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Abstract

Image-based servo is a local control solution. Thanks to the feedback
loop closed in the image space, local convergence and stability in
the presence of modeling errors and noise perturbations are ensured
when the error is small. The principal deficiency of this approach is
that the induced (3D) trajectories are not optimal and sometimes, es-
pecially when the displacement to realize is large, these trajectories
are not physically valid leading to the failure of the servoing process.
In this paper we address the problem of finding realistic image-space
trajectories that correspond to optimal 3D trajectories. The camera
calibration and the model of the observed scene are assumed un-
known. First, a smooth closed-form collineation path between given
start and end points is obtained. This path is generated in order to
correspond to an optimal camera path. The trajectories of the im-
age features are then derived and efficiently tracked using a purely
image-based control. A second path planning scheme, based on the
potential field method is briefly presented. It allows us to introduce
constraints in the desired trajectory to be realized. Such constraints
are, for instance, to ensure that the object of interest remains in
the camera field of view and to avoid the robot joints limits. Ex-
perimental results obtained on a six-degrees-of-freedom eye-in-hand
robotic system are presented and confirm the validity of the proposed
approach.

KEY WORDS—visual servoing, path planning, path tracking

1. Introduction

Image-based servoing is now a well-known local control
framework (Hashimoto 1993; Hutchinson, Hager, and Corke
1996). In this approach, the reference image of the object
corresponding to a desired position of the robot is acquired
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first (during an off-line step) and some image features are ex-
tracted. Features extracted from the initial image are matched
with those obtained from the desired one. These features are
then tracked during the robot (and/or the object) motion, us-
ing for example a correlation-based method. An error is ob-
tained by comparing the image features in the current image
and in the reference one. The robot motion is then controlled
in order to minimize the error (using, for example, a gradi-
ent descent approach). Since the error is directly measured
in the image, image-based servo has some degrees of robust-
ness with respect to modeling errors and noise perturbations.
However, sometimes, and especially when the initial and de-
sired configurations are distant, the trajectories induced by
image-based servo are neither physically valid nor optimal
due to the nonlinearity and singularities in the relation from
the image space to the workspace (Chaumette 1998). Deal-
ing with this deficiency, path planning in the image space is a
promising approach. Indeed, if the initial error is too large, a
reference trajectory can be designed from a sequence of im-
ages. The initial error can thus be sampled so that, at each
iteration of the control loop, the error to regulate remains
small. In Hashimoto and Noritugu (2000), relay images that
interpolate initial and reference image features using an affine
approximation of the relationship between initial and desired
images, coupled to a potential switching control scheme, are
proposed to enlarge the stable region. In Hosoda, Sakamoto,
and Asada (1995), a trajectory generator using a stereo system
is proposed and applied to obstacle avoidance. An alignment
task for a four-degrees-of-freedom (4-DoF) robot using inter-
mediate views of the object synthesized by image morphing is
presented in Singh et al. (1998). A path planning for a straight-
line robot translation observed by a weakly calibrated stereo
system is performed in Ruf and Horaud (1997). In previous
work (Mezouar and Chaumette 2002), we have proposed a
potential field-based path planning generator that determines
the trajectories in the image of a set of points lying on an un-
known target. To increase the stability region, Cowan, Lopes,
and Koditschek (2000) describe a globally stabilizing method
using navigation function for eye-to-hand setup. However,
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none of these works has dealt with optimality issues. In Zhang
and Ostrowski (2000), a numerical framework for the design
of optimal trajectories in the image space is described and ap-
plied to the simple case of a one-dimensional (1D) camera in a
two-dimensional (2D) workspace. In Mezouar and Chaumette
(2001), our preliminary results have been presented. This pa-
per gives an analytical solution to optimal path planning in
the image space for a general setup. Additionally, the CAD
model of the observed target and the camera calibration are
not assumed known.

On the other hand, a new control scheme for a general
setup, called 21

2
D visual servoing, has been proposed in Malis,

Chaumette, and Boudet (1999) which globally stabilizes the
system. In this approach, the error function to be regulated to
zero is composed of the camera orientation parameters and
image features. However, 21

2
D visual servoing techniques are

not purely image-based, thus the robustness of image-based
techniques are not fully obtained. In particular, the sensitiv-
ity to measurement perturbation due to the computation of a
homography matrix at each iteration of the control loop to
extract the Cartesian part of the error function can be prob-
lematic close to the convergence.

In this paper, we address the problem of finding closed-
form image trajectories between the initial and desired images
corresponding to an optimal camera path with respect to min-
imum energy and acceleration criteria. The obtained image
trajectories can be efficiently tracked using a purely image-
based control scheme. Furthermore, classical visual servoing
techniques make assumptions about the link between the ini-
tial image and the desired one. When the camera displacement
between the acquisitions of the initial and desired images is
large and/or when the observed scene is complex, the steps
of finding and matching joint image features (SFMJF) can be
difficult and even sometimes impossible if no feature belongs
to both images. In such case, the servoing can not be real-
ized. A possible solution is to use a set of relay images (such
that between two successive SFMJF are feasible) extracted,
for example, from an image database obtained and indexed
off-line. To cope with this framework, we also show how our
strategy can be generalized to the case whereN + 1 images
are available. Additionally, we briefly present a second path
planning scheme based on the potential field method. It al-
lows us to introduce constraints in the desired trajectory to
be realized. Such constraints are, for instance, to ensure that
the object of interest remains in the camera field of view and
to avoid the robot joints limits. In counterpart, the analyti-
cal forms of the trajectories in the image space are no longer
available, and the corresponding camera trajectory deviates
from the optimal one.

The paper is organized as follows. In Section 2, we recall
some fundamentals. In Section 3, we address the problem of
finding a closed-form smooth collineation path between given
start and end points and corresponding to optimal camera tra-
jectories. In this section, we first study the case where the

camera is displaced according to a general rigid motion and
then two interesting particular cases are addressed (namely
pure rotational and pure translational motions). In Section 4,
the optimal collineation path is used to determine the optimal
path in the image, and an example illustrating our approach is
presented. In Section 5, we show how to use an image-based
approach to track the trajectories in the image space. Experi-
mental results using a 6-DoF eye-in-hand robotic platform are
presented in Section 6. In Section 7, our strategy is general-
ized to the case where a set of images is available. Finally, in
Section 8, we briefly describe a second path planning scheme
able to take into account constraints on the image trajectories.

2. Fundamentals

2.1. The Collineation Matrix

Consider two views of a scene observed by a camera. A 3D
point X with homogeneous coordinatesX = [X Y Z 1]T

is projected under perspective projection to a pointx in the
first image (with homogeneous coordinates measured in pixel
x = [x y 1]T) and to a pointxf in the second image (with ho-
mogeneous coordinates measured in pixelxf = [xf yf 1]T).
It is well known that there exists a projective homography
matrix G related to a virtual plane�, such that for all points
X belonging to�, x ∝ Gxf .1 Whenx andxf are expressed
in pixels, matrixG is called the collineation matrix. From
the knowledge of several matched points, lines or contours
(Faugeras 1993; Chesi, Malis, and Cipolla 2000), it is possi-
ble to estimate the collineation matrix. For example, if at least
four points belonging to�are matched,G can be estimated by
solving a linear system. Otherwise, at least eight points (three
points to define� and five outside of�) are necessary to es-
timate the collineation matrix by using, for example, the lin-
earized algorithm proposed in Malis and Chaumette (2000). If
the camera calibration is known, the Euclidean homography
can be computed up to a scalar factor2

H ∝ K+GK (1)

whereK is a non-singular matrix containing the intrinsic pa-
rameters of the camera

K =

 fpu −fpu cot(α) u0

0 fpv/ sin(α) v0

0 0 1


 =


 a

u0

v0

0 0 1


 .

Here,u0 andv0 are the pixel coordinates of the principal point,
f is the focal length,pu andpv are the magnifications respec-
tively in theu andv directions, andα is the angle between
these axes. The Euclidean homography can be decomposed

1. x ∝ Gxf ⇐⇒ αx = Gxf whereα is a scaling factor.
2. K+ denotes the inverse ofK.



Mezouar and Chaumette / Optimal Camera Trajectory 783

Π

x

R b

d

x

nf

f

fF

X

F

Fig. 1. Geometry of two views.

into a rotation matrix and a rank 1 matrix (Faugeras and Lust-
man 1988)

H = R + b
df

nfT (2)

whereR andb represent the rotation matrix and the translation
vector between the current and the desired camera frames
(denoted byF andFf respectively),nf is the unitary normal
to the virtual plane expressed inFf , anddf is the distance
from� to the origin ofFf (see Figure 1).

FromG andK, it is thus possible to determine the camera
motion parameters (i.e., the rotationR and the scaled transla-
tion bdf = b

df
) and the normal vectornf , by using for exam-

ple one of the algorithms proposed in Faugeras and Lustman
(1988) or Zhang and Hanson (1995). The ratioρ between the
Z-coordinate anddf , which we will use in the sequel, can
also be determined


ρ = Z

df
= r

nTm
if X ∈ �

ρ = Z

df
= β

‖bdf ‖
‖βm − R‖ if X /∈ �

(3)

wherem = K+x, n = Rnf , r = 1+ nfTRbdf , β = ‖[b]×Rmf ‖
‖[b]×m‖ .

If the camera is not perfectly calibrated (i.e.,K̂ is used instead
of K), then the estimated homography matrix is

Ĥ = K̂GK̂+ = δK+GδK

whereδK = K̂+K. Matrix Ĥ can be decomposed as the sum
of a matrix similar to a rotation matrix and of a rank 1 matrix

Ĥ = Ĥ∞ + b̂df n̂fT

with

Ĥ∞ = R̂ = δKRδK+. (4)

The matrixĤ∞ = R̂ is called homography at infinity since
it maps projected points lying in the plane at infinity. Fur-
thermore, if the collineation at infinityG∞ is available, we
have

n̂fT = nfTδK+

‖nfTδK+‖ (5)

b̂df = ‖nfTδK+‖δKbdf . (6)

This matrixG∞ can be determined using, for example, the
methods described in Robert et al. (1995) or Viéville, Zeller,
and Robert (1996). These methods can be used even if the
camera parameters are unknown if some knowledge about
the scene is available (for example, if the camera observes
three points at infinity or a reference plane parallel to the
image plane). In practice, the algorithm proposed in Malis
and Chaumette (2000) has been used to obtain the initial
collineation matrix, from which the collineation matrix at in-
finity between the initial and desired images is extracted using
the algorithm proposed in Faugeras and Lustman (1988). This
algorithm is based on the fundamental relation (2). It was thus
designed for the case where the camera calibration is known.
This means that the relations (5) and (6) are not exactly ver-
ified when the calibration is unknown. However, we will see
in the experiments that, even if this algorithm is used in an
uncalibrated framework, the results are very satisfactory. Let
us finally note that, when the camera motion is a pure transla-
tion, the homography matrix at infinity is the identity matrix.
Furthermore, when the camera motion is a pure rotation,Ĥ∞
corresponds to the homography matrixĤ.

2.2. Brief Review of SO(3)

The groupSO(3) is the set of all 3× 3 real orthogonal ma-
trices with unit determinant and it has the structure of a Lie
group. On a Lie group, the space tangent to the identity has
the structure of a Lie algebra. The Lie algebra ofSO(3) is
denoted byso(3). It consists of the 3× 3 skew-symmetric
matrices, so that the elements ofso(3) are matrices of the
form

[θθθ ] =

 0 −r3 r2

r3 0 −r1

−r2 r1 0


 .

One of the main connections between a Lie group and its Lie
algebra is the exponential mapping. For everyR ∈ SO(3),
there exists at least one[θθθ ] ∈ so(3) such thate[θθθ ] = R with
(Rodriguez formula)

R = e[θθθ ] = I + sin‖θθθ‖
‖θθθ‖ [θθθ ] + 1 − cos‖θθθ‖

‖θθθ‖2
[θθθ ]2 (7)
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where‖θθθ‖ is the standard Euclidean norm. Conversely, ifR ∈
SO(3) such that Trace(R) �= −1 then

[θθθ ] = log(R) = θ

2 sinθ
(R − RT) (8)

whereθ satisfies

θ = ‖θθθ‖ = arccos

(
1

2
(Trace(R) − 1)

)
. (9)

If Trace(R) = −1, log(R) can be obtained noticing thatθθθ =
±πu whereu is a unit length eigenvector ofR associated with
the eigenvalue 1.

Another important connection betweenso(3) andSO(3)
involves angular velocities. IfR(t) is a curve inSO(3), then
ṘRT andRTṘ are skew-symmetric, and hence the element of
so(3). The elementωωω of so(3) such that

[ωωω] = RTṘ (10)

corresponds to the angular velocity of the rigid body.
In the following, we consider that some image features

(points, lines, contours) can be extracted and matched from the
initial image and a desired image of the scene. This framework
is the classical one in visual servoing. From the extracted im-
age features, the collineation matrix at timet = 0, G0, can be
computed (Faugeras 1993; Chesi, Malis, and Cipolla 2000).
Note also that, when the desired configuration is reached (at
timet = 1), the collineation matrix is proportional to the iden-
tity matrix: Gf ∝ I. In the following sections, we consider
the problem of finding a smooth path of the collineation ma-
trix betweenG0 andGf corresponding to an optimal camera
path with respect to the criterion which will be specified in the
following. The image trajectories are then derived from the
collineation path and tracked using an image-based strategy.

3. Optimal Collineation Trajectories

The case where the camera is displaced according to a gen-
eral rigid motion is first studied and then two particular cases
are addressed (namely, pure rotational and pure translational
motions). In the first case, we will see that the obtained tra-
jectories in the image space are independent of the camera
internal parameters if the collineation matrix at infinity be-
tween the initial and final images is known. If the motion is a
pure rotation or a pure translation, then this assumption is not
necessary to ensure the independence with respect to camera
calibration.

3.1. General Camera Motions

The current position of the camera with respect to its desired
position is defined by the rotation matrixR(t) and the trans-
lation vectorb(t). The collineation matrix is then given by

G(t) ∝ K+ (
R + bdf nfT

)
K. We denote byU the 6× 1 vec-

tor [vTωωωT]T, wherev denotes the time derivative ofb andωωω
is defined by eq. (10). We consider the problems, denoted by
PC1 andPC2, of finding a path of the collineation matrix cor-
responding to the minimum energy and minimum acceleration
problem, respectively. These problems can be formulated as
follows.

(PC1) Find G(t) minimizing

J1 =
1∫

0

UTU dt

subject to eq. (10),v = ḃ and with boundary conditions:

G(0) ∝ G0

G(1) ∝ I3×3.

Note that the camera velocity cannot be constrained in the
problem(PC1). This means that velocity discontinuities can
be observed at the beginning and the end of the task where
the camera is motionless.

(PC2) Find G(t) minimizing

J2 =
1∫

0

U̇TU̇ dt

subject to eq. (10),v = ḃ and with boundary conditions:

G(0) ∝ G0

G(1) ∝ I3×3

U(0) = 06×1

U(1) = 06×1.

In this case, the camera velocity is constrained to be0 at the
beginning and the end of the task. The boundary conditions
are verified ifR(0) = R0, b(0) = b0, R(1) = I3×3 and
b(1) = 0 (rigid motion problem). These boundary conditions
are particularly important since they are the desired ones in
the context of visual servoing.

The solutions ofPC1 andPC2, and a result about their
dependence on camera calibration are given by the following
proposition.

PROPOSITION1. The optimal path of the collineation matrix
in the sense ofPC1 andPC2 is given by

G(t) ∝ (1 − q(t))!0 + (G0 − !0)"""(θθθ0, t) (11)

where

"""(θθθ0, q(t)) = Ke[θθθ0]q(t)K+ and !!!0 = Kb0df nfTK+

(12)
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with [θθθ0] = log(RT
0 ), b0df = b0

df
and

{
q(t) = t if PC1
q(t) = −2t3 + 3t2 if PC2

.

The path given by eq. (11) is not affected by the error on in-
trinsic camera parameters if the collineation matrix at infinity
at time 0 is known.

REMARK 1. The path given by Proposition 1 corre-
sponds to a shortest distance path of the rotation ma-
trix(minimal geodesic) with respect to an adequately cho-
sen Riemannian metric onSO(3) and to a straight line
translation.

REMARK 2. As previously emphazised, the algorithm we
used in practice to compute the collineation matrix at infinity
at time 0 was designed for the case where the camera calibra-
tion is known. The independence of the computed trajectories
with respect to the camera parameters can thus not be demon-
strated in our experiments. However, we will see in Section 6
that there is no significant difference in the computed trajec-
tories using a correct or a bad camera calibration. This means
that the hypothesis of knowing the collineation matrix at in-
finity at time 0 has not a strong practical effect, and is more a
technical point to demonstrate theoretically the independence
property.

Proof. The solution of the rigid motion problem can be ob-
tained by using standard optimal control results (or by fol-
lowing Park and Ravani 1997):

b(t) = (1 − q(t))b0 and R(t) = R0e[θθθ0]q(t) . (13)

According to eqs. (1) and (2), the corresponding collineation
path is given by

G(t) ∝ K(R0e[θθθ0]q(t) + (1 − q(t))b0df nfT)K+.

This path is equivalent to the path given by

G(t) ∝ K
(
R0e[θθθ0]q(t) + (1 − q(t))b0df nfT

+b0df nfTe[θθθ0]q(t) − b0df nfTe[θθθ0]q(t)) K+

and can be rewritten as eq. (11) by denoting

"""(θθθ0, q(t)) = Ke[θθθ0]q(t)K+ and !!!0 = Kb0df nf T
K+ .

We note that the matrixK of camera internal parameters ap-
pears explicitly in the path given by eq. (11). However, the
initial collineation matrixG0 is not affected by the error on
intrinsic parameters since it is directly computed from image
data. Furthermore, if̂K is used instead ofK, we have

!̂!!0 = K̂b̂0df n̂fTK̂+ and "̂""(θθθ0, q(t)) = K̂e[̂θθθ0]q(t)K̂+ .

By introducing eqs. (5) and (6) in̂!0, we obtain

!̂!!0 = K̂‖nfTδK+‖δKbdf

nfTδK+

‖nfTδK+‖K+

= Kb0df nfTK+ = !!!0. (14)

Furthermore (refer to eq. (8))

[̂θθθ0] = log(RT
0 ) = θ̂0

2 sin(θ̂0)
(R̂T

0 − R̂0) = κ̂(R̂T
0 − R̂0) (15)

whereκ̂ = θ̂0
2 sinθ̂0

and θ̂0 satisfies 1+ 2 coŝθ0 = Trace(R̂0).

SincêR0 is similar toR0 (see eq. (4)), Trace(R̂0) = Trace(R0)

that impliesθ̂0 = θ0 and thuŝκ = κ. By inserting eq. (15)
into eq. (7), we obtain

"̂""(θθθ0, q(t)) = K̂
(

I + κ
sin(‖θθθ0‖q(t))

‖θθθ0‖ (R̂T
0 − R̂0)

+ κ2 1 − cos(‖θθθ0‖q(t))
‖θθθ0‖2 (R̂T

0 − R̂0)
2

)
K̂+.

Noticing that
K̂R̂0K̂+ = KR0K+

we finally obtain

"̂(̂θθθ0, q(t)) = """(θθθ0, q(t)). (16)

Thus, according to eqs. (14) and (16), the collineation trajec-
tory given by eq. (11) is independent of the choice of the non-
singular matrixK̂. Note that, in this proof, the collineation
matrix at infinity at time 0 has been assumed known to derive
eq. (14).

3.2. Two Interesting Particular Cases

In this section, we study the cases where the camera is dis-
placed according to a pure rotational and a pure translational
motion. We will see that in these cases the internal camera
parameters do not appear at all.

3.2.1. Pure Rotational Motion

The collineation matrix is now a matrix similar to a rotation
matrix (up to a scalar factor), that is

G ∝ KRK+. (17)

The solutions ofPC1 and PC2 and a nice property of the
solutions are given by the following proposition.

PROPOSITION2. The optimal path of the collineation matrix
is given by

G(t) ∝ G0"""(g0, q(t)) (18)
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whereq(t) = t if PC1, q(t) = −2t3 + 3t2 if PC2 and

""" = I + sin(‖g0‖q(t))
‖g0‖ {g0} + 1 − cos(‖g0‖q(t))

‖g0‖2 {g0}2 (19)

with

θ = ‖g0‖ = arccos

(
1

2
D

−1/3
0 T0 − 1

)
(20)

{g0} = ‖g0‖
2 sin‖g0‖

(
D

1/3
0 G+

0 − D
−1/3
0 G0

)
(21)

whereD0 = det(G0), T0 = Trace(G0).

The collineation path given by eq. (18) is independent of
the internal camera parameters.

Proof. For a pure rotational motion!!!0 = Kb0df nfTK+ = 0,
thus according to eq. (11):

G(t) ∝ G0"""(θθθ0, t).

Referring to eq. (7),""" can be rewritten as follows:

""" = I+ sin(‖θθθ0‖q(t))
‖θθθ0‖ K[θθθ0]K++ 1 − cos(‖θθθ0‖q(t))

‖θθθ0‖2
K[θθθ0]2K+.

Using‖g0‖ = ‖θθθ0‖ and{g0} = K[θθθ0]K+, the previous equa-
tion can be rewritten as eq. (19), and (see eq. (8))

{g0} = Klog(RT
0 )K

+ = ‖g0‖
2 sin‖g0‖ (KRT

0 K+ − KR0K+).

(22)

Furthermore, from eq. (17), it is easy to show that

KR0K+ = D
−1/3
0 G0 and Trace(R0) = D

−1/3
0 T (23)

whereD0 = det(G0) andT = Trace(G0). By introducing
eq. (23) into eq. (22), we obtain eq. (21). Finally, using eqs. (9)
and (23), we deduce eq. (20).

The initial value of the collineationG0 is not affected by er-
rors on intrinsic parameters since it is extracted directly from
image data. According to eqs. (18), (19), (20), and (21) and
noticing that{g0} and‖g0‖ depend only onG0, the collineation
path given by eq. (18) is independent of the camera parame-
ters.

REMARK 2. As expected, the path given by Proposition 2
corresponds to a geodesic onSO(3).

In the next subsection, the case of a pure translational cam-
era motion is studied.

3.2.2. Pure Translational Motion

If the camera motion is a pure translation, the collineation
matrix has the following particular form:

G ∝ I + Kbdf nfTK+. (24)

PROPOSITION3. The optimal path of the collineation matrix
in the sense ofPC1 andPC2 is given by

G(t) ∝ q(t)I + (1 − q(t))

α0

G0 (25)

whereq(t) = t if PC1, q(t) = −2t3 + 3t2 if PC2 andα0 is a
real solution of the equation

2α3 − T0α
2 + D0 = 0. (26)

The optimal smooth trajectories given by eq. (25) are not
affected by error on intrinsic parameters.

Proof. For a pure translational motion, we have""" = I, thus
according to eqs. (11) and (24)

G(t) ∝ q(t)I + (1 − q(t))(I + !0)

and noticing thatG0 = α0(I +!0), we deduce eq. (25). From
eq. (24), we easily obtain


Trace(G0) = T0 = α0(3 + bT

df 0n)

Det(G0) = D0 = α3
0(1 + bT

df 0n)

and by combining the previous equations, we deduce thatα0

is a solution of eq. (26).

The path of the collineation matrix given by eq. (25) is
independent of theK-matrix since the initial value of the
collineation matrixG0 and thusα0 (refer to eq. (26)) are in-
dependent of the camera intrinsic parameters.

REMARK 3. As expected also, the path given by eq. (25)
corresponds to a straight line between the initial and desired
camera positions.

4. Feature Trajectories in the Image

In this section, we first show how trajectories in the image
space can be obtained from the collineation matrix path. Our
approach is then illustrated by examples of image synthesis.

4.1. Image-Space Trajectories

In order to control efficiently a robot using visual data, we
have to determine the trajectories of some image features
in the image space. More precisely, we want to perform
smooth trajectoriess∗(t) = [

x∗
1(t) y

∗
1(t) · · · x∗

n
(t) y∗

n
(t)

]T
of

n projected points in the image between a given start point
s∗(0) = [x∗

1(0) y
∗
1(0) · · · x∗

n
(0) y∗

n
(0)]T and a given desired

point s∗(1) = [x∗
1(1) y

∗
1(1) · · · x∗

n
(1) y∗

n
(1)]T. We denote by

x∗
i
(t) = [x∗

i
(t) y∗

i
(t) 1]T the vector of homogeneous coor-

dinates expressed in pixels of the projection of a 3D point
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Xi in the current desired image (at timet). We define vector
hi = αi(t)x∗

i
(t). It is well known that for all 3D points

hi (t) = αi(t)x∗
i
(t) = G(t)x∗

i
(1) + τiγγγ (t) (27)

whereαi(t) is a positive scaling factor depending on time,τi
is a constant scaling factor null if the target point belongs to
�, andγγγ (t) = Kb(t) represents the epipole in the current
image (i.e., the projection in the image at timet of the optical
center when the camera is in its desired position). After the
initial collineation has been estimated, the optimal path of the
collineation matrix can be computed as described previously.
The initial value of the epipole,γγγ (0) = γγγ 0, can also be com-
puted directly from image data (i.e.,γγγ 0 is independent of the
K-matrix) (Faugeras 1993). Furthermore, it is easy to show
(from eq. (13)) that the optimal trajectories of the epipole,
with respect to the previously cited criteria, are of the form:

γγγ (t) = (1 − q(t))γγγ 0. (28)

Such trajectories of the epipole are not affected by the error
on intrinsic parameters sinceγγγ 0 is directly computed from
image data. Note also that the scaling factorτi is not time-
dependent and can be computed directly from the initial and
desired image data since (refer to eq. (27)):

αi(t)x∗
i
(0)∧x∗

i
(0) = 0 = G(t)x∗

i
(1)∧x∗

i
(0)+τiγγγ (t)∧x∗

i
(0).

We thus obtain

τi = −
(
G0x∗

i
(1) ∧ x∗

i
(0)

)
1

(γγγ 0 ∧ x∗
i (0))1

.

where(v)j denotes thej th components ofv. To conclude, the
vectorhi is not affected by the error on intrinsic parameters
sinceG(t), γγγ (t) and τi (∀i ∈ {1 · · · n}) can be computed
without error even ifK is unknown. The trajectories of the
considered points in the image corresponding to an optimal
camera path can thus also be computed without error, using

x∗
i
(t) = (hi (t))1

(hi (t))3

y∗
i
(t) = (hi (t))2

(hi (t))3

. (29)

4.2. Example: Synthesis of Intermediate Views

In this section, our approach is illustrated by two experiments.
Experiments were performed with images acquired using a
CCD camera mounted on the effector of a 6-DoF manipulator.
Intermediate views between the initial and the desired images
and corresponding to the minimum energy (Figure 2) and
acceleration problems (Figure 3) are constructed. The camera
displacement between initial and desired images (boxed in
Figures 2 and 3) is very large. The initial collineation matrix
is:

G0 =

 0.4603 0.4145 −597.3284

−0.2476 0.6107 −376.0835
−0.0001 0.0006 −1.5281


 .

Intermediate images synthesized using eq. (29) and the so-
lution of the problemsPC1 andPC2 are given in Figures 2
and 3, respectively. The corresponding camera trajectories are
plotted in Figures 4(a) and (b). Note that only the temporal
behavior is different for the two experiments.

5. Application to Visual Servoing

To track the trajectories using an image-based control scheme,
we use the task function approach introduced in Samson, Es-
piau, and Le Borgne (1991). A vision-based task functione to
be regulated to0 is defined by (Espiau, Chaumette, and Rives
1992)

e = L̂+(s(t) − s∗(t)). (30)

The time-varying vectors∗(t) is the desired trajectory ofs
computed as previously explained (more generally, we use
the notationx∗(t) to represent the planned parameterx). The
matrixL denotes the interaction matrix related tos (also called
image Jacobian). It links the variation of the visual features
with respect to the camera velocityTc with ṡ = LTc. The
matrix L̂+ is the pseudo-inverse of a chosen model ofL. An
exponential decay ofe toward0 can be obtained by imposing
ė = −λe (λ being a proportional gain). The corresponding
control law is

Tc = −λe − ∂̂e
∂t

(31)

where ∂̂e
∂t

is an approximation of∂e
∂t

involved to minimize the
tracking error. Using such a control law, a well-known suf-
ficient condition to ensure global asymptotic stability of the
system is (Samson, Espiau, and Le Borgne 1991)

L̂+L > 0. (32)

For a pointX with coordinates[XY Z]T in the current cam-
era frame and image coordinatesx = [x y 1]T in pixels, the
interaction matrixL(x, Z) related tox is given by

a


 − 1

Z
0 mx

Z
mxmy −(1 + mx

2) my

0 − 1
Z

my

Z
(1 + my

2) −mxmy −mx




wherem = [mx my 1]T = K+x. Whens is composed of the
image coordinatesxi of n points, the corresponding interac-
tion matrix is

L(s,Z) = [
LT(x1, Z1) · · · LT(xn, Zn)

]T
. (33)

A classical choice for̂L is L(s(1), Ẑ(1)) (i.e., the value of
L at the final desired position). In this case, condition (32)
is ensured only in a neighborhood of the desired position
(Chaumette 1998). We will use the value ofL at the cur-
rent desired position for̂L (i.e., L̂ = L(s∗(t), Ẑ∗(t)) rather
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t = 0 t = 0.17 t = 0.3

t = 0.4 t = 0.5 t = 0.6

t = 0.7 t = 0.8 t = 1

Fig. 2. Image trajectories: minimum energy.

thanL(s(1), Ẑ(1)). With this choice, condition (32) is ensured
along the planned trajectories and not only in a neighborhood
of the final desired position.

The interaction matrix depends on theẐ∗-vector. Accord-
ing to eq. (3), this vector can be rewritten asẐ∗(t) = d̂f222∗(t)
where d̂f is an estimated value ofdf (i.e., the only pa-
rameter that has to be introduced “by hand”) and222∗(t) =
[ρ∗

1(t) · · · ρ∗
n
(t)]. The ratioρ∗

i
(t) can be estimated (when̂K is

used instead ofK) using relations (3):


ρ̂∗
i
(t) = r̂∗(t)

n̂∗T (t)m̂i (t)
if Xi ∈ �

ρ̂∗
i
(t) = β̂

‖̂bdf ‖
‖β̂m̂i − R̂‖ if Xi /∈ �

. (34)

The previous relations can be estimated using only the analyt-
ical form of the parameters obtained during the path planning
step, with (Mezouar 2001)


ρ̂∗
i
(t) = det(G∗(t))det(G0−!!!0)

−2/3

(K̂+(G0−!!!0)"""K̂n̂f )
T

K̂+x∗
i
(t)

if Xi ∈ �

ρ̂∗
i
(t) = (1−q(t))β̂(t)‖K̂+!!!0K̂n̂f ‖

‖β̂(t)K̂+pf
i

−K̂+(G0−!!!0)"""
∗(t)p∗

i
(t)‖ if Xi /∈ �

where

β̂(t) = ‖[K̂+!!!0K̂n̂f ]×(G0 −!!!0)"""
∗(t)x∗

i
(1)‖

‖[K̂+!!!0K̂n̂f ]×K̂+x∗
i (t)‖

.

In practice, we use these last relations to computeρ∗
i
(t) since

the analytical forms of all these components are known.
If the target is known to be motionless, we get from eq. (30):

∂̂e
∂t

= −L̂+ ∂s∗

∂t

and the control law (31) can be rewritten as follows

Tc = −λe + L̂+ ∂s∗

∂t
(35)

where the term̂L+ ∂s∗
∂t

= L̂+[ ∂x∗
1

∂t

∂y∗
1

∂t
· · · ∂x∗

n

∂t

∂y∗
n

∂t
]T allows us to

compensate the tracking error. More precisely, we have from
eq. (27)

∂x∗
i

∂t
= 1

αi(t)

[
∂G
∂t

x∗
i
(1) + βi

∂γγγ

∂t
− ∂αi

∂t
x∗
i
(t)

]
. (36)

If we rewrite the collineation and the epipole as follows

G(t) =

 G1(t)

G2(t)

G3(t)


 γγγ (t) =


 γ1(t)

γ2(t)

γ3(t)



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Fig. 3. Image trajectories: minimum acceleration.

(a) (b)

Fig. 4. Camera trajectory: (a) minimum energy and (b) minimum acceleration.
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we obtain from eqs. (11), (27), and (28):


∂G
∂t

= q̇(t) [−!!!0 + (G0 +!!!0)"""(t)] =



∂G1
∂t

∂G2
∂t

∂G3
∂t




∂γγγ

∂t
= −q̇(t)γγγ 0 =




∂γ1
∂t

∂γ2
∂t

∂γ3
∂t




αi(t) = G3(t)x∗
i
(1) + τiγ3(t)

∂αi

∂t
= ∂G3

∂t
x∗
i
(1) + τi

∂γ3
∂t

.

The term ∂s∗
∂t

is finally obtained by introducing the previous
relations in eq. (36).

6. Experimental Results

The proposed method has been tested in a positioning task
with respect to an unknown scene. We used a CCD camera
mounted on a 6-DoF manipulator. We have used for the ex-
periments two targets. The first target is composed of nine
white marks. The extracted visual features are the image co-
ordinates of the center of gravity of each mark. The second
target is a complex image. The extracted features are the im-
age coordinates of interesting points. The desired images have
been acquired during an off-line step. The algorithm proposed
in Malis and Chaumette (2000) has been used to obtain the
initial collineation matrix from which the initial collineation
matrix at infinity is extracted using the algorithm proposed in
Faugeras and Lustman (1988).

6.1. First Target

The target is composed of nine white marks lying on three
different planes (see Figure 8). The images corresponding
to the desired and initial camera positions are given in Fig-
ures 5(a) and (b), respectively. As can be seen in Table 1, the
corresponding camera displacement is very large. In order to
check the robustness of the proposed approach with respect
to modeling errors, two different sets of parameters have been
used:

1. correct calibration—the correct intrinsic parameters
and the correct value ofdf (i.e., 50 cm) have been used
(see Figures 6 and 8);

2. bad calibration—an error of 50% has been added on
the intrinsic parameters, whiledf has been set to 100 cm
(see Figures 7 and 9).

Figures 6 and 7 present the results using the minimal energy
criterion and Figures 8 and 9 give the results using the minimal
acceleration criterion. In the following, only the results related
to the minimal energy criterion are commented on, since the

comments are also valid for the minimal acceleration problem.
However, let us note that the temporal behavior depends on
the chosen cost function, as can been seen for example in the
figures representing the camera velocity.

1. Correct calibration. Planned and tracked trajectories
are plotted in Figures 6(a) and (b), respectively. We first
note that the tracked trajectories and the planned tra-
jectories are almost similar. This shows the efficiency
of the proposed control scheme. The tracking error
(s(t)−s∗(t)) is plotted in Figure 6(e). It confirms the pre-
vious comment since the maximal error remains small
(always less than five pixels). The error on the coor-
dinates of each target point between its current and its
desired location in the image (s(t) − s∗(1)) is given
in Figure 6(d). The convergence of the coordinates to
their desired value demonstrates the correct realization
of the task. The computed camera velocity is given in
Figure 6(f). Note finally that the camera optical center
moves along a straight line as can be seen in Figure 6(c).

2. Bad calibration. First, we note that the planned tra-
jectories obtained with or without modeling errors are
similar (refer to Figures 6(a) and 7(a)). This confirms
the robustness of the path planning process with re-
spect to camera calibration errors. Secondly, as can be
seen in Figures 7(a) and (b), the planned and followed
trajectories in the bad calibration case are also similar.
The image-based control scheme is indeed particularly
robust with respect to modeling errors when the error
function to regulate is small (the tracking errors, given
in Figure 7(e), remain small during the servoing, i.e.,
less than eight pixels). The camera velocity is plotted in
Figure 7(f). Once again, the task is correctly realized.
This is shown by the convergence of the image point
coordinates to their desired value (refer to Figure 7(d)).

6.2. Second Target

The extracted visual features are now the image coordinates
of interesting points obtained using the Harris detector (Har-
ris and Stephens 1988). These points are matched using the
algorithm described in Zhang et al. (1995). These points are
represented by crosses in the initial and desired images (refer
to Figure 10). The presented results have been obtained using
the minimum energy cost function. In order to check the ro-
bustness with respect to modeling errors, we carried out two
experiments. In the first experiment, the camera parameters
given by the camera manufacturer and a correct approxima-
tion of the depthdf (i.e., df = 0.9 m) have been used (see
Figure 11 and Extension 1). In the second experiment, an error
of 30% has been added to the camera parameters, whiledf

has been set to 0.5 m (Figure 12 and Extension 2). As can be
seen in Figures 11(a), 11(b), 12(a) and 12(b), the planned and
the tracked trajectories are similar. The trajectories obtained
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Table 1. Camera Displacement

Translation (mm) tx = −195 ty = −610 tz = −1455

Rotation (deg) (uθ)x = −68 (uθ)y = −41 (uθ)z = −144

(a) (b)

Fig. 5. First target: (a) initial image and (b) desired image.

(a) (b) (c)

(d) (e) (f)

Fig. 6. First target, minimum energy criterion and correct calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).
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(a) (b) (c)

(d) (e) (f)

Fig. 7. First target, minimum energy criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

(a) (b) (c)

(d) (e) (f)

Fig. 8. First target, minimum acceleration criterion and correct calibration: (a) planned trajectories; (b) followed trajectories;
(c) camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and
deg s−1).
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(a) (b) (c)

(d) (e) (f)

Fig. 9. First target, minimum acceleration criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).
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Fig. 10. Second target: (a) initial image and (b) desired image.
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Fig. 11. Second target using correct calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d)
error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

with correct parameters are close to those obtained with bad
parameters (compare Figure 11(a) with Figure 12(a) and Fig-
ure 11(b) with Figure 12(b)). This confirms, once again, the
robustness of the path planning and of the control scheme
with respect to calibration errors and errors ondf . The track-
ing error (defined as1

2n

∑n

1(xi(t) − x∗
i
(t)) + (yi(t) − y∗

i
(t))

and plotted in Figures 11(e) and 12(e)) remains small in both
cases (less than four pixels). The convergence to 0 of the er-
ror on the coordinates between the current and the desired
images (defined as1

2n

∑n

1(xi(t) − x∗
i
(1)) + (yi(t) − y∗

i
(1))

and plotted in Figures 11(d) and 12(d)) demonstrates the cor-
rect realization of the positioning task in both cases. As can
be seen in Figures 11(c) and 12(c), the camera optical center
moves along a straight line.

7. (N + 1) Images Framework

Classical visual servoing techniques make assumptions on the
link between the initial and desired images, limiting the appli-
cability of these techniques to relatively small displacement
when the scene is complex. Indeed, if a sufficient number of
image features cannot be matched in these images, the visual
servoing cannot be realized (see, for example, the initial and

desired images given in Figures 13(a) and (b)). A possible
solution to cope with this deficiency is to use relay images ac-
quired off-line. In the next section, we show how our scheme
can be extended to this framework.

7.1. Images Trajectories

Assume now that a set ofN + 1 relay imagesI = {I0 · · · IN}
is available and that some image features can be extracted
and matched between two successive images. Assume also
that from the extracted image features, the collineation matri-
cesGi,i+1 between imagesIi andIi+1 can be computed. The
collineation matrixGi,N α K(Ri + bdf i)K+ (refer to eqs. (1)
and (2)) between imagesIi and IN can easily be obtained
noticing that

Gi,N = Gi = Gi,i+1Gi+1,i+2 · · · GN−1,N . (37)

Given a set of N + 1 collineation matricesG =
{G0,N · · · GN−1,N ,GN,N} associated with a set ofN + 1 time
parameters{t0 · · · tN−1, tN}, we want to determine a continu-
ous and piecewise differentiable matrix functionG(t) such
that G(ti) = Gi for i ∈ {0 · · ·N} and such thatG(t) corre-
sponds to a minimal length camera trajectory. This problem
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Fig. 12. Second target using bad calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d) error
in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cm s−1 and deg s−1).

can be formulated as follows (problemPM)

Find G(t) minimizing Ji = ∫ ti+1

ti
UTUdt

for i = 0 · · ·N and withU = [vT ωωωT]T whereωωω is defined by
eq. (10),v = ḃ, and with boundary conditions:G(ti) ∝ Gi ,
G(ti+1) ∝ Gi+1. The solution of problemPM can be obtained
in the same way as the solution ofPC1 (Mezouar 2001)

G(τ ) ∝ (1 − τ)!!!i−1 + τ!!!i + (Gi−1 −!!!i−1)""" (38)

whereτ = t−ti−1

ti−ti−1
and

"""(θθθ i, τ ) = Ke[θθθi ]×τK+, !!!i = Kbdf inf T
K+ (39)

with [θθθ i]× = log(RT
i−1Ri ). By introducing eqs. (4), (5), and

(6) in eq. (38), it can be shown that the path given by eq. (38)
is not affected by the error on camera intrinsic parameters (the
proof is similar to the case of two images). The features are
interpolated as for the case of two images (Section 4) and the
displacement is then carried out using the control scheme de-
scribed in Section 5. Note that recent work in image database
analysis to solve the problem of retrieving and delivering im-
ages from large database using query (De Marsico, Cinque,
and Levialdi 1997) can be exploited to extract the set of relay
images from an image database. Our scheme to obtain the
relay images can be summarized as follows (Mezouar et al.
2002).

1. In a first off-line step, the camera acquires a large set
of images of its workspace. Ideally, these images must
provide a representative sample of all the points of view
which could be reached during the operational phase.

2. Points of interest of all these images are extracted us-
ing the Harris detector (Harris and Stephens 1988),
and some invariants are computed (Schmid and Mohr
1997). This allows us, on the one hand, to index these
images in a database which will be used to quickly re-
trieve images acquired during the operational phase,
and on the other hand to match images by pair.

3. A graph is then derived from this matching. The nodes
of the graph are the images. An edge between two im-
ages indicates that the images can be matched. The
edges are valuated in a way inversely proportional to
the number of matched image features; the matching is
realized using the algorithm proposed in Zhang et al.
(1995).

4. In the on-line step, the robot acquires an initial image
at an unspecified place of its workspace. A task is spec-
ified in the form of an image to reach. The system then
seeks in the image database the closest images to the
initial and desired images. The shortest path between
these images in the graph is then obtained by using the
Dijkstra algorithm. We thus obtain an ordered set of
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Fig. 13. (a) Initial image and (b) desired image.

relay images such that, between two successive images
of this set, a sufficient number of image features can be
matched.

7.2. Experimental Results

In this section, our approach is validated by realizing a po-
sitioning task. The images corresponding to the desired and
initial camera positions are given in Figures 13(a) and (b). In
this case, the SFMJF is impossible to realize. However, from
the graph built with the image database, eight relay images are
obtained (see Figure 14). The trajectories of interesting points
are then planned. The planned and followed trajectories are
given in Figures 14 and 15. We note that these trajectories are
similar. The camera trajectory is given in Figure 16(a). The
tracking error (defined as1

2n

∑n

1(xi(t)−x∗
i
(t))+(yi(t)−y∗

i
(t))

and plotted in Figure 16(b)) remains sufficiently small (always
less than five pixels) to ensure a good behavior of the control
scheme. Extension 3 (refer to the Appendix for details) gives
an internal view (i.e., a view by the controlled camera) of the
positioning task.

8. Potential-Based Path Planning

The path planning approach described in the previous sec-
tions, coupled to a purely image-based control, enables us
to realize large robot displacements with a strong robustness
with respect to modeling errors. Additionally, closed-form im-
age trajectories have been obtained, hence only low computa-
tional cost is required for on-line implementation. However,
the limitations of the stable region of image-based control
and the non-optimality or non-validity of the induced camera
trajectory were not the only reasons for image-based control
failures. For example, the features of interest may leave the
camera field of view and the robot may reach its mechanical

limits. To ensure the success of the task whatever the displace-
ment to realize, we have tried to embed in a constrained global
optimization process the previously described path planning
scheme (Mezouar 2001). However, the global optimization
process requires a high computational time and an initializa-
tion step. It is thus not suitable for on-line implementation. To
cope with this problem, a second path planning scheme based
on a local optimization of potential function (Khatib 1986;
Latombe 1991) is now briefly presented. In this scheme, con-
straints (visibility and joint limits avoidance) can easily be
introduced at the path planning level.

8.1. Principle

In this approach, the robot motions are under the influence
of an artificial potential field (V ) defined as the sum of an
attractive potential (Va) pulling the robot towards the goal
configuration (ϒ∗) and a repulsive potential (Vr) pushing the
robot away from the obstacles. Motion planning is performed
in an iterative fashion. At each iteration, an artificial force
F(ϒ), where the 6× 1 vectorϒ represents a parametrization
of the robot workspaceW ⊂ Rp, is induced by the potential
function. This force is defined asF(ϒ) = −�∇T

ϒ
V where�∇T

ϒ
V

denotes the transpose of the gradient vector ofV atϒ . Using
these conventions,F(ϒ) can be decomposed as the sum of
two vectors,Fa(ϒ) = −�∇T

ϒ
Va andFr (ϒ) = −�∇T

ϒ
Vr , which

are respectively called the attractive and repulsive forces. Path
generation proceeds along the direction ofF(ϒ) regarded as
the most promising direction of motion. Thus, each segment
is oriented along the negated gradient of the potential function
computed at the configuration attained by the previous seg-
ment. The discrete-time trajectory is given by the transition
equation

ϒk+1 = ϒk + εk
F(ϒk)

‖F(ϒk)|| (40)
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Fig. 14. Planned trajectories.
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Fig. 15. Followed trajectories.
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Fig. 16. (a) Camera trajectory and (b) tracking error (pixels).

wherek is the increment index andεk is a positive scaling
factor denoting the length of thekth increment. In our case,
the control objective can be formulated as follows. To transfer
the system to a desired point in the sensor space satisfying the
following constraints:

1. the image trajectories correspond to a valid robot tra-
jectory;

2. all the considered image features remain in the camera
field of view;

3. the robot joints remain between their limits.

To deal with the first constraint, the motion is first (partially)
planned in the 3D Cartesian space using the transition equa-
tion (40) and then projected in the image space. Only the
rotation matrix and scaled translation vector trajectories are
necessary to obtain the corresponding features trajectories in
the image space. This property allows us to compute the im-
age trajectories without knowing the CAD model of the object
(model-free method), using eqs. (1), (2), and (27).

The attractive potential (Vϒ ) pulling the robot toward the
goal configuration (ϒ∗) is defined in the 3D Cartesian space as
a parabolic function reaching its minimum atϒ∗. The second
and the third constraints are introduced through a repulsive
potentialVs defined in the image and a repulsive potential
Vq defined in the joint space. One way to create a potential
barrier around the camera field of view is to defineVs as an
increasing function of the distance between the object projec-
tion and the image limits (see Figure 17(a)). In the same way,
a potential barrier can be created around the robot joint limits
(see Figure 17(b)). A general description of such functions
and the derivation of the associated artificial forces are given
in Mezouar and Chaumette (2002). The total force is given by

F = Fϒ + γFs + χFq (41)

where the scaling factorsγ andχ allow us to adjust the rela-
tive influence of the different forces. Discretized trajectories

in the image space are then computed. In order to design
continuous and differentiable curves and to improve the dy-
namic behavior of the system, the discretized trajectories are
interpolated using cubic B-spline functions. The continuous
trajectories are then integrated in an image-based control loop
in a similar way than for the first planning scheme.

As for the previous path planning scheme, it can be shown
that the potential-based scheme is particularly robust with re-
spect to calibration errors (Mezouar and Chaumette 2002).
Contrarily to the previous method, constraints can be inte-
grated in an easy way. In counterpart, the analytical form of
the trajectories in the image space are not known and the
camera trajectory is deviated from the optimal one when re-
pulsive forces are involved. Finally, let us note that the total
force given by (41) may potentially lead to local minima. This
is intrinsically due to the local and incremental strategy of the
potential field approach. In practice, we have never encoun-
tered configurations leading to local minima and the param-
etersγ andχ have been fixed to 1. A basic strategy to take
out of potential local minima would be to execute a motion
favoring the repulsive force (i.e., by increasing parametersγ

andχ ). Obviously such strategy makes no formal guarantee
to reach the global minimum, and in some cases, there is no
solution to satisfy all the constraints. From an intuitive point
of view and following the reasoning proposed in Chesi et al.
(2002), the repulsive force related to the visibility constraint
will induce a backward motion if no other motion is possible
(which is the case when at least two image points leave the
field of view on opposite image limits simultaneously). As
soon as the joints limits are taken into account, it may be im-
possible to realize such backward motion, leading thus to the
failure of the path planning. In Cowan and Koditschek (1999),
potential functions free of stable local minima (callednaviga-
tion functions (Rimon and Koditschek 1992)) are constructed
to guarantee the global stability of the system. However, con-
structing such a navigation function requires the complete
knowledge of the space topology and imposes to set limits on



Mezouar and Chaumette / Optimal Camera Trajectory 799

(a)

Vm 

Um 

U 
M 

V 
M 

Vr 

Vm 

Um 

U 
M 

V 
M 

Vr 

Image plane
(b)

q qq q maxmin min max
jl l j

q j

Vq

l l
jj

Joint limit Joint limit
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Fig. 18. (a) Initial and (b) desired images.

the considered workspace. Setting these limits is difficult in
practice. Finally, many advantages of the approach proposed
in this paper would be lost: robustness with respect to mod-
eling errors, and application to object with unknown CAD
model.

8.2. Experimental Results

The proposed method has been tested using the same simple
object as before. The images corresponding to the desired
and initial camera positions are given in Figures 18(a) and
(b), respectively. The corresponding camera displacement is
very large (tx = 82 cm, ty = 80 cm, tz = 45 cm, (uθ)x = 37◦,
(uθ)y = 45◦, (uθ)z = 125◦). In this case, classical image-
based and position-based visual servoing fail.

On all the following plots, joint positions are normalized
between [−1; 1], where −1 and 1 represent the joint limits.

In order to emphasize the importance of the introduced
constraints in the trajectories, we first perform the path plan-

ning without repulsive potential. The results are given in Fig-
ure 19. We can see that the visual features get out largely from
the camera field of view (Figure 19(a)) and axis q5 attains its
joint limit (Figure 19(b)). Then, only the repulsive potential
associated to the visibility constraint has been activated (see
Figure 20). In that case, even if the visibility constraint is en-
sured (Figure 20(a)), the servoing cannot be realized because
axis q5 reaches its joint limit (Figure 20(b)). In Figure 21,
the two repulsive potentials are activated. The target remains
in the camera field of view (see Figures 21(a) and (c)) and
all axes avoid their joint limit (see Figures 21(b) and (d)).
We can notice that the planned trajectories and the realized
trajectories in the image are almost similar, which shows the
efficiency of our control scheme. The error on the image co-
ordinates of each target point between its current and desired
location is given in Figure 21(f). We can note the convergence
of the coordinates to their desired value, which demonstrates
the correct realization of the positioning task.
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Fig. 19. Planned trajectories without any repulsive potential: (a) in the image; (b) in the joint space.

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

0 100 200 300 400 500 600
1. 5

1

0. 5

0

0.5

1

1.5

(a) (b)

Fig. 20. Planned trajectories without repulsive potential associated to the joint limits avoidance: (a) in the image; (b) in the
joint space.
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Fig. 21. Planned trajectories with both repulsive potentials: (a) in the image; (b) in the joint space, realized trajectories; (c) in
the image; (d) in the joint space; (e) camera translational (cm s−1) and rotational (deg s−1) velocities versus iteration number;
(f) errors in the image versus iteration number.
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A second experiment is presented in the extensions to this
paper and confirms the previous comments (refer to the Ap-
pendix for details). The initial and desired images are given
by Extensions 4 and 5, respectively. The corresponding robot
positions are given by Extensions 6 and 7. The planned tra-
jectory is included in the initial image (Extension 4). As can
be seen, the motion to realize is very large and in this case
classical approaches fail. Extension 8 is a video acquired by
the controlled camera during the positioning task (refer to the
Appendix). Extension 9 is a video acquired by an external
camera observing the robot motions.

9. Conclusion

In this paper, we have addressed the problem of finding the
trajectories in the image space of visual features so that the
camera trajectory is optimal. The obtained camera trajectory
corresponds to a minimum geodesic in SE(3). The method
is model-free and the uncalibrated case has been studied. By
coupling the path planning step with an image-based servo-
ing, the proposed method improves significantly the behavior
of image-based servoing when the displacement to realize is
large. We have validated our approach in a 6-DoF robotic
platform by realizing positioning tasks with respect to an un-
known target. The experimental results confirm the robustness
of our approach with respect to modeling errors. The interpo-
lation of multi-relay images has also been studied in order to
cope with the difficult matching problem for a complex scene
when the initial image is very different from the desired one.
A potential-based path planning has also been described. It
allows us to integrate easily constraints in the desired trajec-
tories. A natural perspective for this work is the incorporation
of obstacle avoidance in the path planning process as well as
the incorporation of non-holonomic constraints.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Positioning task described in
Section 6.2 (correctly cali-
brated system) seen by the con-
trolled camera. The red and
blue crosses represent respec-
tively the current and desired
features. The green crosses
represent the current desired
position of the features (that is
their planned trajectories).

2 Video Same example with badly cal-
ibrated camera.

3 Video Positioning task described in
Section 7.2 seen by the con-
trolled camera.

4 Image Initial image with planned tra-
jectories (Section 8.2).

5 Image Desired image (Section 8.2).
6 Image Initial robot configuration

(Section 8.2).
7 Image Final robot configuration (Sec-

tion 8.2).
8 Video Motion during the positioning

task (Section 8.2) seen by a
camera observing the robot.

9 Video Same example seen by the con-
trolled camera (Section 8.2).
The blue and green crosses
represent respectively the cur-
rent and desired features. The
red crosses represent the cur-
rent desired position of the fea-
tures (i.e., their planned trajec-
tories).
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