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Abstract

Image-based servoisalocal control solution. Thanksto the feedback
loop closed in the image space, local convergence and stability in
the presence of modeling errors and noise perturbations are ensured
when the error is small. The principal deficiency of this approach is
that theinduced (3D) trajectoriesare not optimal and sometimes, es-
pecially when the displacement to realize islarge, these trajectories
arenot physically valid leading to thefailure of the servoing process.
Inthispaper we addressthe problem of finding realisticimage-space
trajectoriesthat correspond to optimal 3D trajectories. The camera
calibration and the model of the observed scene are assumed un-
known. First, a smooth closed-form collineation path between given
start and end points is obtained. This path is generated in order to
correspond to an optimal camera path. The trajectories of the im-
age features are then derived and efficiently tracked using a purely
image-based control. A second path planning scheme, based on the
potential field method is briefly presented. It allows us to introduce
constraints in the desired trajectory to be realized. Such constraints
are, for instance, to ensure that the object of interest remains in
the camera field of view and to avoid the robot joints limits. Ex-
perimental results obtained on a six-degrees-of-freedomeye-in-hand
robotic systemare presented and confirmthe validity of the proposed
approach.

KEY WORDS—visual servoing, path planning, path trackin

1. Introduction

Optimal Camera
Trajectory with

| mage-Based
Control

first (during an off-line step) and some image features are ex-
tracted. Features extracted from the initial image are matched
with those obtained from the desired one. These features are
then tracked during the robot (and/or the object) motion, us-
ing for example a correlation-based method. An error is ob-
tained by comparing the image features in the current image
and in the reference one. The robot motion is then controlled
in order to minimize the error (using, for example, a gradi-
ent descent approach). Since the error is directly measured
in the image, image-based servo has some degrees of robust-
ness with respect to modeling errors and noise perturbations.
However, sometimes, and especially when the initial and de-
sired configurations are distant, the trajectories induced by
image-based servo are neither physically valid nor optimal
due to the nonlinearity and singularities in the relation from
the image space to the workspace (Chaumette 1998). Deal-
ing with this deficiency, path planning in the image space is a
promising approach. Indeed, if the initial error is too large, a
reference trajectory can be designed from a sequence of im-
ages. The initial error can thus be sampled so that, at each
iteration of the control loop, the error to regulate remains
small. In Hashimoto and Noritugu (2000), relay images that
interpolate initial and reference image features using an affine
approximation of the relationship between initial and desired
images, coupled to a potential switching control scheme, are
roposed to enlarge the stable region. In Hosoda, Sakamoto,
and Asada (1995), atrajectory generator using a stereo system
is proposed and applied to obstacle avoidance. An alignment
task for a four-degrees-of-freedom (4-DoF) robot using inter-
mediate views of the object synthesized by image morphing is

Image-based servoing is now a well-known local contrdresentedin Singh etal. (1998). A path planning for a straight-
framework (Hashimoto 1993; Hutchinson, Hager, and Corline robot translation observed by a weakly calibrated stereo
1996). In this approach, the reference image of the objegYStem is performed in Ruf and Horaud (1997). In previous

corresponding to a desired position of the robot is acquirddork (Mezouar and Chaumette 2002), we have proposed a
potential field-based path planning generator that determines

*Current address: LASMEA-CNRS UMR 6602, Université Blaise Pascathe trajectories in the image of a set of points lying on an un-
63177 Aubiére-France Youcef.Mezouar@lasmea.univ-bpclermont.fr known target. To increase the stability region, Cowan, Lopes,
The International Journal of Robotics Research and Koditschek (2000) describe a globally stabilizing method
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none of these works has dealt with optimality issues. In Zhar@amera is displaced according to a general rigid motion and

and Ostrowski (2000), a numerical framework for the desigthen two interesting particular cases are addressed (namely

of optimal trajectories in the image space is described and gpire rotational and pure translational motions). In Section 4,

plied to the simple case of a one-dimensional (1D) camerairilze optimal collineation path is used to determine the optimal

two-dimensional (2D) workspace. In Mezouar and Chaumetpmth in the image, and an example illustrating our approach is

(2001), our preliminary results have been presented. This paresented. In Section 5, we show how to use an image-based

per gives an analytical solution to optimal path planning impproach to track the trajectories in the image space. Experi-

the image space for a general setup. Additionally, the CABental results using a 6-DoF eye-in-hand robotic platform are

model of the observed target and the camera calibration gmesented in Section 6. In Section 7, our strategy is general-

not assumed known. ized to the case where a set of images is available. Finally, in
On the other hand, a new control scheme for a gener@éction 8, we briefly describe a second path planning scheme

setup, called §D visual servoing, has been proposed in Malisable to take into account constraints on the image trajectories.

Chaumette, and Boudet (1999) which globally stabilizes the

system. In this approach, the error function to be regulated to

zero is composed of the camera orientation parameters add-undamentals

image features. However% visual servoing techniques are

not purely image-based, thus the robustness of image-bageti The Collineation Matrix

Fechmques are not fully obtalped. In particular, the S(.ansmvc_:onsider two views of a scene observed by a camera. A 3D

ity to measurement perturbation due to the computation of a_. . . S

homography matrix at each iteration of the control loop t oint x with homogeneous. coordl_nat.e(s =X Y..Z 4

S projected under perspective projection to a paiim the

extract the Cartesian part of the error function can be pro? . . ) -
; irstimage (with homogeneous coordinates measured in pixel
lematic close to the convergence.

. — (=[x y 1]") and to a poink’ in the second image (with ho-
In this paper, we address the problem of finding Close(?(nogeneous coordinates measured in potek [x/ v 1]7).

formimage trajectories between the initial and desired imag?s. : o
. : . It"is well known that there exists a projective homography
corresponding to an optimal camera path with respect to min-

imum energy and acceleration criteria. The obtained ima matrix G related to a virtual plangl, such that for all points

i ! !
trajectories can be efficiently tracked using a purely image- b_elonglng toIT, X o Gx. Whenx_andx_ are ex_pressed

; : in _pixels, matrixG is called the collineation matrix. From
based control scheme. Furthermore, classical visual servoilg

techniques make assumptions about the link between the if)i- knowledge of several matched points, lines or contours

tialimage and the desired one. When the camera displa(:emg'atlugeras 1993; Chesi, Malis, and Cipolla 2000), it is possi-

L A o neto estimate the collineation matrix. For example, if at least
between the acquisitions of the initial and desired magesggur oints belonging to1 are matcheds can be estimated b
large and/or when the observed scene is complex, the ste P . ging . . . y
T L olving a linear system. Otherwise, at least eight points (three

of finding and matching joint image features (SFMJF) can be". i : .
e ; . o oints to defind1 and five outside ofT) are necessary to es-
difficult and even sometimes impossible if no feature belongs ) . : X .
. . imate the collineation matrix by using, for example, the lin-

to both images. In such case, the servoing can not be real-

ized. A possible solution is to use a set of relay images (su arized algorithm proposed in Malis and Chaumette (2000). If

that between two successive SFMJF are feasible) extractghqe camera calibration is known, the Euclidean homography

for example, from an image database obtained and index%%h be computed up to a scalar fattor

off-line. To cope with this framework, we also show how our
strategy can be generalized to the case where 1 images

are available. Additionally, we briefly present a second path . . . - Lo
planning scheme based on the potential field method. It JyhereK is a non-singular matrix containing the intrinsic pa-
lows us to introduce constraints in the desired trajectory trdelmeters of the camera

be realized. Such constraints are, for instance, to ensure that

H « K*GK (1)

X . L . ; « —Jfp.cot
the object of interest remains in the camera field of view ang _ fg ffp/ sin((j)) L;O _ a zo
to avoid the robot joints limits. In counterpart, the analyti- 0 P 0 10 0 0 10

cal forms of the trajectories in the image space are no longer

available, and the corresponding camera trajectory dev'atlglﬁre,uo andy, are the pixel coordinates of the principal point,

from the optimal one. . e
. . . is the focal lengthp, andp, are the magnifications respec-
The paper is organized as follows. In Section 2, we recz—{fb gy P g P

. ly in theu andv directions, andv is the angle between
some fundamentals. In Section 3 We_address the prOble_mtﬂfse axes. The Euclidean homography can be decomposed
finding a closed-form smooth collineation path between given
start and end points and corresponding to optimal cameratia; 7 " o 7 oo e scaling factor.
jectories. In this section, we first study the case where thex + genotes the inverse &f.
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with
H. =R = SKRSK ™. (4)
The matrixH., = R is called homography at infinity since

it maps projected points lying in the plane at infinity. Fur-
thermore, if the collineation at infinit,, is available, we

have
n/TsK+
AT o= 0 5
INSTSK | ®)
by = [In/TSK*||5Kb,;. (6)

This matrix G, can be determined using, for example, the
methods described in Robert et al. (1995) or Viéville, Zeller,
and Robert (1996). These methods can be used even if the
camera parameters are unknown if some knowledge about
the scene is available (for example, if the camera observes
three points at infinity or a reference plane parallel to the
image plane). In practice, the algorithm proposed in Malis
and Chaumette (2000) has been used to obtain the initial
collineation matrix, from which the collineation matrix at in-
into a rotation matrix and a rank 1 matrix (Faugeras and Luginity between the initial and desired images is extracted using

Fig. 1. Geometry of two views.

man 1988) the algorithm proposed in Faugeras and Lustman (1988). This
algorithm is based on the fundamental relation (2). It was thus

H=R+ Enﬁ ) designed for the case where the camera calibration is known.

d/ This means that the relations (5) and (6) are not exactly ver-

whereR andb representthe rotation matrix and thetransla’[ioH'ed when the calibration is unknown. However, we will see

vector between the current and the desired camera frarﬁ@éhe, experiments that, even if this algorithm 'S used in an
(denoted byFand#” respectively)n’ is the unitary normal uncalibrated framework, the results are very satisfactory. Let

to the virtual plane expressed #, andd” is the distance us finally note that, when the camera motion is a pure transla-
from IT to the origin of & (see FigL,Jre 1) tion, the homography matrix at infinity is the identity matrix.

FromG andK, it is thus possible to determine the Camergurthermore, when the camera motion is a pure rotakin,
motion parameters (i.e., the rotatiBrand the scaled transla- corresponds to the homography matix
tionb,s = d%) and the normal vectar’, by using for exam-
ple one of the algorithms proposed in Faugeras and Lustmai2. Brief Review of SO(3)
(1988) or Zhang and Hanson (1995). The ratioetween the
Z-coordinate and!’, which we will use in the sequel, can
also be determined

The groupS O (3) is the set of all 3x 3 real orthogonal ma-
trices with unit determinant and it has the structure of a Lie
group. On a Lie group, the space tangent to the identity has

Z r , the structure of a Lie algebra. The Lie algebraSa? (3) is
b= = nm it Xell 3) denoted byso(3). It consists of the 3< 3 skew-symmetric
o= Z _ 1D I X ¢ 11 matrices, so that the elements wf(3) are matrices of the

df IBmMm —R| form

g bl Rm£|| 0 B 2
wherem = K*x,n=Rn/,r =1+n/TRb,,, 8 = H[mbexmﬁ . 01 = s 0 -n
If the camera is not perfectly calibrated (i.@.is used instead —r2 n 0

of K), then the estimated homography matrix is One of the main connections between a Lie group and its Lie

0= KGR+ = sSK*GSK algebra is the exponential mapping. For evBrye SO(3),
there exists at least ori@] € so(3) such tha#®®’ = R with
wheresK = K*K. Matrix H can be decomposed as the suntRodriguez formula)
of a matrix similar to a rotation matrix and of a rank 1 matrix .
R— e —| 4 siné|l 0]+ 1—cos|@| OF  (7)
H=H. +b,A" e le1?
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where||@|| is the standard Euclidean norm. ConverselR € G(r) o« K* (R + bys nfT) K. We denote byJ the 6x 1 vec-

SO (3) such that TraodR) # —1 then tor [VT@']", wherev denotes the time derivative bfandw
is defined by eq. (10). We consider the problems, denoted by
0] = log(R) = —— (R —R") 8) PC1 andPCZ, of find_in_g a path of the collin_ef'ition matrix cor-
2sind responding to the minimum energy and minimum acceleration
whered satisfies problem, respectively. These problems can be formulated as
follows.
1
= = —(T R) -1 ). 9
o =1el arccos(z (TraceR) )> ®(pc1) FindG(r) minimizing
If Trace(R) = —1, log(R) can be obtained noticing thét= !
+muwhereu is a unitlength eigenvector & associated with Ji= / uTudr
the eigenvalue 1. o

Another important connection between(3) and SO (3) . . ' -
involves angular velocities. R(r) is a curve inSO(3), then  subject to eq. (10) = b and with boundary conditions:
RRT andRR are skew-symmetric, and hence the element of GO0) x G
s0(3). The elemend of so(3) such that 0
Note that the camera velocity cannot be constrained in the
problem(PC1). This means that velocity discontinuities can

In th?_ following, we consider that some |mag: fe?ture e observed at the beginning and the end of the task where
(points, lines, contours) can be extracted and matched from & camera is motionless.

initialimage and a desired image of the scene. This framework
is the classical one in visual servoing. From the extracted im- . T
age features, the collineation matrix at time 0, G,, can be n(]PCZ) Find G() minimizing

corresponds to the angular velocity of the rigid body.

computed (Faugeras 1993; Chesi, Malis, and Cipolla 2000). 1
Note also that, when the desired configuration is reached (at I = / U™ dr
timer = 1), the collineation matrix is proportional to the iden-

tity matrix: G/ o I. In the following sections, we consider 0

the problem of finding a smooth path of the collineation masubject to eq. (10} = b and with boundary conditions:
trix betweenG, andG/ corresponding to an optimal camera

path with respect to the criterion which will be specified in the G(0) x Go
following. The image trajectories are then derived from the G(D) x Iz
collineation path and tracked using an image-based strategy. U(0) = Osx1
U(l) = Ogy1-
3. Optimal Collineation Trajectories In this case, the camera velocity is constrained t0 bethe
beginning and the end of the task. The boundary conditions
The case where the camera is displaced according to a gare verified ifR(0) = Ry, b(0) = by, R(1) = I5,5 and

eral rigid motion is first studied and then two particular casds(1) = 0 (rigid motion problem). These boundary conditions
are addressed (namely, pure rotational and pure translatioaed particularly important since they are the desired ones in
motions). In the first case, we will see that the obtained trahe context of visual servoing.

jectories in the image space are independent of the cameraThe solutions ofPC1 and PC2, and a result about their
internal parameters if the collineation matrix at infinity be-dependence on camera calibration are given by the following
tween the initial and final images is known. If the motion is groposition.

pure rotation or a pure translation, then this assumption is nlgFtQ

. ; QPOSITIONL. The optimal path of the collineation matrix
necessary to ensure the independence with respect to camera S
calibration. In the sense dPC1 andPC2 is given by

G(t) x (1=q@)Po+ (Go — Po)I' (B0, 1)  (11)

3.1. General Camera Motions
where

The current position of the camera with respect to its desired Dol + .
position is defined by the rotation matii) and the trans- L @0, (1)) = Ke™HOK™ and @ = Kbg,rn/TK
lation vectorb(z). The collineation matrix is then given by (12)
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with [8,] = log(R}), bosr = j—? and By introducing egs. (5) and (6) i, we obtain
= i ~ = n/TsK+

q(t)—[ |f PC1 . ¢0:K||nfT8K+||8Kbdf = K+
q(t) = —2t>4+ 3> if PC2 [N/ TSK+|

_ T+
The path given by eq. (11) is not affected by the error on in- = Kbourn"7K™ = @o. (14)

trinsic camera parameters if the collineation matrix at infinit

attime 0 is Known. ¥urthermore (refer to eq. (8))

ReEmMARK 1. The path given by Proposition 1 corre- 9.1 = loa(RT) = fo B _R)=2R _-R 15
sponds to a shortest distance path of the rotation meg— o] 9(Ro) Zsin(é})( o ~Ro) =#(Ry ~Ro) (19)
trix(minimal geodesic) with respect to an adequately cho-

sen Riemannian metric o0§0(3) and to a straight line wherekx = %% andd, satisfies 1+ 2cosd, = TracaR,).
translation. SinceR, is similar toR, (see eq. (4)), Trac®,) = TracgR,)
REMARK 2. As previously emphazised, the algorithm wéhat implies, = 6, and thusc = «. By inserting eq. (15)

used in practice to compute the collineation matrix at infinity"t €d- (7), we obtain

attime 0 was designed for the case where the camera calibra- R Sin(lBollg (1) ~- =

tion is known. The independence of the computed trajectoriesI" @y, ¢ (1)) = K <I +k————(R; — Ro)

with respect to the camera parameters can thus not be demon- 18]

strated in our experiments. However, we will see in Section 6 ,1—codllBollg()) =1 = L) o

that there is no significant difference in the computed trajec- K TAE (Ry — Ro) > K™

tories using a correct or a bad camera calibration. This means

that the hypothesis of knowing the collineation matrix at inNoticing that

finity at time 0 has not a strong practical effect, and is more a KRoK™ = KRoK*

technical point to demonstrate theoretically the independence ]

property. we finally obtain

Proof. The solution of the rigid motion problem can be ob- T @, q(t)) =T @0, q(1)). (16)

tained by using standard optimal control results (or by fol-

lowing Park and Ravani 1997): Thus, according to egs. (14) and (16), the collineation trajec-
tory given by eq. (11) is independent of the choice of the non-

b(r) = (1—q(t))by and R(r) = Re®4® . (13) singular matrixkK. Note that, in this proof, the collineation

matrix at infinity at time 0 has been assumed known to derive
According to egs. (1) and (2), the corresponding collineatiogq. (14).
path is given by
3.2. Two I nteresting Particular Cases
G (1) o K(Ro€%1® 4 (1 — q(1))born' MK ™. g
In this section, we study the cases where the camera is dis-

This path is equivalent to the path given by placed according to a pure rotational and a pure translational
motion. We will see that in these cases the internal camera
G(1) o K (Ro€%4® + (1 — q())bgyrn'T parameters do not appear at all.
+boar /TN — g, n/TefOM) K 3.2.1. Pure Rotational Motion

The collineation matrix is now a matrix similar to a rotation

and can be rewritten as eq. (11) by denoting matrix (up to a scalar factor), that is

T@o. q(1)) = Ke®OK+ and @, = Kby, n/'K* . G x KRK™* (17)
We note that the matriK of camera internal parameters aphe solutions ofPC1 and PC2 and a nice property of the

pears explicitly in the path given by eq. (11). However, thgg|utions are given by the following proposition.
initial collineation matrixG, is not affected by the error on

intrinsic parameters since it is directly computed from imagBROPOSITIONZ. - The optimal path of the collineation matrix
data. Furthermore, K is used instead df, we have is given by

@, = Kby A'TK*+ and T@, q(t)) = KooK+ G(1) o GoI'(Qo, ¢ (1)) (18)
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whereg(t) =t if PC1, q(t) = —23 + 3¢? if PC2 and PrROPOSITION3.  The optimal path of the collineation matrix
) in the sense dPC1 andPC2 is given by
s Sln(llgollq(t)){go} " 1- COS(IIQollq(t)){go}z (19)
- 2 1—q(
gl Gl o) scqon + LI (25)
with o
1 45 whereq(t) =t if PC1, q(¢t) = —2t3+ 32 if PC2 anday is a
0 = llGll = arCC°5<§D0 Io— 1) (20)  real solution of the equation
{9} = % (Dy°G§ — Dy °Gyo) (21) 20° — Toa? + Dy = 0. (26)
whereD, = det(G,), T, = TracgGy). The optimal smooth trajectories given by eq. (25) are not

affected by error on intrinsic parameters.

The collineation path given by eq. (18) is independent Qb oof. For a pure translational motion, we hale= 1, thus

the internal camera parameters. according to egs. (11) and (24)
Proof. For a pure rotational motio®, = Kby, n/TK* = 0,
thus according to eq. (11): G@) gl + (L —qg@)(| + Po)
G(t) ox GoI'(@y, 1). and noticing thaG, = (I + Po), we deduce eqg. (25). From

eq. (24), we easily obtain
Referring to eq. (7)I" can be rewritten as follows:

sin(18ollg (1)) L 1—cos(l6gllg()
O K [0 K T O
160l ol 16012

TracgGo) = To, = ao(3+Db),n)
K[0gl?K .
DetGo) = Do = oad(l+Db7,n)
Using||goll = 180l and{g,} = K[8,]K ™, the previous equa-
tion can be rewritten as eq. (19), and (see eq. (8)) and by combining the previous equations, we deducedihat
is a solution of eq. (26).

{go} = Klog(RDK ™ = |!g—"”(Kng — KRoK ™).

2sin||goll The path of the collineation matrix given by eq. (25) is
(22) independent of th& -matrix since the initial value of the

collineation matrixG, and thusx, (refer to eq. (26)) are in-

Furth f (A7), it h h o
urthermore, from eq. (17), itis easy to show that dependent of the camera intrinsic parameters.

KRoK* = D;’G, and TraceRo) = Dy °T  (23) Remark 3. As expected also, the path given by eq. (25)
where D, = det(G,) andT = TraceGs,). By introducing corresponds to a straight line between the initial and desired

eg. (23) into eq. (22), we obtain eq. (21). Finally, using egs. (§)amera positions.
and (23), we deduce eq. (20).
Theinitial value of the collineatio, is not affected by er- 4, Feature Trajectoriesin the Image
rors on intrinsic parameters since it is extracted directly from
image data. According to egs. (18), (19), (20), and (21) and this section, we first show how trajectories in the image
noticing that{g,} and||go | depend only 0i&,, the collineation space can be obtained from the collineation matrix path. Our

path given by eq. (18) is independent of the camera paramgyproach is then illustrated by examples of image synthesis.
ters.

REMARK 2. As expected, the path given by Proposition 2.1. | mage-Space Trajectories
corresponds to a geodesic 80 (3). - . .
In the next subsection, the case of a pure translational caffi-order to control efficiently a robot using visual data, we

era motion is studied. have to determine the trajectories of some image features
in the image space. More precisely, we want to perform
. . T
3.2.2. Pure Translational Motion smooth trajectories (1) = [x{ (1) y;(®) --- x,(1) y, (D] of

n projected points in the image between a given start point
If the camera motion is a pure translation, the collineatiog(0) = [x;(0) y;(0) --- x*(0) y*(0)]" and a given desired
matrix has the following particular form: points (1) = [x;(1) y;(D) --- x:(1) y:(1]". We denote by
X: (1) = [x;(r) y/(t) 1] the vector of homogeneous coor-

G oc | 4+ Kb,/n'TK*. (24)  dinates expressed in pixels of the projection of a 3D point
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X; in the current desired image (at time We define vector Intermediate images synthesized using eq. (29) and the so-
h; = o; (1) (¢). It is well known that for all 3D points lution of the problem$?C1 andPC2 are given in Figures 2
and 3, respectively. The corresponding camera trajectories are
hi(1) = a; ()X (1) = G(OX] (D) + 7y (1) (27)  plotted in Figures 4(a) and (b). Note that only the temporal

. . . . . behavior is different for the two experiments.
whereq; (¢) is a positive scaling factor depending on timge,

is a constant scaling factor null if the target point belongs to

1, andy (t) = Kb(r) represents the epipole in the currenb. Application to Visual Servoing

image (i.e., the projection in the image at timef the optical

center when the camera is in its desired position). After thE track the trajectories using animage-based control scheme,
initial collineation has been estimated, the optimal path of tH&€ use the task function approach introduced in Samson, Es-
collineation matrix can be computed as described previousBiau, and Le Borgne (1991). A vision-based task funcéitm

The initial value of the epipole; (0) = y,, can also be com- be regulated t@ is defined by (Espiau, Chaumette, and Rives
puted directly from image data (i.az, is independent of the 1992)
K-matrix) (Faugeras 1993). Furthermore, it is easy to show ~
(from eq. (13)) that the optimal trajectories of the epipole, e=L7(s0) —s@). (30)
with respect to the previously cited criteria, are of the form:re time-varying vectos (1) is the desired trajectory of

_ computed as previously explained (more generally, we use
H=QQA-q . 28 )

y0=a=q0)yo (28) the notationc*(r) to represent the planned parametgrThe
Such trajectories of the epip0|e are not affected by the errmatriXL denotes the interaction matrix related;(also called

on intrinsic parameters singg, is directly computed from image Jacobian). It links the variation of the visual features
image data. Note also that the scaling factois not time- With respect to the camera velocify. with § = LT.. The

dependent and can be computed directly from the initial arffiatrix L * is the pseudo-inverse of a chosen model oAn
desired image data since (refer to eq. (27)): exponential decay aftowardO can be obtained by imposing

€ = —Ae (A being a proportional gain). The corresponding
a; ()X (0 AX(0) = 0= G()X (D) AX (0)+ 1,7 () AX(0). control law is

o~

We thus obtain de

T.=—-xe— o (31)
(Gox: (D) A X (D), ) !
Yo AX(0), where is an approximation off involved to minimize the
tracking error. Using such a control law, a well-known suf-
where(v), denotes thgth components of. To conclude, the ficient condition to ensure global asymptotic stability of the
vectorh; is not affected by the error on intrinsic parametergystem is (Samson, Espiau, and Le Borgne 1991)
sinceG(t), y(t) andzt; (Vi € {1---n}) can be computed
without error even iK is unknown. The trajectories of the L*L > 0. (32)
considered points in the image corresponding to an optimal
camera path can thus also be computed without error, usinfgor & pointX with coordinategX ¥ Z1" in the current cam-
era frame and image coordinates= [x y 1] in pixels, the

i

() = (h; (), Vi) = (h; (1)), . (29) interaction matrix_ (x, Z) related tox is given by
(h; (1), (h:(1))3 1
- 0 =z m,m, -14+m?» m,
4.2. Example: Synthesis of I ntermediate Views a
o -1 2 A+m?®» -mum, —m,

In this section, our approach is illustrated by two experiments.
Experiments were performed with images acquired usingveherem = [m, m, 1]" = K*x. Whensis composed of the
CCD camera mounted on the effector of a 6-DoF manipulatdmage coordinates; of n points, the corresponding interac-
Intermediate views between the initial and the desired imagten matrix is

and corresponding to the minimum energy (Figure 2) and T

acceleration problems (Figure 3) are constructed. The camera L(s2Z) =[LT(X, Zy) -+ - LT (X, Z0)] (33)

displacement between initial and desired images (boxed in

Figures 2 and 3) is very large. The initial collineation matri* ¢lassical choice fot is L (s(1), Z(1)) (i.e., the value of
is: L at the final desired position). In this case, condition (32)

0.4603 04145 -—-597.3284 is ensured only in a neighborhood of the desired position
Go,=| —0.2476 06107 —3760835 |. (Chaumette 1998). We will use the value lofat the cur-
—0.0001 Q0006 —1.5281 rent desired position fok (i.e.,L = L(s(¢), Z*(¢)) rather



788 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October—November 2003

t=0.17 t =03

t=05 t=0.6
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Fig. 2. Image trajectories: minimum energy.

thanL (s(1), 2(1)). With this choice, condition (32) is ensuredwhere

along the planned trajectories and not only in a neighborhood R K+ KA’ 1, (Go — ®o)T*(1)x* (1) ||

of the final desired position. B@) = S R R i
The interaction matrix depends on fﬁévector Accord- It KN LK@l

ing to eg. (3), this vector can be rewrittenZigs) = d’£+*(t) I practice, we use these last relations to compyite) since
whered” is an estimated value af’ (i.e., the only pa- the analytical forms of all these components are known.

rameter that has to be introduced “by hand”) @idr) = Ifthe targetis known to be motionless, we get from eq. (30):
[pi(t) --- p()]. The ratiop; () can be estimated (whéfis Je 9
used instead df) using relations (3): Yo _UW
() ) and the control law (31) can be rewritten as follows
R T T = —ret++2E (35)
N (34) c ot
i) = B\M it X ¢TIl where the ternt. + 2 = L+[ 21 21 ... 25 2047 gllows us to
I1Bm; — Rl compensate the tracking error. More premsely, we have from
The previous relations can be estimated using only the analﬁg' (@7)
ical form of the parameters obtained during the path planning 9x; 1 [dG | oy Aoy, ]
step, with (Mezouar 2001) Bt o) _Exi @+ ﬂ"ﬁ TR (t)_ - (36)
(1) = C )Gy 2 TRV If we rewrite the collineation and the epipole as follows
Pl = ®eeo-eorkar) Koo ’ [ Gu(1) n) |
B0 |R+®oRA . G =] Ga) y(@) =1 y0)
YA (=g )B® KT DoKA/ | _
Pt = IBOR+p/ —K+(Go—@o)T* (1P} ()] i X ¢ 11 | Gs() va(®) |
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Fig. 3. Image trajectories: minimum acceleration.

L =1 e =1
0124 PL =04 (134 h:a
bl +‘D§. 0.4 ‘:-i'.lL'
" 04 054 AR
0.5 i .l' ek A :
(F:E *ﬂ * 1=0 ]
1 04
J .1 0.2
HFS il
() (b)

Fig. 4. Camera trajectory: (a) minimum energy and (b) minimum acceleration.
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we obtain from egs. (11), (27), and (28): comments are also valid for the minimal acceleration problem.
260 However, let us note that the temporal behavior depends on
e the chosen cost function, as can been seen for example in the
B =g [-Po+ (Go+ Pr ()] = | 22 figures representing the camera velocity.
G
n o 1. Correct calibration. Planned and tracked trajectories
‘ o are plotted in Figures 6(a) and (b), respectively. We first
‘;—’,’ =—q()Yo= af . note that the tracked trajectories and the planned tra-
& jectories are almost similar. This shows the efficiency
of the proposed control scheme. The tracking error
o; (1) = G3(1)X: (1) + T ys(t) (s(t)—s' (1)) is plotted in Figure 6(e). It confirms the pre-
vious comment since the maximal error remains small
= Bayr(l) + 1,28 (always less than five pixels). The error on the coor-
dinates of each target point between its current and its
The termZ is finally obtained by introducing the previous desired location in the images(f) — s*(1)) is given
relations in eq. (36). in Figure 6(d). The convergence of the coordinates to
their desired value demonstrates the correct realization
6. Experimental Results of the task. The computed camera velocity is given in

Figure 6(f). Note finally that the camera optical center
The proposed method has been tested in a positioning task moves along a straight line as can be seenin Figure 6(c).
with respect to an unknown scene. We used a CCD camera ) ) )
mounted on a 6-DoF manipulator. We have used for the ex- 2- Bad calibration. First, we note that the planned tra-
periments two targets. The first target is composed of nine  €ctories obtained with or without modeling errors are
white marks. The extracted visual features are the image co- ~ Similar (refer to Figures 6(a) and 7(a)). This confirms
ordinates of the center of gravity of each mark. The second  the robustness of the path planning process with re-
target is a complex image. The extracted features are the jm-  SPECt to camera calibration errors. Secondly, as can be
age coordinates of interesting points. The desired images have ~ S€€N in Figures 7(a) and (b), the planned and followed

trajectories in the bad calibration case are also similar.

been acquired during an off-line step. The algorithm proposed ) o ,
in Malis and Chaumette (2000) has been used to obtain the 1€ image-based control scheme is indeed particularly
robust with respect to modeling errors when the error

initial collineation matrix from which the initial collineation X _ _ _
matrix at infinity is extracted using the algorithm proposedin  function to regulate is small (the tracking errors, given
in Figure 7(e), remain small during the servoing, i.e.,

Faugeras and Lustman (1988). . . o .
less than eight pixels). The camera velocity is plotted in
6.1. First Target Figure 7(f). Once again, the task is correctly realized.

) i . . This is shown by the convergence of the image point
The target is composed of nine white marks lying on three ¢ 5rginates to their desired value (refer to Figure 7(d)).
different planes (see Figure 8). The images corresponding

to the desired and initial camera positions are given in Fig:-

ures 5(a) and (b), respectively. As can be seen in Table 1, %g Second Target

corresponding camera displacement is very large. In orderThie extracted visual features are now the image coordinates
check the robustness of the proposed approach with respefinteresting points obtained using the Harris detector (Har-
to modeling errors, two different sets of parameters have begs and Stephens 1988). These points are matched using the
used: algorithm described in Zhang et al. (1995). These points are
represented by crosses in the initial and desired images (refer
to Figure 10). The presented results have been obtained using
the minimum energy cost function. In order to check the ro-
bustness with respect to modeling errors, we carried out two

2 bad calibration—an error of 50% has been added orEXPeriments. In the first experiment, the camera parameters

the intrinsic parameters, whil& has been setto 100 cm given by the camera manufacturer and a correct approxima-
(see Figures 7 and 9). tion of the depthd’ (i.e.,d’ = 0.9 m) have been used (see

Figure 11 and Extension 1). Inthe second experiment, an error
Figures 6 and 7 present the results using the minimal energfy30% has been added to the camera parameters, while
criterion and Figures 8 and 9 give the results using the minimahs been set to. B m (Figure 12 and Extension 2). As can be
acceleration criterion. In the following, only the results relatedeen in Figures 11(a), 11(b), 12(a) and 12(b), the planned and
to the minimal energy criterion are commented on, since thie tracked trajectories are similar. The trajectories obtained

1. correct calibration—the correct intrinsic parameters
and the correct value @ (i.e., 50 cm) have been used
(see Figures 6 and 8);
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Table 1. Camera Displacement
Translation (mm) t, = —195 t, = —610 t, = —1455

Rotation (deg) (up), = —68 (u9), = —41 u9), = —144

(@) (b)

Fig. 5. First target: (a) initial image and (b) desired image.

) (e) ®

Fig. 6. First target, minimum energy criterion and correct calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities'(andsleg st).



792 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October—November 2003

500
100} - - ora— e
s e
M e
250 [
(d)ml.- 7] [T ] (e) “a ] [ITi) EEL] (f) By = [0 L]

Fig. 7. First target, minimum energy criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities'(andgeg s*).
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Fig. 8. First target, minimum acceleration criterion and correct calibration: (a) planned trajectories; (b) followed trajectories;
(c) camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities(@mnds

deg s?).
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(d) () (f)

Fig. 9. First target, minimum acceleration criterion and bad calibration: (a) planned trajectories; (b) followed trajectories; (c)
camera trajectory; (d) error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities'(andsleg s).

Fig. 10. Second target: (a) initial image and (b) desired image.
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Fig. 11. Second target using correct calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d)
error in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (¢rarsl deg st).

with correct parameters are close to those obtained with bddsired images given in Figures 13(a) and (b)). A possible
parameters (compare Figure 11(a) with Figure 12(a) and Figelution to cope with this deficiency is to use relay images ac-
ure 11(b) with Figure 12(b)). This confirms, once again, thquired off-line. In the next section, we show how our scheme
robustness of the path planning and of the control scheman be extended to this framework.

with respect to calibration errors and errorsddn The track-

ing error (defined ag:- > (x; (1) — x7 (1)) + (yi(t) — ¥ (1)) 7.1 I mages Trajectories

and plotted in Figures 11(e) and 12(e)) remains small in both )

cases (less than four pixels). The convergence to 0 of the &§SUme now that a set &f + 1 relay imaged = {/o - - - I}

ror on the coordinates between the current and the desifc@vailable and that some image features can be extracted
images (defined a% S (1) — x5 (D) + () — yH(D) and matched between_two successive images. Agsume a!so
and plotted in Figurés 11(d) and 12(d)) demonstrates the cpat from the extrac_:ted image features, the collineation matri-
rect realization of the positioning task in both cases. As c&i#SG:.+1 between image$ and/;., can be computed. The

be seen in Figures 11(c) and 12(c), the camera optical cenfé¥lin€ation matrixG; y a K(R; + b,s,)K™ (refer to egs. (1)
moves along a straight line. and (2)) between images and Iy can easily be obtained

noticing that
7. (N + 1) Images Framewor k Gin =G =G 11Gitriv2 - Gyoan. (37)

Classical visual servoing techniques make assumptionsonB&en a set of N + 1 collineation matrices§g =

link between the initial and desired images, limiting the applifGo y - - - Gy_1.n, Gy v} associated with a set &f + 1 time
cability of these techniques to relatively small displacememarametersz, - - - ty_1, zy}, we want to determine a continu-
when the scene is complex. Indeed, if a sufficient number ofis and piecewise differentiable matrix functi@nz) such
image features cannot be matched in these images, the vighalt G(¢;,) = G, fori € {0--- N} and such thaG(¢) corre-
servoing cannot be realized (see, for example, the initial asponds to a minimal length camera trajectory. This problem
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Fig. 12. Second target using bad calibration: (a) planned trajectories; (b) followed trajectories; (c) camera trajectory; (d) error
in image point coordinates (pixels); (e) tracking error (pixels); (f) velocities (cnauisd deg st).

can be formulated as follows (probldai)
Find G(r) minimizing J, = [ UTUdt

fori =0--- N and withU = [v" &"]" wherew is defined by
eq. (10),v = b, and with boundary condition§&(;) «x G;,
G(t;,1) o« G;;1. The solution of problen®M can be obtained
in the same way as the solution€1 (Mezouar 2001)

CO)x1-1)P,_1+ 1P, + (G;_; — P, (38)
wherer = t’j’ﬁ and
e, r)=Kel<rK+ &, =Kb,;n' K+ (39)

with [0,]. = log(R[ ;R;). By introducing egs. (4), (5), and
(6) in eq. (38), it can be shown that the path given by eq. (38)

is not affected by the error on camera intrinsic parameters (the

proof is similar to the case of two images). The features are

. In afirst off-line step, the camera acquires a large set

of images of its workspace. Ideally, these images must
provide a representative sample of all the points of view
which could be reached during the operational phase.

. Points of interest of all these images are extracted us-

ing the Harris detector (Harris and Stephens 1988),
and some invariants are computed (Schmid and Mohr
1997). This allows us, on the one hand, to index these
images in a database which will be used to quickly re-
trieve images acquired during the operational phase,
and on the other hand to match images by pair.

. A graph is then derived from this matching. The nodes

of the graph are the images. An edge between two im-
ages indicates that the images can be matched. The
edges are valuated in a way inversely proportional to
the number of matched image features; the matching is
realized using the algorithm proposed in Zhang et al.

interpolated as for the case of two images (Section 4) and the

(1995).

displacement is then carried out using the control scheme de-

scribed in Section 5. Note that recent work in image database 4.
analysis to solve the problem of retrieving and delivering im-
ages from large database using query (De Marsico, Cinque,
and Levialdi 1997) can be exploited to extract the set of relay
images from an image database. Our scheme to obtain the
relay images can be summarized as follows (Mezouar et al.

2002).

In the on-line step, the robot acquires an initial image
at an unspecified place of its workspace. A task is spec-
ified in the form of an image to reach. The system then
seeks in the image database the closest images to the
initial and desired images. The shortest path between
these images in the graph is then obtained by using the
Dijkstra algorithm. We thus obtain an ordered set of
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Fig. 13. (a) Initial image and (b) desired image.

relay images such that, between two successive imagdansits. To ensure the success of the task whatever the displace-
of this set, a sufficient number of image features can braent to realize, we have tried to embed in a constrained global
matched. optimization process the previously described path planning
scheme (Mezouar 2001). However, the global optimization
. process requires a high computational time and an initializa-
7.2. Experimental Results tion step. It is thus not suitable for on-line implementation. To
In this section, our approach is validated by realizing a p@ope with this problem, a second path planning scheme based
sitioning task. The images corresponding to the desired apfl a local optimization of potential function (Khatib 1986;
initial camera positions are given in Figures 13(a) and (b). Inatombe 1991) is now briefly presented. In this scheme, con-
this case, the SFMJF is impossible to realize. However, frogiraints (visibility and joint limits avoidance) can easily be
the graph built with the image database, eight relay images aigroduced at the path planning level.
obtained (see Figure 14). The trajectories of interesting points
are then planned. The planned and followed trajectories &8d.. Principle
given in Figures 14 and 15. We note that these trajectories arethis approach, the robot motions are under the influence
similar. The camera trajectory is given in Figure 16(a). Thef an artificial potential field ¥) defined as the sum of an
tracking error (defined as > (x; (1) —x; (1)) +(y:(1)—y; (1))  attractive potential ,) pulling the robot towards the goal
and plotted in Figure 16(b)) remains sufficiently small (alwaygonfiguration r,) and a repulsive potential/() pushing the
less than five pixels) to ensure a good behavior of the contriglbot away from the obstacles. Motion planning is performed
scheme. Extension 3 (refer to the Appendix for details) giveg an iterative fashion. At each iteration, an artificial force
an internal view (i.e., a view by the controlled camera) of thg (), where the 6¢< 1 vectorY represents a parametrization

positioning task. of the robot workspacay C R, is induced by the potential
function. This force is defined & Y) = — V1V whereVlV
8. Potential-Based Path Planning denotes the transpose of the gradient vectdf at Y. Using

. . . . these convention$;(Y) can be decomposed as the sum of
The path planning approach described in the previous S&Gio vectors E (1) = YTV andE (1) = YTV which
- . i a - Y Va r - Y Vry
tions, poupled to a pur ely |mage-basgd control, enables respectively called the attractive and repulsive forces. Path
to' realize large robot.dlsplacementg Wlth a strong rOb“SFneﬁ‘éneration proceeds along the directiorF6t’) regarded as
with respectto modeling errors. Addltlonally, closed-formimy, o ot promising direction of motion. Thus, each segment
age traject(_)rles ha_lve been ob'Fam_ed, hence on_ly low COMPUIE5 riented along the negated gradient of the potential function
tional cost is required for on-line implementation. HoweverComputed at the configuration attained by the previous seg-

the limitations qf th? stable region of mag_e-based Contr(?1|1ent. The discrete-time trajectory is given by the transition
and the non-optimality or non-validity of the induced camerg, ation

trajectory were not the only reasons for image-based contro
failures. For example, the features of interest may leave the Yo = Yy + & F(rY

— (40)
camera field of view and the robot may reach its mechanical IF(COI]
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Fig. 14. Planned trajectories.

Fig. 15. Followed trajectories.
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Fig. 16. (a) Camera trajectory and (b) tracking error (pixels).

wherek is the increment index ang, is a positive scaling in the image space are then computed. In order to design
factor denoting the length of thieh increment. In our case, continuous and differentiable curves and to improve the dy-
the control objective can be formulated as follows. To transferamic behavior of the system, the discretized trajectories are
the system to a desired point in the sensor space satisfying thierpolated using cubic B-spline functions. The continuous
following constraints: trajectories are then integrated in an image-based control loop
érj a similar way than for the first planning scheme.

As for the previous path planning scheme, it can be shown
that the potential-based scheme is particularly robust with re-
2. all the considered image features remain in the camespect to calibration errors (Mezouar and Chaumette 2002).

field of view; Contrarily to the previous method, constraints can be inte-
grated in an easy way. In counterpart, the analytical form of
the trajectories in the image space are not known and the
To deal with the first constraint, the motion is first (partially)}camera trajectory is deviated from the optimal one when re-
planned in the 3D Cartesian space using the transition equmadsive forces are involved. Finally, let us note that the total
tion (40) and then projected in the image space. Only tHferce given by (41) may potentially lead to local minima. This
rotation matrix and scaled translation vector trajectories aieintrinsically due to the local and incremental strategy of the
necessary to obtain the corresponding features trajectoriespiotential field approach. In practice, we have never encoun-
the image space. This property allows us to compute the itered configurations leading to local minima and the param-
age trajectories without knowing the CAD model of the objeattersy and y have been fixed to 1. A basic strategy to take
(model-free method), using egs. (1), (2), and (27). out of potential local minima would be to execute a motion

The attractive potentiali{;) pulling the robot toward the favoring the repulsive force (i.e., by increasing parameters
goal configuration,) is defined in the 3D Cartesian space aand x ). Obviously such strategy makes no formal guarantee
a parabolic function reaching its minimum™t. The second to reach the global minimum, and in some cases, there is no
and the third constraints are introduced through a repulsigelution to satisfy all the constraints. From an intuitive point
potential V; defined in the image and a repulsive potentiabf view and following the reasoning proposed in Chesi et al.
V, defined in the joint space. One way to create a potentié2002), the repulsive force related to the visibility constraint
barrier around the camera field of view is to defirieas an  will induce a backward motion if no other motion is possible
increasing function of the distance between the object proje@which is the case when at least two image points leave the
tion and the image limits (see Figure 17(a)). In the same waljeld of view on opposite image limits simultaneously). As
a potential barrier can be created around the robot joint limitoon as the joints limits are taken into account, it may be im-
(see Figure 17(b)). A general description of such functionsossible to realize such backward motion, leading thus to the
and the derivation of the associated artificial forces are givéailure of the path planning. In Cowan and Koditschek (1999),
in Mezouar and Chaumette (2002). The total force is given lpotential functions free of stable local minima (caltediga-

F—F. +yF. 4 ¢F (41) tion functions (Rimon and Kogl_itschek 1992)) are constructed

T YEsT X to guarantee the global stability of the system. However, con-

where the scaling factors andx allow us to adjust the rela- structing such a navigation function requires the complete
tive influence of the different forces. Discretized trajectorieknowledge of the space topology and imposes to set limits on

1. the image trajectories correspond to a valid robot tr
jectory;

3. the robot joints remain between their limits.
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Fig. 17. (a) Repulsive potential for visibility. (b) Repulsive potential for joint limits avoidance.

@
Fig. 18. (a) Initial and (b) desired images.

the considered workspace. Setting these limits is difficult in
practice. Finally, many advantages of the approach proposed
in this paper would be lost: robustness with respect to mod-
eling errors, and application to object with unknown CAD
model.

8.2. Experimental Results

The proposed method has been tested using the same simple
object as before. The images corresponding to the desired
and initial camera positions are given in Figures 18(a) and
(b), respectively. The corresponding camera displacement is
very large(f, = 82cm, 1, = 80cm, t, = 45¢cm, (u9), = 37°,
(u9), = 45°, (uh), = 125°). In this case, classical image-
based and position-based visual servoing fail.

On all the following plots, joint positions are normalized
between [—1; 1], where —1 and 1 represent the joint limits.

In order to emphasize the importance of the introduced
congtraints in the trgjectories, we first perform the path plan-

(b)

ning without repulsive potential. Theresultsare givenin Fig-
ure 19. We can seethat the visual featuresget out largely from
the camerafield of view (Figure 19(a)) and axis gs attainsits
joint limit (Figure 19(b)). Then, only the repulsive potential
associated to the visibility constraint has been activated (see
Figure 20). In that case, even if the visibility constraint is en-
sured (Figure 20(a)), the servoing cannot be realized because
axis ¢s reaches its joint limit (Figure 20(b)). In Figure 21,
the two repulsive potentials are activated. The target remains
in the camera field of view (see Figures 21(a) and (c)) and
al axes avoid their joint limit (see Figures 21(b) and (d)).
We can notice that the planned trgjectories and the realized
trajectories in the image are amost similar, which shows the
efficiency of our control scheme. The error on the image co-
ordinates of each target point between its current and desired
location isgivenin Figure 21(f). We can note the convergence
of the coordinatesto their desired value, which demonstrates
the correct realization of the positioning task.
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Fig. 19. Planned trajectories without any repulsive potential: (a) in the image; (b) in the joint space.
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Fig. 20. Planned trgjectories without repulsive potential associated to the joint limits avoidance: (a) in the image; (b) in the

joint space.
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A second experiment is presented in the extensionsto this
paper and confirms the previous comments (refer to the Ap-
pendix for details). The initial and desired images are given
by Extensions 4 and 5, respectively. The corresponding robot
positions are given by Extensions 6 and 7. The planned tra-
jectory isincluded in the initial image (Extension 4). As can
be seen, the motion to realize is very large and in this case
classical approaches fail. Extension 8 is a video acquired by
the controlled camera during the positioning task (refer to the
Appendix). Extension 9 is a video acquired by an externa
camera observing the robot motions.

9. Conclusion

In this paper, we have addressed the problem of finding the
trajectories in the image space of visual features so that the
cameratrajectory is optimal. The obtained camera tragjectory
corresponds to a minimum geodesic in SE(3). The method
is model-free and the uncalibrated case has been studied. By
coupling the path planning step with an image-based servo-
ing, the proposed method improves significantly the behavior
of image-based servoing when the displacement to redlize is
large. We have validated our approach in a 6-DoF robotic
platform by realizing positioning tasks with respect to an un-
known target. The experimental resultsconfirm therobustness
of our approach with respect to modeling errors. Theinterpo-
lation of multi-relay images has also been studied in order to
cope with the difficult matching problem for acomplex scene
when the initial imageis very different from the desired one.
A potential-based path planning has also been described. It
allows usto integrate easily constraints in the desired trajec-
tories. A natural perspective for thiswork istheincorporation
of obstacle avoidance in the path planning process as well as
the incorporation of non-holonomic constraints.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://mwww.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video  Positioning task described in
Section 6.2 (correctly cali-
brated system) seen by the con-
trolled camera. The red and
blue crosses represent respec-
tively the current and desired
features. The green crosses
represent the current desired
position of the features (that is
their planned trajectories).
Same example with badly cal-
ibrated camera.

2 Video

3 Video  Positioning task described in
Section 7.2 seen by the con-
trolled camera.

4 Image Initial image with planned tra-
jectories (Section 8.2).

5 Image  Desired image (Section 8.2).

6 Image Initial robot configuration
(Section 8.2).

7 Image  Final robot configuration (Sec-
tion 8.2).

8 Video  Motion during the positioning
task (Section 8.2) seen by a
camera observing the robot.

9 Video  Sameexampleseen by thecon-

trolled camera (Section 8.2).
The blue and green crosses
represent respectively the cur-
rent and desired features. The
red crosses represent the cur-
rent desired position of thefea-
tures (i.e., their planned trajec-
tories).
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