaction matrix,
and the error vector. The task is then built by “stacking”
the different visual features using the addFeature method.
Let us note that when dealing with logZ and tu, these
desired values are zero; therefore, we do not have to specify
them (this is implicitly done). Line 68 specifies that the
interaction matrix will be computed at the current position
L̂s = L̂s(s, r). In the closed loop itself, we find the point
tracking that provides the measurement necessary to com-
pute the pose and the position of the 2-D point (Line 83).
The pose is updated from these measurements using a non-
linear minimization method and the displacement θu along
with the depth Z of the point are updated (let us note that
operator ∗ has been overloaded to allow a simple frame
transformation: c P = cMo

oP). The interaction matr ix
related to logZ /Z ∗ must be computed according to (13)
(see Line 97). The global task interaction is then updated
and the control law computed.

In this example, to compute the depth of the reference
point and the rotation that the camera must achieve, we
considered a pose estimation process. Let us note that this
can also be achieved by the estimation of the homography
between the current and the desired image (as explained in
[24]). ViSP also features the ability to estimate such homog-
raphy using various algorithms [17], [24] and to extract from
this homography the camera displacement and some useful
values such as Z /Z ∗.

Conclusions
ViSP is a fully functional modular architecture that allows
fast development of visual servoing applications. The plat-
form takes the form of a library which can be divided in
three main modules: two are dedicated to control issues
(one for control processes and one for canonical vision-

based tasks that contains the most classical linkages) and one
dedicated to real-time tracking. Let us finally note that
ViSP also features a virtual 6-DOF robot that allows the
simulation of visual servoing experiments.

ViSP is developed within the INRIA Lagadic project and
its kernel, available under the Linux system, is distributed
using an open-source license (QPL License). Other modules
such as the 3-D model-based tracker are subject to other
licenses. The ViSP Web site is located at http://
www.irisa.fr/lagadic/visp. The examples given in the article
and many others can be found in the software distribution.

Acknowledgments
The authors acknowledge the contribution of the members of
the Lagadic group: Nicolas Mansard, Anthony Remazeilles,
Andrew Comport, and Muriel Pressigout as well as the former
Ph.D. students (including Ezio Malis and Youcef Mezouar) who
contributed to the creation of this software.

Keywords
Visual servoing, tracking, C++ library, fast prototyping, simulation.

References
[1] F. Berry, P. Martinet, and J. Gallice, “Turning around an unknown

object using visual servoing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., IROS’2000, Takamatsu, Japan, vol. 1, pp. 257–262.

[2] P. Bouthemy, “A maximum likelihood framework for determining mov-
ing edges,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 5, pp.
499–511, May 1989.

[3] E. Cervera, “Visual servoing toolbox for MATLAB/Simulink,” 2003
[Online]. Available: http://vstoolbox.sourceforge.net/

[4] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The Confluence of
Vision and Control, no. 237, (Lecture Notes in Control and Information Sci-
ences), D.J. Kriegman, G. Hager, and A.S. Morse, Eds. New York:
Springer, 1997, pp. 67–78.

[5] F. Chaumette, “Image moments: A general and useful set of features for
visual servoing,” IEEE Trans. Robot., vol. 20, no. 4, pp. 713–723, Aug.
2004.

[6] F. Chaumette, P. Rives, and B. Espiau, “Classification and realization of
the different vision-based tasks,” in Visual Servoing, vol. 7, World Scientific
Ser ies in Robotics and Automated Systems, K. Hashimoto, Ed.
Singapore: 1993, pp. 199–228

[7] A.I. Comport, E. Marchand, and F. Chaumette, “Robust model-based
tracking for robot vision,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., IROS’04, Sendai, Japan, vol. 1, pp. 692–697.

[8] P. Corke, “A robotics toolbox for matlab,” IEEE Robot. Automat. Mag.,
vol. 3, no. 1, pp. 24–32, Sept. 1996.

[9] E. Coste-Manière and B. Espiau, “Special issue on integrated architec-
ture for robot control and programming,” Int. J. Robot. Res., vol. 17, no.
4, Apr. 1998.

[10] A. Crétual and F. Chaumette, “Visual servoing based on image
motion,” Int. J. Robot. Res., vol. 20, no. 11, pp. 857–877, Nov. 2001.

[11] D. Dementhon and L. Davis, “Model-based object pose in 25 lines of
codes,” Int. J. Comput.Vision, vol. 15, no. 1–2, pp. 123–141, 1995.

DECEMBER 2005 IEEE Robotics & Automation Magazine 51

[12] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 7, pp.
932–946, July 2002.

[13] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual ser-
voing in robotics,” IEEE Trans. Robot. Automat., vol. 8, no. 3, pp.
313–326, June 1992.

[14] R. Gourdeau, “Object-oriented programming for robotic manipulator sim-
ulation,” IEEE Robot. Automat. Mag., vol. 4, no. 3, pp. 21–29, Sep. 1997.

[15] G. Hager and P. Belhumeur, “Efficient region tracking with parametric
models of geometry and illumination,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 20, no. 10, pp. 1025–1039, Oct. 1998.

[16] G. Hager and K. Toyama, “The XVision system: A general-purpose
substrate for portable real-time vision applications” Comput. Vision Image
Understanding, vol. 69 no. 1, pp. 23–37, Jan. 1998.

[17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, UK: Cambridge University Press, 2001.

[18] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true jacobian,” in Proc. IEEE/RSJ Int. Conf on Intell. Robots
Syst., IROS’94, Munich, Germany, pp. 186–193.

[19] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, no. 5, pp. 651–670, Oct.
1996.

[20] M. Jägersand, O. Fuentes, and R. Nelson, “Experimental evaluation of
uncalibrated visual servoing,” in Proc. IEEE Int. Conf. Robot. Automat.
ICRA’97, Albuquerque, NM, vol. 3, pp. 2874–2880.

[21] J.-T. Lapresté, F. Jurie, M. Dhome, and F. Chaumette, “An efficient
method to compute the inverse jacobian matrix in visual servoing,” in
Proc. IEEE Int. Conf. Robot. Automat., ICRA’04, New Orleans, LA.

[22] D.G. Lowe, “Fitting parameterized three-dimensional models to
images,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 5, pp.
441–450, May 1991.

[23] E. Malis, “Improving vision-based control using efficient second-order
minimization techniques,” in Proc. IEEE Int. Conf. Robot. Automat.,
ICRA’04, New Orleans, LA, vol. 2, pp. 1843–1848.

[24] E. Malis, F. Chaumette, and S. Boudet, “2 1/2 D visual servoing,”
IEEE Trans. Robot. Automat., vol. 15, no. 2, pp. 238–250, Apr. 1999.

[25] E. Malis, F. Chaumette, and S. Boudet, “2 1/2 D visual servoing with
respect to unknown objects through a new estimation scheme of camera
displacement,” Int. J. Comput. Vision, vol. 37, no. 1, pp. 79–97, June 2000.

[26] E. Marchand, “VISP: A software environment for eye-in-hand visual
servoing,” in Proc. IEEE Int. Conf. Robot. Automat., ICRA’99, Detroit,
MI, vol. 4, pp. 3224–3229.

[27] E. Marchand and F. Chaumette, “Virtual visual servoing: A framework
for real-time augmented reality,” in EUROGRAPHICS’02 Conf. Pro-
ceeding of Computer Graphics Forum, Saarebrücken, Germany, 2002, vol.
21, no. 3, pp. 289–298.

[28] E. Marchand and F. Chaumette, “Feature tracking for visual servoing pur-
poses,” Robot. Auton. Syst., vol. 52, no. 1, pp. 53–70, Jun. 2005.

[29] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Trans. Robot. Automat., vol. 18, no. 4, pp. 534–549, Aug.
2002.

[30] J.-M. Odobez and P. Bouthemy, “Robust multiresolution estimation of
parametric motion models,” J. Visual Commun. Image Representation, vol.
6, no. 4, pp. 348–365, Dec. 1995.

[31] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Int. Conf.
Comput.Vision Pattern Recognition, CVPR’94, Seattle, Washington, pp.
593–600.

[32] K. Toyama, G. Hager, and J. Wang, “Servomatic: A modular system for
robust positioning using stereo visual servoing,” in Proc. Int. Conf. Robot.
Automat., Minneapolis, MN, 1996, pp. 2636–2643.

[33] M. Vincze and C. Weiman, “On optimizing tracking performance for
visual servoing,” in Proc. IEEE Int. Conf. Robot. Automat., ICRA’97,
Albuquerque, NM, 1997, vol. 3, pp. 2856–2861.

[34] W. Wilson, C. Hulls, and G. Bell, “Relative end-effector control using
cartesian position-based visual servoing,” IEEE Trans. Robot. Automat.,
vol. 12, no. 5, pp. 684–696, Oct. 1996.

Éric Marchand received the Ph.D. degree and the “Habilita-
tion à Diriger des Recherches” in computer science from the
University of Rennes 1 in 1996 and 2004, respectively. He
spent one year as a postdoctoral associate in the Artificial
Intelligence Lab of the Department of Computer Science at
Yale University, New Haven, Connecticut. Since 1997, he has
been an INRIA research scientist (“Chargé de recherche”) at
IRISA-INRIA Rennes in the Lagadic project. His research
interests include robotics, perception strategies, visual servoing
and real-time object tracking. He is also interested in the soft-
ware engineering aspects of robot programming. More
recently, he has been studying new application fields for visual
servoing, such as augmented reality and computer animation.

Fabien Spindler graduated from the Engineer National
School (ENI, Brest, France) and received the Specialised
Mastère’s in electronics and aerospace telecom from Sup’Aéro
in Toulouse, France, in 1993. Since November 1994, he has
been working for INRIA as a research engineer. He is in
charge of the material and software management of several
robotic vision cells. He also deals with the development and
industrialization of image-based software for robotic or video
indexing applications and is in charge of the transfer of some
of these to industrial or academic partners.

François Chaumette graduated from the École Nationale
Supérieure de Mécanique, Nantes, France, in 1987. He
received the Ph.D. degree in computer science from the
University of Rennes in 1990. Since 1990, he has been with
IRISA/INRIA where he is now senior research scientist and
head of the Lagadic group. His research interests include
robotics and computer vision, especially visual servoing and
active perception. Chaumette received the AFCET/CNRS
Prize for the best French thesis in automatic control in 1991.
He also received with Ezio Malis the 2002 King-Sun Fu
Memorial Best IEEE Transactions on Robotics and Automation
Paper Award. He is currently associate editor of IEEE Trans-
actions on Robotics.

Address for Correspondence: Éric Marchand, IRISA-INRIA
Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France.
E-mail: Eric.Marchand@irisa.fr.

IEEE Robotics & Automation Magazine DECEMBER 200552

