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Abstract—In this paper, we present a new solution to laparoscopic manipulation based on force-
feedback control. This method allows us to both explicitely control the forces applied to the patient
through the trocar and to precisely control the position of the surgical instrument. It does not require
any geometrical model of the operative environment nor any fine robot base placement prior to
the instrument insertion. Different adaptive control strategies involving different kinds of sensory
equipments are proposed. These strategies are experimentally validated on a laboratory apparatus.
An experiment is also presented where a laparoscope held by the robot’s arm tracks a target through
visual servoing.
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1. INTRODUCTION

Over the past decade, laparoscopic surgery has been the object of important research
activity in the robotics community. In this application, the robot system has to
manipulate a surgical instrument introduced inside the patient’s abdomen through a
trocar placed at an incision point. Usually, this trocar is kinematically modeled as
a 2-translational-d.o.f. constraint. Thus, the manipulation can be formulated as a
4-d.o.f. problem. Two different kinds of robotic systems have been developed and
are now available for clinical use.

One system is the Intuitive Surgical da Vinci system that exploits a 4-d.o.f. robotic
device, exhibiting a fixed remote center of rotation placed at the trocar ‘center’ [1, 2]
(see Fig. 1a). Such a system suffers from several limitations. First, prior to the
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Figure 1. (a) Remote center of rotation. (b) Passive wrist.

insertion of the instrument, the robot base has to be finely placed so that the remote
center of rotation precisely fits with the trocar center. Also, an additional 6-d.o.f.
mechanism is required for the robot base placement, which drastically increases the
overall system complexity. In the environment of a surgical room, this may involve
a fastidious process. Note that this process may have to be run several times in the
same surgical operation. Indeed, in a complex surgical procedure, several trocars are
placed in the patient’s abdomen and the surgeon needs to use different entry points
during the operation, which requires the robot base to be moved. Finally, there is
no way of limiting the forces applied to the patient: in the case of a displacement of
the trocar, due to motion of the patient, the forces applied to the trocar may increase
without any control.

The second strategy for laparoscopic manipulation, proposed by Computer Mo-
tion Inc. in the Zeus system, consists of using a 6-d.o.f. device, only four of them
being actuated [3]. The 2 free d.o.f. are placed in the robot wrist, so that the instru-
ment naturally rotates around the trocar when the wrist center is moved at a given
location by the three first joints of the robot (see Fig. 1b). This allows us to signifi-
cantly simplify the robot placement process prior to the operation. Indeed, the robot
can be placed independently from the trocar locations in the patient abdomen. The
robot can also access, from the same base placement, several entry points. Further-
more, a displacement of the trocar due to possible motion of the patient does not
produce any forces on the trocar. However, this system also suffers from practical
limitations, due to the fact that the 2-d.o.f. constraint is only rough approximation
of the kinematics of the trocar–instrument link. For example, the robot often has to
manipulate a thin instrument (e.g. 5 mm diameter) through a relatively large trocar
(e.g. 15–20 mm). Indeed, the choice of the trocar diameter is global for the whole
operation and corresponds to the largest instrument that has to be used in the cor-
responding entry point. Thus, backlash may appear between the instrument and the
trocar. Combined with the free d.o.f. of the robot, this may lead to uncontrolled
motions of the instrument and a lack of precision for the surgeon that complicates
the manipulation. Furthermore, when the instrument exerts forces to the organs,
a balancing force is applied by the instrument to the trocar, which is not desirable.
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Figure 2. Live experiments of automatic vision-based control for laparoscopic surgery using the Zeus
system.

This problem is crucial in research that we are developing in cooperation with
IRCAD (Institut de Recherche sur le Cancer de l’Apprareil Digestif, Strasbourg,
France) of Professor Marescaux. In this research (cf., Ref. [4]), visual servoing is
used to control the motion of the instrument from the laparoscope image (see Fig.
2). With such an automatic control of the surgical gesture, in some configurations,
the backlash between the instrument and the trocar may lead to a cyclic oscillation
of the controller.

We propose in Ref. [5] a different approach to laparoscopic manipulation that
overcomes the above-mentioned limitations. The manipulator possesses six actu-
ated joints, providing 6 operational d.o.f. for the instrument. In order to cope with
the trocar constraint, a force sensor is placed at the end-effector of the robot. A
force controller is then used to explicitely control the lateral forces applied to the
trocar towards zero. Different control strategies are proposed. Since there is no
a priori knowledge of the trocar location with respect to the base, these strategies
involve an adaptive estimation of the distance from the end-effector to the trocar
center. The paper is organized as follows. Section 2 details the kinematic model-
ing of laparoscopic manipulation. Section 3 formulates the basic force control loop
that is implemented to limit the forces applied to the patient and gives experimental
results. Sections 4 and 5 propose two different strategies to identify on-line the dis-
tance from the robot to the trocar, in order to improve the efficiency of the proposed
method. They are both theoretically demonstrated and experimentally validated on a
laboratory apparatus. Finally, the last section describes a visual servoing application
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where a laparoscope held by the robot automatically tracks a a surgical instrument
by controlling the 4 d.o.f. with a hybrid force/vision controller.

2. MODELING

We consider a 6-d.o.f. robot, equipped with a force sensor and handling a rigid
laparoscopic instrument, introduced in a patient’s abdomen through a trocar. The
kinematics of the laparoscopic manipulation is depicted in Fig. 3, where Ft =
{Ot, xt, yt, zt} is the tool frame attached to the tip of the instrument, such that the zt

axis is colinear to the instrument penetration axis; Fs = {Os, xs, ys, zs} is the F/T
sensor frame, with zs colinear to zt; P is the point of the instrument handler that
instantaneously coincides with the trocar; l is the fixed distance between the origins
of Fs and Ft; and d is the variable distance from P to the origin of Ft. For the sake
of simplicity, without loss of generality, it is assumed that the axes of Fs are aligned
with the axes of Ft, i.e. xt = xs and yt = ys.

The trocar is modeled as a planar kinematic constraint, given by:

vT
pxt = vT

pyt = 0, (1)

where vp denotes the velocity of point P , considering the motion of the instrument
relatively to the patient. In the sequel, the patient is supposed to be fixed with
respect to the robot base. In order to parameterize the instantaneous velocity of the
instrument with respect to the patient, which is supposed to be fixed, we use the
following four-component operational space vector:

w = ( ḋ ωx ωy ωz )T , (2)

where ḋ = vT
pzt is the instrument penetration velocity, along zt, and ωx , ωy and ωz

are projections of the absolute rotational velocity ω over xt, yt and zt, respectively.
Combining (1) and (2), one gets:(

tvp
tω

)
=

(
02×4

I4×4

)
w, (3)

Figure 3. Manipulation through a trocar.
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where the upper-left superscript t indicates that the vector is expressed in the frame
Ft, 02×4 is a 2-by-4 zero matrix and I4×4 is the 4-by-4 identity matrix. Furthermore,
the absolute velocity of the instrument at its tip Ot is given by:(

tvOt
tω

)
= M(d)

(
tvp
tω

)
, (4)

with M(d) =

 I3×3

( 0 d 0
−d 0 0
0 0 0

)

03×3 I3×3


 . (5)

Conventional robot kinematic modeling can then be used to provide the jacobian
matrix J(q) mapping the joint velocity q̇ into the instrument tip velocity (tvT

Ot
tωT)T:(

tvT
Ot

tωT

)
= J(q)q̇. (6)

We finally get the inverse kinematic model:

q̇ = J−1(q)M(d)

(
02×4

I4×4

)
w, (7)

where it is assumed that the robot kinematics is non-singular.
Equation (7) shows that the knowledge of the scalar parameter d is sufficient to

provide a robot motion that satisfies the trocar constraint (1). However, in practice,
this parameter is not precisely known. Applying (7) with an estimated depth d̂ �= d

will provide a lateral motion at the trocar center, thus generating forces. To cope
with this problem, force control can be used.

3. FORCE-FEEDBACK CONTROL

3.1. Control design

Let f be the force applied by the instrument to the patient through the trocar. We
assume here that the lateral force at the instrument tip can be neglected, like, for
example, in camera positioning or surgical applications that mainly require forces
along the instrument direction. Thus, the force f is directly sensed at the force
sensor. The two components of f along xs = xt and ys = yt are fx and fy ,
respectively. The aim of the force feedback loop is to servo them towards zero.
Considering a motion rate control strategy, a simple proportional controller can be
used: {

xT
t

tv∗
p = −kfx

yT
t

tv∗
p = −kfy,

(8)

where tv∗
p is the control input velocity of point P expressed in Ft. We can now use

a hybrid position/force control strategy, that is to control simultaneously the motion
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w along the 4 free d.o.f. and the forces fx and fy along the 2 constrained d.o.f. This
is achieved by the following control law:

q̇∗ = J−1(q)M(d̂)

[(
02×4

I4×4

)
w∗ − k

(
I2×2

04×2

) (
fx
fy

)]
= J−1(q)M(d̂)


−kfx

−kfy
w∗


 ,

(9)
where q̇∗ is the joint velocity control input, d̂ is the estimate of d and w∗ is the
input velocity for the instrument motion. Note that w∗ is usually directly set
by the surgeon through the teleoperation interface, but it can also be controlled
autonomously, from a vision feedback loop, as illustrated in Section 6. In the sequel,
w∗ is supposed to be arbitrary. Also, we will assume, hereafter, that the velocity-
controlled robot has a large bandwidth as compared to the external force loop so
that:

q̇ � q̇∗. (10)

It can be seen in (9) that the distance d has to be estimated in order to implement
the control law. Again, this distance is not precisely identified, which can limit the
practical efficiency of the force control feedback loop.

3.2. Experimental results

Experiments where performed on a laboratory apparatus, consisting of a 6-d.o.f.
robot, equipped with a force sensor and manipulating a rigid 0.3-m length surgical

Figure 4. Laboratory experimental setup.
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instrument through a trocar placed at a surgical endoscopic training device (see
Fig. 4). A PC (600 Mhz) is used to acquire the forces and control the robot
at a sampling rate of 50 Hz. For these experiments, the velocity input w∗ is set
to (0, ω∗

x, ω
∗
y, 0). The two rotational components are 0.05 Hz, ±1.5 deg/s square

signals. The objective is to evaluate the influence on the estimation error d̂ − d

on the closed loop force control performance. Figure 5 shows the forces fx and fy
measured for different values of d̂ and d. In the first configuration, d̂ = 0.15 m
and d = 0.2 m. The maximum forces obtained are |fx | � 2 N and |fy | � 2 N.
In the second configuration, d̂ = 0.3 m and d = 0.1 m, the maximum forces are
|fx | � 4 N and |fy| � 5 N. Finally, in the third configuration, d̂ = 0.02 m and
d = 0.2, the maximum forces are |fx | � 5 N and |fy | � 4 N. Clearly, forces
increase with the estimation error on d due to the unknown distance d in the control
law. These forces are due to the fact that a low gain k has to be used for the force
control, so as to guarantee stable and robust behavior of the force loop. In surgical
conditions, force larger than 5 N applied to the patient’s abdomen is too high and
may tear the abdominal wall around the incision point. Increasing k would reduce

Figure 5. Forces fx and fy for different values of d̂ . First row: d̂ = 0.15 m and d = 0.2 m. Second
row: d̂ = 0.3 m and d = 0.1 m. Third row: d̂ = 0.02 m and d = 0.2 m.
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the forces, but may cause chattering in some configurations. Thus, it is desirable to
provide a way to estimate on-line the penetration depth d̂, in order to obtain a higher
performance of the force loop. Two strategies are developed in the Sections 4 and 5.

4. DEPTH ESTIMATION WITH FORCE SENSING ONLY

4.1. Adaptive control design

In the first strategy, we consider that the force sensing device only provides a
measurement for fx and fy . We then have to reconsider the ideal model given by
constraint (1). A residual lateral displacement of point P is introduced:

vT
pxt = ẋp, vT

pyt = ẏp. (11)

This lateral displacement generates a force. A simplified model of the interac-
tion between the robot and the patient at the incision point is used (e.g. like,
in Refs [6, 7]):

fx = g.xp, fy = g.yp, (12)

where g is the stiffness constant of the patient’s abdominal wall. Applying the
control law (9), and combining with equations (4)–(6) and (10)–(12), one gets the
following closed loop behavior:{

ḟx = gtvT
pxt = g

(−kfx + (d̂ − d)ω∗
y

)
ḟy = gtvT

pyt = g
(−kfy − (d̂ − d)ω∗

x

) . (13)

These equations are linear with respect to the parameterization error (d − d̂).
Assuming that g is known, we propose the following normalized gradient

algorithm to estimate d:

˙̂d = ḋ∗ − k1
(
ḟx + gkfx

) ω∗
y

ε + ω∗2
x + ω∗2

y

+ k1
(
ḟy + gkfy

) ω∗
x

ε + ω∗2
x + ω∗2

y

(14)

where k1 > 0 is the gain of the gradient algorithm and ε > 0 is a normalization
coefficient. In order to cope with the speed of change of the distance d during the
intervention, ḋ∗ is added in the estimation law to integrate the control velocity along
the instrument axis zt. The stability and convergence properties of this estimation
algorithm are given in the following Lemma.

LEMMA 1. Stability and convergence properties of the estimation algorithm (14)
1. The estimated parameter d̂ and its derivative are bounded, i.e. d̂, ˙̂d ∈ L∞.

2. The error signal e =
√

ω∗2
x + ω∗2

y

ε + ω∗2
x + ω∗2

y

ep ∈ L2 ∩ L∞

3. The parameter estimation error, ep = (d − d̂), converges, i.e. limt→∞ ep =
ep∞.
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4. If

√
ω∗2

x + ω∗2
y

ε + ω∗2
x + ω∗2

y

is persistently exciting, i.e.

∃η > 0 ∃T s.t.
1

T

∫ t0+T

t0

ω∗2
x + ω∗2

y

ε + ω∗2
x + ω∗2

y

dt > η > 0, ∀t0 � 0, (15)

then, limt→∞ ep = 0, exponentially.

The proof of this Lemma is given in the Appendix. We can see that the algorithm
is stable and that the convergence of the parameter error to zero is obtained if there
is enough excitation (i.e. rotational motions around axis xt and yt). Note that, since
0 < d < l, a projection is added to always keep the estimate d̂ in the interval [0, l] :

˙̂d = 0 if d̂ = 0 and ˙̂d < 0,

˙̂d = 0 if d̂ = l and ˙̂d > 0. (16)

In practice, the stiffness parameter may not be known. In this case, noticing that
(13) is linear with respect to the stiffness coefficient g, we propose the following
gradient algorithm to estimate on-line both parameters g and d:

˙̂d = ḋ∗ − k1
(
ḟx + ĝkfx

) ω∗
y

ε + ω∗2
x + ω∗2

y

+ k1
(
ḟy + ĝkfy

) ω∗
x

ε + ω∗2
x + ω∗2

y

,

˙̂g = −k1
(
ḟx + ĝkfx

)
kfx − k1

(
ḟy + ĝkfy

)
kfy, (17)

where k1 > 0 is the gain of this gradient algorithm and ε > 0 is a normalization
coefficient. The stability and convergence properties of this estimation algorithm
are given in the following Lemma.

LEMMA 2. Stability and convergence properties of the estimation algorithm (17)
1. d̂, ĝ ∈ L∞ and ˙̂d, ˙̂g ∈ L∞.
2. If Q1/2 is persistently exciting, then limt→∞ ep = 0, exponentially, where

Q =

 g2

ρ2

(
ω∗2

x + ω∗2
y

) gk

ρ2

(
fxω∗

y − fyω∗
x

)
gk

(
fxω∗

y − fyω∗
x

)
k2

(
f2
x + f2

y

)

 � 0

with ρ(t) =
√

ε + ω∗2
x (t) + ω∗2

y (t).

The proof of this Lemma is given in the Appendix. We can see that the parameter
convergence to zero is obtained if there are rotational motions around xt and yt as
well as translational motions along xt and yt.

4.2. Experimental results

Experiments where conducted on the same laboratory apparatus. The first experi-
ment intends to provide an identification of g using (17). This parameter is identified
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on the experimental setup by applying excited force reference signals f ∗
x , f ∗

y shown

in Fig. 6. For this stiffness identification experiment, the value of d̂ was set constant
to the real distance d = 0.15 m. The identified stiffness is shown in Fig. 7 and
converges to the value ĝ = 2580 N/m. It can be seen that the convergence is rather
robust and stable, in spite of the noise in the force signal. For the force-feedback
control, using the same initial conditions as in experiments of Section 3.2, but now
aplying the algorithm (14) with the constant identified parameter ĝ = 2580 N/m
to on-line estimate d, we obtained the experimental results plotted in Fig. 8. The
convergence of d̂ from its initial value d0 to the true value d is shown experimen-
tally with an accuracy of about 7 mm. The error in the estimation of d is mainly
due to the backlash between the instrument and the incision point. Together with
the convergence of d, one can see that the forces applied to the patient are limited
to 2 N in spite of the small error in the estimation of d. This value of 2 N is a rea-
sonable force applied on the abdominal wall. Although the measured force suffers
from significant noise, the estimation is smooth. This is due to the low bandwidth
of the estimation dynamics that rejects the high-frequency noise in f and ḟ, thanks

Figure 6. Forces applied to identify the stiffness parameter g.
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Figure 7. Identified stiffness ĝ (experimental result).

Figure 8. Adaptive estimation of d (experimental results). Left column: d0 = 0.3 and d = 0.1 m.
Right column: d0 = 0.02 m and d = 0.2 m.
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to the use of a low gain k1. As a price, the convergence is slower. The next section
proposes an alternative strategy for a faster identification of d.

5. ROBUST IDENTIFICATION OF THE DISTANCE d FROM FORCE AND
TORQUE MEASUREMENTS

5.1. Depth estimation algorithm

In this section, we assume that the six-component interaction wrench can be
completely measured by the force/torque sensor. In this case, the distance, d, can
be identified from the measurements of the forces fx , fy and the torques γ x , γ y .
Indeed, we have:

m = l − d =
√

γ 2
x + γ 2

y√
f2
x + f2

y


= γ r

fr
. (18)

However, (18) cannot be used directly to estimate d. Indeed, when the force control
algorithm brings the force closed to zero, the estimation can become inaccurate due
to the noise and resolution of the sensor. Therefore, we propose to use a weighted
least-squares algorithm with a sliding window and a dead-zone to robustly estimate
m and d (cf., Ref. [8]).

To minimize the estimation error, let us define the following cost function with a
sliding window and forgetting factor:

J (t, t0) =
∫ t

max(t−T ,t0)

e−λ(t−τ )
[
γ r(τ ) − fr(τ )m̂(t)

]2
dτ, (19)

where λ > 0 is a forgetting factor and T > 0 is the size of the sliding window.
Then, the least-squares estimate m̂(t) that minimizes J (t, t0) is equal to:

m̂(t) = R(t, t0)
−1Q(t, t0), (20)

with:

R(t, t0) =
∫ t

max(t−T ,t0)

e−λ(t−τ )f2
r (τ ) dτ, (21)

Q(t, t0) =
∫ t

max(t−T ,t0)

e−λ(t−τ )fr(τ )γ r(τ ) dτ. (22)

In practice, the estimate is not reliable when fr or γ r is closed to zero. Therefore,
if fr(t) or γ r(t) decreases below some threshold value fth or γ th, the computation of
the least-squares estimate is frozen, i.e. only the reference instrument velocity ḋ∗
along the zt axis is taken into account in order to cope with the change of d due to
the control velocity. The least-squares estimate is computed only if the forces and
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torques are larger than the threshold values for a minimum length of time T0 � T .
Consequently, the robust estimation algorithm is defined as follows:

d̂(t) =
{

l − R(t, tk)
−1Q(t, tk) if fr(t) > fth and γ r(t) > γ th and t � tk + T0

d̂(Tk) + ∫ t
Tk

ḋ∗(τ ) dτ otherwise,
(23)

where tk is the last time instant when fr and γ r left the dead-zone area, and Tk is the
last time instant when fr or γ r entered the dead-zone area, i.e.:

(fr(tk) = fth or γ r(tk) = γ th) and (fr(t
+
k ) > fth and γ r(t

+
k ) > γ th)

(fr(Tk) = fth or γ r(Tk) = γ th) and (fr(T
+
k ) < fth or γ r(T

+
k ) < γ th), (24)

Furthermore, since 0 < d < l, a saturation function is applied on the estimate, so
that it always stays in the interval [0, l].

5.2. Experimental results

Figure 9 presents the experimental result for the direct estimation of d using the
robust estimation algorithm. The experimental results are obtained with maximum
size T = 0.5 s of the sliding window and the minimum size T0 = 0.25 s. In order

Figure 9. Direct estimation of d (experimental results). Left column: d0 = 0.3 m and d = 0.1 m.
Right column: d0 = 0.02 m and d = 0.2 m.
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to compare these results with the previous ones, the experimental conditions for d0

and d are reproduced. We can see that with the least-squares estimator the estimated
signal d̂ exhibits larger noise than the gradient algorithm estimator of Section 4.
For d = 10 cm the maximum error is 5 cm, whereas for d = 20 cm the maximum
error is reduced to 2 cm. This difference is due to the change of the signal/noise
ratio of the measured torque which is proportional to the distance d. However,
the convergence of the estimation algorithm is faster, as it does not involve any
dynamics. The noise on d̂ does not significantly affect the force response, since the
force applied to the abdominal wall is also below the reasonable value of 2 N, as
compared to Fig. 8.

6. HYBRID VISUAL AND FORCE CONTROL

Other experiments have been realized with the 6-d.o.f. robot system using visual
servoing technics. A laparoscopic camera is held instead of the surgical instrument
and the image from this camera is used to move the robot to accomplish a specific
task like, e.g. to track another surgical instrument in the work space (see Fig. 10).
This type of experiment has been already realized with a 4-d.o.f. structure [9–11].
However, to our knowledge, such a combination of force and visual feedback has
never been realized in a laparoscopic application. We will assume, hereafter, that
the tool frame attached to the tip of the instrument Ft is also the laparoscopic camera
frame of reference. We realize an experiment where the laparoscope tracks another
surgical instrument. The head of the instrument to be tracked is identified as a
segment of known length σ0. From the image processing, we extract the following
features: the image coordinates (u,v) of the center of the segment in the image, the
image length σ of the segment which provides depth information (if σ0 is known)
and the angle ϕ of the segment with respect to the xt axis of Ft. All this features are
presented in Fig. 11. Therefore the visual feature vector s is defined as:

Figure 10. Tracking of surgical instrument by the laparoscope.
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Figure 11. Visual features used for the instrument-tracking task.

s =




u

v

σ

ϕ


 . (25)

For visual servoing, we use the classical image-based control strategy (cf., Ref. [12]).
Therefore, the reference velocity of the laparoscope w∗ is chosen proportional to the
error on the feature:

w∗ = ksJI(s∗ − s), (26)

where ks is a positive scalar and s∗ = [u∗v∗σ ∗ϕ∗]T is the reference trajectory of
the visual features in the image. JI is an approximation of the interaction matrix
relating w to ṡ. To simplify the interaction matrix, we use the assumption that the
optical axis is orthogonal to the instrument to be tracked.

JI =




0 0 −f σ0

σ 2
0

1

f + u2

f

0 0 0

0
1

f + v2

f

0 0

0 0 0 1




, (27)

with f the focal length of the camera’s lens. This hybrid visual and force feedback
scheme is shown in Fig. 12. The PC (600 Mhz) is used for image processing,
force sampling and to control the robot at a sampling rate of 50 Hz. For the
practical experiments, we apply a triangle signal on the feature coordinate u varying
between −100 and 100 pixels at a frequency of 0.05 Hz (see Fig. 13). According
to the geometrical configuration of the camera and instrument it corresponds to
a displacement of ±2 cm of the instrument. Therefore, 5 pixels in the image
correspond to 1 mm in space. The other visual features are kept equal to zero. The
results displayed on Fig. 14 present the error on the visual feature u and the force fx
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Figure 12. Hybrid visual and force control.

Figure 13. Signal reference of visual feature u.

measured when the estimated parameter d̂ is kept constant, d̂ = d0. In the second
configuration, d̂ = 0.3 m and d = 0.1 m the maximum visual error on the feature
tracking is |uerror| � 40 pixels with a maximum force |fx| � 5 N. One can see that
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Figure 14. Error on visual feature u and force fx with estimated parameter d̂ = d0 constant. First
row: d0 = 0.15 m and d = 0.2 m. Second row: d0 = 0.3 m and d = 0.1 m. Third row: d0 = 0.02 m
and d = 0.2 m.

the error signal of the camera motion is smooth compared to the force vibration.
This is due to the integral behavior of the closed loop system and the choice of a
low control gain ks which guarantees the stability of the visual servoing by reducing
the bandwidth of the system. Figures 15 and 16 show, respectively, the same
experiments when d̂ is estimated with the gradient algorithm estimator of Section 4
and with the robust least-squares estimator of Section 5. For these two experiments,
when the initial configuration is d̂ = d0 = 0.3 m with d = 0.1 m, the maximum
visual error obtained on the feature tracking is |uerror| � 20 pixels. Once the
convergence of the estimate of d is obtained, the force |fx| converges closely to 1 N
and the control performance is similar for the two on-line estimation approaches. So
we can see that with on-line estimation of d, it is possible to keep forces low as well
as perform visual tracking in a laparoscopic environment. The gradient algorithm
estimator exhibits a rather slower convergence of the depth estimation as compared
to direct least-squares estimation. However, the estimated signal d̂ is smoother and
more accurate (� 7 mm). This is due to the dynamics of the gradient law that acts
on ˙̂d, whereas the least-squares algorithm gives instantaneously the estimation of d

with a poor accuracy (� 5 cm).
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Figure 15. Error on visual feature u and force fx with gradient algorithm estimation of d . Left
column: d0 = 0.3 m and d = 0.1 m. Right column: d0 = 0.02 m and d = 0.2 m.

Figure 16. Error on visual feature u and force fx with robust least-squares identification of d . Left
column: d0 = 0.3 m and d = 0.1 m. Right column: d0 = 0.02 m and d = 0.2 m.
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7. CONCLUSION

In this paper, we have proposed to use a 6-d.o.f. actuated robot to hold surgical
instruments for laparoscopic manipulation. Force-feedback control strategies have
been proposed to solve the trocar kinematic constraint, involving the on-line
estimation of the environment geometry. They have been experimentally validated.
Furthemore, an experiment where an instrument is tracked by the endoscope has
been performed.
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APPENDIX

DEFINITION (Norms). If x is a possibly time-varying vector, then:

• ‖ x(t) ‖ is the Euclidean norm of x at time t

• ‖ x ‖2 = [∫ ∞
0 ‖ x(τ) ‖2 dτ ]1/2

• ‖ x ‖∞ = sup0� t ‖ x(t) ‖
and x ∈ L2 when ‖ x ‖2 exists, x ∈ L∞ when ‖ x ‖∞ exists. If A is a possibly
time-varying matrix, then ‖ A ‖, ‖ A ‖2 and ‖ A ‖∞ will be the induced norms
of A.

Proof of Lemma 1.
1. Let us define the following Lyapunov-like function:

V (t) = 1

2
e2
p = 1

2

(
d − d̂

)2 � 0. (A1)

Using (13) and (14), one gets:

V̇ (t) = ep

(
k1

(
ḟx + gkfx

) ω∗
y

ε + ω∗2
x + ω∗2

y

− k1
(
ḟy + gkfy

) ω∗
x

ε + ω∗2
x + ω∗2

y

)

= −k1g

(
ω∗2

x + ω∗2
y

ε + ω∗2
x + ω∗2

y

)
e2
p. (A2)

Thus V̇ (t) � 0 and V ∈ L∞. Therefore, d̂ and ˙̂d ∈ L∞.
2. From (A2), it follows that:∫ ∞

0

ω∗2
x + ω∗2

y

ε + ω∗2
x + ω∗2

y

e2
p dt = 1

k1g
(V (0) − V∞) (A3)

therefore, √
ω∗2

x + ω∗2
y

ε + ω∗2
x + ω∗2

y

ep ∈ L2.

3. Since V � 0 and V̇ � 0, it follows that V (t) is a monotically decreasing function
bounded below by zero. Consequently, lim

t→∞ V (t) = V∞ and lim
t→∞ ep(t) = ep∞.

4. From (A2):

V̇ (t) = −2k1g

(
ω∗2

x + ω∗2
y

ε + ω∗2
x + ω∗2

y

)
V (t). (A4)

Therefore, using Theorem 2.5.1 in Ref. [13], if√
ω∗2

x + ω∗2
y

ε + ω∗2
x + ω∗2

y
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is persistently exciting, then limt→∞ V (t) = 0 exponentially, and limt→∞ ep = 0
exponentially.

Proof of Lemma 2.
1. Let us define the following Lyapunov-like function:

V (t) = 1

2

[
d − d̂ g − ĝ

] [
g 0

0 1

] [
d − d̂

g − ĝ

]

= eT
pAep

2
� 0 (A5)

with A =
[

g 0
0 1

]
. Using (13) and (17), one gets:

V̇ (t) = eT
pAėp = −k1e

T
pQep (A6)

with:

Q =

 g2

ρ2

(
ω∗2

x + ω∗2
y

) gk

ρ2

(
fxω∗

y − fyω∗
x

)
gk

(
fxω∗

y − fyω∗
x

)
k2

(
f2
x + f2

y

)



with ρ(t) =
√

ε + ω∗2
x (t) + ω∗2

y (t).

From Sylvester’s theorem, the quadratic function V̇ (t) is semi-definite negative,
if and only if, the upper left submatrices of Q have non-negative determinants.
Since:

Q11 = g2

ρ2

(
ω∗2

x + ω∗2
y

)
� 0

det(Q) = g2k

ρ2

(
fxω∗

x + fyω∗
y

)2 � 0

therefore, Q � 0, V̇ (t) � 0 and V ∈ L∞. It follows that ep ∈ L∞ and, using (17),
˙̂d and ˙̂g ∈ L∞.

2. From (A6), we have:

ėp = −k1Qep (A7)

with Q � 0, therefore if Q1/2 is persistently exciting, i.e.

∃η > 0 ∃T s.t.
1

T

∫ t0+T

t0

Q dt > ηI > 0, ∀t0 � 0

using Theorem 2.5.1 in Ref. [13], then limt→∞ ėp = 0, exponentially.
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