
1 Overview

Controlling a camera in
a virtual environment

É. Marchand, N. Courty

IRISA – INRIA Rennes,
Campus universitaire de Beaulieu,
35042 Rennes Cedex, France
E-mail: {marchand,ncourty}@irisa.fr

Published online: 24 January 2002
c© Springer-Verlag 2002

This paper presents an original solution to
the camera control problem in a virtual envi-
ronment. Our objective is to present a general
framework that allows the automatic con-
trol of a camera in a dynamic environment.
The proposed method is based on the image-
based control or visual servoing approach.
It consists of positioning a camera accord-
ing to the information perceived in the im-
age. This is thus a very intuitive approach
of animation. To be able to react automat-
ically to modifications of the environment,
we also considered the introduction of con-
straints into the control. This approach is
thus adapted to highly reactive contexts (vir-
tual reality, video games). Numerous exam-
ples dealing with classic problems in ani-
mation are considered within this framework
and presented in this paper.

Key words: Automatic camera motion – Au-
tomatic cinematography – Visual servoing –
Animation

Correspondence to: Éric Marchand

1.1 Issues

There are numerous issues related to the control of
a camera in a virtual environment. Typically, the con-
trol of the camera is handled by lookat/lookfrom
techniques associated with the definition of 3D tra-
jectories. The camera must, usually, first position it-
self with respect to its environment and must then
react in an appropriate and efficient way to modifi-
cations of the environment. As regards the first is-
sue, even if full knowledge of the scene is available,
as in the computer animation context, the position-
ing task is not a trivial problem (see [2]). There is
a need for precise control of the 6 degrees of free-
dom (d.o.f.) of the camera in 3D space. The sec-
ond issue, which can be defined as the introduc-
tion of constraints to the camera trajectory, is even
more complex. In order to be able to consider un-
known or dynamic environments and to achieve real-
time camera motion control, these constraints must
be properly modeled and “added” to the positioning
task.

1.2 Related work

Visual servoing has proved, within the robotics con-
text, to be an efficient solution to these problems.
Visual servoing or image-based camera control con-
sists of specifying a task (mainly positioning or tar-
get tracking tasks) as the regulation in the image of
a set of visual features [6, 8, 21]. A set of constraints
is defined in the image space (e.g., “I want to see
the tree vertical and centered in the image, while
the head of the man must appear in the upper left
part of the image”). A control law that minimizes
the error between the current and desired positions of
these visual features can then be automatically built.
A good review and introduction to visual servoing
can be found in [10]. As the task specification is car-
ried out in 2D space, it does not require a 3D relation-
ship between objects. However, since the approach
is local, it is not a priori possible to consider plan-
ning issues. If the control law computes a motion that
leads the camera to undesired configurations (such as
occlusions or obstacles), visual servoing fails. Con-
trol laws taking into account these “bad” configu-
rations therefore have to be considered. Framework
that allows the consideration of such constraints has
been presented in, for example, [15, 16]. It combines
the regulation of the vision-based task with the min-
imization of cost functions reflecting the constraints
imposed on the trajectory.

The Visual Computer (2002) 18:1–19
Digital Object Identifier (DOI) 10.1007/s003710100122



2 É. Marchand, N. Courty: Visual servoing in computer animation

Viewpoint control has also received attention in com-
puter graphics. The main difference with respect
to computer vision or robotics is that the prob-
lem is no longer ill-posed. Indeed, in this case full
knowledge of the scene is available. Even in an
interactive context, the past and current behavior
of all the objects is fully known. Ware and Os-
born [20] have considered various metaphors to
describe a six-d.o.f. camera control, including “eye
in hand”. Within this context, the goal was usually
to determine the position of the “eye” with respect
to its six d.o.f. in order to see an object or a set
of objects at given locations on the screen. User
interfaces such as a 3D mouse or a six d.o.f. joy-
stick could be considered to control such a virtual
device. Obtaining smooth camera motions requires
a skilled operator and has proven to be a difficult
task. The classical lookat/lookfrom/vup parameter-
ization is a simple way to achieve a gazing task on
a world-space point. However specifying a complex
visual task within the lookat/lookfrom framework
is quite hopeless. Attempts to consider this kind of
problem have been made by Blinn [2]; however,
the proposed solutions appear to be dedicated to
specific problems and hardly scaled to more com-
plex tasks. Image-based control has been described
within the computer graphics context by Gleicher
and Witkin [7], who called it “through-the-lens
camera control”. They proposed the achievement
of very simple tasks such as positioning a camera
with respect to objects defined by static “virtual”
points. This technique, very similar to the visual
servoing framework, considers a local inversion of
the nonlinear perspective viewing transformation.
A constraint optimization is used to compute the
camera velocity from the desired motion of the vir-
tual point in the image. Another formulation of
the same problem has been proposed in [11]. In
both cases, the interaction matrix or image Jacobian
(which links the motion of the features to camera
motion) is proposed only for point features. Fur-
thermore, the introduction of constraints in the cam-
era trajectory is not considered within the proposed
framework.
The introduction of constraints has received great
attention in both the robotics (e.g., [4, 19]) and
the computer-graphics [5] communities. The result-
ing solutions are often similar. Each constraint is
defined mathematically as a function of the cam-
era parameters (location and orientation) to be
minimized using deterministic (e.g., gradient ap-

proaches) or stochastic (e.g., simulated annealing)
optimization processes. These approaches feature
numerous drawbacks. First they are usually time
consuming (the search space is of dimension six)
and the optimization has to be considered for each
iteration of the animation process (i.e., for each
new frame). It is then difficult to consider these
techniques for reactive applications such as video
games. As already stated, visual servoing allows
the introduction of constraints in the camera trajec-
tory [15, 16, 18]. These constraints are modeled as
a cost function to be minimized. The resulting mo-
tion, also named the secondary task, is then projected
in the null space of the main task; it has then no
effect on the main visual task. As the camera trajec-
tory that ensures both the task and the constraints
is computed locally in this framework, it can be
handled in real-time as required by the considered
applications.

1.3 Presented system and contributions

The aim was to define the basic camera trajecto-
ries for virtual movie directors as well as the au-
tomatic control of a camera for reactive applica-
tions such as video games. We assume that we know
the model of the scene fully at the current instant.
Within this context, we present a complete frame-
work, based on visual servoing, that allows the def-
inition of positioning tasks with respect to a set of
“virtual visual features” located within the environ-
ment (these features can be points, lines, spheres,
cylinders, etc.). When the specified task does not
constrain all the camera d.o.f., the method allows the
introduction of secondary tasks that can be achieved
under the constraint that the visual task is itself
achieved. Furthermore the considered features are
not necessarily motionless. Using this approach we
present solutions to various non-trivial problems in
computer animation. Some of these tasks are more
concerned with reactive applications (target track-
ing and following, obstacles and occlusion avoid-
ance), while others deal with cinema applications
(panning, camera traveling, lighting-conditions opti-
mization, etc.).
The remainder of this paper is organized as follows:
Section 2 recalls the visual servoing framework
within the task function approach. Section 3 presents
methods allowing navigation in cluttered dynamic
environments. Section 4 handles constraints more
closely related to the cinema industry.



É. Marchand, N. Courty: Visual servoing in computer animation 3

Fig. 1. Elementary positioning task: initial, intermediate and final frames acquired by the camera during the visual
servo-loop. The first line shows the camera view and the second line shows an external view of the scene with the posi-
tion of the camera. The red points are the visual features considered in the servo loop. The visual servoing loop aimed
at minimizing the error between the current positions of these points (in red) and their desired positions (which appear
in green in the initial frame)

2 Image-based camera control

Image-based visual servoing consists of specifying
a task as the regulation in the image of a set of vi-
sual features [6, 8]. The basic idea of visual servoing
is then to construct a servo loop that causes the cam-
era to iteratively move toward its final position based
on the contents of the image at each frame and the de-
sired contents of the image. Let us insist on the fact
that the specification of the camera’s final position is
not defined in the 3D space but is fully dependent on
the 2D visual constraints defined by the visual servo-
ing task.
Figure 1 depicts a concrete example of visual servo-
ing servo-loop behavior. In this experiment, the goal
is to see the photo of the car at a given location in
the image. The red points are the visual features con-
sidered in the visual task. The visual servoing loop
aimed at minimizing the error between the current
positions of these points (in red) and their desired
positions (which appear in green in the upper left
image).
Embedding visual servoing in the task function ap-
proach [18] allows general results helpful in the anal-
ysis and synthesis of efficient closed-loop control
schemes to be used. A good review and introduction
to visual servoing can be found in [10].

2.1 Camera positioning with respect to
visual targets

Let us denote P as the set of selected visual fea-
tures used in the visual servoing task measured from
the image, or by projection in the computer-graphics
context, at each iteration of the control law. To ensure
the convergence of P with its desired value Pd, we
need to know the interaction matrix LT

P, which links
the motion of the object in the image to the camera
motion. It is defined by the now classic equation [6]:

Ṗ = LT
P(P, p)Tc, (1)

where Ṗ is the time variation of P (the motion of P in
the image) due to the camera motion Tc. The param-
eters p involved in LT

P represent the depth informa-
tion between the considered objects and the camera
frame. A vision-based task e1 is defined by:

e1 = C(P − Pd), (2)

where C, called the combination matrix, has to be
chosen such that CLT

P is full rank along the desired
trajectory r ∈ SE3. If e1 constrains the 6 d.o.f., it can
be defined as C = LT+

P (P, p). L+ is the pseudo in-
verse of matrix L and is defined by

• L+ = (LT L)−1LT if the n d.o.f. are constrained
(i.e.„ if rank L ≥ 6).

• L+ = LT (LLT )−1 if rank L ≤ 6.



4 É. Marchand, N. Courty: Visual servoing in computer animation

We will see in Sect. 2.3 how to define C if the 6 d.o.f.
are not constrained.
To make e1 decrease exponentially, the camera ve-
locity given as input to the virtual camera is given
by

Tc = −λe1, (3)

where λ is a proportional coefficient.
Within this framework we can easily perform posi-
tioning tasks with respect to any object in the scene.
The main advantage of this approach is that, even if
the task is specified within the 2D image space, the
control is performed in 3D.

2.2 Building multiple image-based
constraints

One of the difficulties in image-based visual servo-
ing is to derive the interaction matrix LT which cor-
responds to the selected control features. A system-
atic method has been proposed to analytically derive
the interaction matrix from a set of control features
defined based upon geometrical primitives [6]. Any
kind of visual information can be considered within
the same visual servoing task (coordinates of points,
line orientation, surface or more generally inertial
moments, distance, etc.).
Knowing these interaction matrices, the construction
of elementary visual servoing tasks is straightfor-
ward. A large library of elementary skills can be pro-
posed. The current version of our system allows one
to define X-to-Y feature-based tasks (or constraint),
where X and Y are defined in {point, line, sphere,
cylinder, circle, etc.}. Defining X-to-Y feature-based
tasks means that the operator wants to the object X
“on” the object Y in the image space. Let us note that
X and Y are not necessarily the same features, for ex-
ample, a point-to-line constraint means that we want
to see a 2D point on a 2D line.
From these elementary positioning constraints, more
complex tasks can be considered by “stacking” the
interaction matrix and the error vector related to each
elementary task. For example, if we want to build
a positioning task with respect to a segment, defined
by two points P1 and P2, we define two point-to-
point constraints. We thus want to minimize the error
between the current position of P1 (P2) in the image
and its desired position, Pd1 (Pd2).
The resulting interaction matrix as considered in 1
will be defined by “stacking” interaction matrices

LT
P1

related to the first constraint and LT
P2

related to
the second constraint. This leads to the new matrix
LT

P defined by

LT
P =

[
LT

P1

LT
P2

]
, (4)

where LT
Pi

is defined, if Pi = (X, Y) and z is its depth,
by (see [6] for its derivation):

LT
P =

(
−1/z 0 X/z XY − (1+ X2) Y

0 −1/z Y/z 1+Y 2 − XY − X

)
(5)

and the error vector involved in 2 is given by

(P − Pd) =



X1 − Xd1

Y1 −Yd1

X2 − Xd2

Y2 −Yd2


 . (6)

The full control law is then given by

Tc = −λ (7)

×



−1/z1 0 X1/z1 X1Y1 − (1+ X2
1) Y1

0 −1/z1 Y1/z1 1+Y 2
1 − X1Y1 − X1

−1/z2 0 X2/z2 X2Y2 − (1+ X2
2) Y2

0 −1/z2 Y2/z2 1+Y 2
2 − X2Y2 − X2



+

×



X1 − Xd1

Y1 −Yd1

X2 − Xd2

Y2 −Yd2


.

More positioning constraints can thus be simply de-
fined considering the appropriate interaction matrix
and error vector.

2.3 Introducing constraints within the
positioning task

If the vision-based task does not constrain all the
n robot d.o.f., a secondary task (which usually rep-
resents a camera-trajectory constraint) can be per-
formed. C is now defined as C = WLT+

P and we ob-
tain the following task function:

e = W+e1 + (In − W+W)e2, (8)

where

• e2 is a secondary task. Usually e2 is defined as
the gradient of a cost function hs to be minimized
(e2 = ∂hs

∂r ). This cost function is minimized under
the constraint that e1 is realized.



É. Marchand, N. Courty: Visual servoing in computer animation 5

• W+ and In − W+W are two projection operators
which guarantee that the camera motion due to
the secondary task is compatible with the regula-
tion of P to Pd. W is a full rank matrix such that
KerW = KerLT

P . Thanks to the choice of matrix
W, In − W+W belongs to KerLP , which means
that the realization of the secondary task will
have no effect on the vision-based task (LT

P(In −
W+W)e2 = 0). Let us note that if the visual task
constrains all the n d.o.f. of the manipulator, we
have W = In, which leads to In − W+W = 0. It is
thus impossible in that case to consider any sec-
ondary task.

The control is now given by:

Tc = −λe− (In − W+W)
∂e2

∂t
. (9)

2.4 Tracking a mobile target

A target motion generally induces tracking errors
that have to be suppressed in order to always achieve
the tracking task perfectly.
In that case, the motion of the target in the image can
be rewritten as

Ṗ = LT
PTc − LT

PT0, (10)

where LT
PTc and LT

PT0 are respectively the contribu-
tions of the camera velocity and of the autonomous
target motion to the motion of the target in the image.
The new camera velocity that suppresses the tracking
errors is then given by

Tc = −λe− (In − W+W)
∂e2

∂t
−αT0, (11)

where α ∈ [0, 1] is a scalar. If α = 1 the tracking er-
rors are fully suppressed, while if α = 0 they are not
handled.

3 Reactive viewpoint planning

The positioning tasks that can be considered within
the framework presented in the previous section are
quite simple. As we did not consider the environ-
ment, the target was assumed to be “alone”. We now
present a method that makes it possible to achieve
far more complex tasks in dynamic cluttered envi-
ronments. In this difficult context we will propose
a purely reactive framework in order to avoid unde-
sirable configurations in an animation context.

3.1 Avoiding obstacles

Obstacle avoidance is a good example of what can be
easily specified within the proposed framework. Let
us assume that the camera is moving in a cluttered
environment while its view is centered on a visual
target. The goal is to ensure this task while avoiding
all the obstacles in the scene.
There are in fact multiple solutions to this problem:
one solution is to plan a trajectory that avoids the
obstacles using a trajectory planning process. An-
other solution is to consider a secondary task that
uses the redundant d.o.f. of the camera to move away
from obstacles. This function will tend to maximize
the distance between the camera and the obstacle.
A good cost function to achieve the goal should be
maximum (infinite) when the distance between the
camera and the obstacle is null. The simplest cost
function is then given by

hs = α
1

2‖C − Oc‖2
(12)

where C(0, 0, 0) is the camera location and Oc(xc,
yc, zc) are the coordinates of the closest obstacle
to the camera, both expressed in the camera frame.
(Note that any other cost function that reflects a sim-
ilar behavior suits the problem.) If Os(xs, ys, zs)
are the coordinates of the obstacle within the scene
frame (or reference frame) and Mc(RT) is the ho-
mogeneous matrix that describes the camera position
within this reference frame, the obstacle coordinates
within the camera frame are given by Xc = RT Xs −
RT T.
The components of the secondary task are given by

e2 = −(xc, yc, xc, 0, 0, 0)T h2
s

α
and

∂e2

∂t
= 0. (13)

Multiple obstacles can be handled considering the
cost function hs = ∑

i α
1

‖C−Oci ‖2 .

3.2 Avoiding occlusions

The goal here is to avoid the occlusion of the tar-
get due to static or moving objects (with unknown
motion). The virtual camera has to perform ade-
quate motion in order to avoid the risk of occlusion
while taking into account the desired constraints be-
tween the camera and the target. Related work is
described in [13]. There are actually many situa-
tions that may evolve into occlusion. The first and
most simple case is a moving object that crosses the



6 É. Marchand, N. Courty: Visual servoing in computer animation

a b c

Fig. 2a,b. Occlusion issues. a Occlusion due to a moving object; b occlusion due to the target motion; and c occlusion
due to the camera motion

camera–target line (see Fig. 2a). Two other similar
cases may be encountered: in the first one (Fig. 2b)
the target moves behind another object in the scene,
while in the second one (Fig. 2c) the camera fol-
lows an undesirable trajectory and is hidden behind
an object.
We will now first present a general image-based
approach that makes it possible to generate ade-
quate camera motion automatically to avoid occlu-
sions [15]. Second, we will see a simple method to
determine the risk of occlusion in order to weight ad-
equately the camera response (i.e., its velocity).

Automatic generation of adequate motions

Let us consider the set O of objects in the scene
which may occlude the target T : O = {O1, . . . On}.
According to the methodology presented in Sect. 2.3,
we have to define a function hs which reaches its
maximum value when the target is occluded by an-
other object of the scene. In fact this occlusion prob-
lem can be fully defined in the image. If the occlud-
ing object is closer than the target when the distance
between the projection of the target and the projec-
tion of the occluding object decreases, the risk of
occlusion increases.
A function similar to the one proposed in (12) may
be considered. In this section, in order to avoid ve-
locities that are too important, we define hs as an
exponential of the distance in the image:

hs = 1

2
α

n∑
i=1

e−β(‖pr(T)−pr(Oi )‖2), (14)

where pr(.) is the projection function and α and β are
two scalar constants. α sets the amplitude of the con-
trol law due to the secondary task. The components
of e2 and ∂e2

∂t involved in (9) are then

e2 = ∂hs

∂r
= ∂hs

∂P
∂P
∂r

,
∂e2

∂t
= 0.

Computing ∂hs
∂P is seldom difficult. ∂P

∂r is nothing but
the interaction matrix LT

P .
Let us consider the case of a single occluding ob-
ject, here considered as a point. The generalization
to other types of object and/or to multiple objects
is straightforward. We want to see the target T at
a given location in the image. Thus we will consider
the coordinates pr(T) = P = (X, Y) as the projec-
tion of its center of gravity. Treatment of O may be
slightly different; we will not consider the projec-
tion of its center of gravity but the 2D point PO =
(X O, YO) of its projection in the image plane the
closest to pr(T). The cost function is then given by

hs = 1

2
αe−β‖P−PO‖2

,

and e2 is given by

e2 = ∂hs

∂r
= ∂hs

∂X
LT

X + ∂hs

∂Y
LT

Y , (15)

where
∂hs

∂X
= −αβ(X − X O)e−β‖P−PO‖2

and
∂hs

∂Y
= −αβ(Y −YO)e−β‖P−PO‖2

.

In fact e2 as defined in 15 is an approximation of ∂hs
∂r .

Indeed LT
P = [

LT
X, LT

Y

]T
is the interaction matrix re-

lated to a physical point. In our case, since the point
is defined as the closest projected point of O to T ,
the corresponding physical point in the 3D space will
change over time. However considering LT

X and LT
Y

in 15 is locally a good approximation.



É. Marchand, N. Courty: Visual servoing in computer animation 7

3a 3b

4a 4b

Fig. 3a,b. Computing the risk of
occlusion
Fig. 4a,b. Detection of a future (a)
occlusion (b) collision with an ob-
stacle

Risk of occlusion

Using the presented approach to compute the cam-
era reaction is fine if the occluding object moves
between the camera and the target [15] as depicted
in Fig. 2. Indeed, in that case occlusion will occur
if no action is taken. However, it is neither neces-
sary nor desirable to move the camera in all the cases
(if the occluding object is farther than the target).
A key point is therefore to detect if an occlusion
may actually occur. In that case we first compute
a bounding volume V that includes both the cam-
era and the target at the current time t and its pre-
dicted position at time t + ndt assuming a constant
target velocity (see Figs. 3 and 4). dt is the time in-
terval between two intersection tests. An occlusion
will occur if an object is located within this bounding
box. The time-to-occlusion may be computed as the
largest n for which the bounding box is empty. Pre-
cision for the computation of the largest n depends
on dt: the smaller dt is, the greater the estimation

of the time-to-intersection will be. If an object O of
the scene is in motion, in the same way, we con-
sider the intersection of the volume V with a bound-
ing volume that includes O at time t and at time
t +ndt.
Let us point out two other interesting issues:

• Obstacle avoidance may be considered in this
context. Indeed, if an obstacle is on the camera
trajectory, it will be located in the created bound-
ing box (see Fig. 4b). The system will therefore
forbid the camera to move in that direction.

• Some cases are more difficult to handle. A good
example is a target moving in a corridor (see
Fig. 5). In that case, the only solution to avoid the
occlusion of the target by one of the walls and to
avoid contact with the other wall is to reduce the
camera–target distance. This can only be done if
the z-axis is not controlled by the primary task.

In conclusion, let us note that in this subsection, we
have proposed a method to detect and quantify the



É. Marchand, N. Courty: Visual servoing in computer animation 9

a b

Fig. 6a,b. Controlling lighting conditions. a static light/moving camera b moving light/static camera

siders information about the contrast of the resulting
image.
To outline the issue, our primary goal will be to
move the camera while the light remains static (see
Fig. 6a). Then, we will propose to move the light
while the camera remains static (see Fig. 6b).

Modeling

Though it is not the most interesting situation, our
first goal is to position the camera with respect to
the lit aspect of the object. Therefore, we want to
maximize the quantity of light (re-)emitted by this
object to ensure good lighting conditions. Applying
the methodology proposed in the previous sections,
we want to maximize the following cost function:

hs = 1

n

∑
X

∑
Y

I(X, Y),

where I(X, Y) represents the intensity of the 2D
point (X, Y) and n is the number of points (X, Y) that
belong to the object. The secondary task is then given
by

∂hs

∂r
= 1

n

∑
X

∑
Y

(
∂hs

∂X

∂X

∂r
+ ∂hs

∂Y

∂Y

∂r

)

= 1

n

∑
X

∑
Y

(∇X LT
X +∇Y LT

Y

)
, (17)

where ∇ IX = ∂I
∂X and ∇ IY = ∂I

∂Y represent the spatial
intensity gradient.
A more interesting goal is to maximize the contrast
within the image; one possible criterion will be to

maximize the sum of the spatial intensity gradient
within the image. The corresponding cost function is
given by

hs = 1

n

∑
X

∑
Y

[∇ I2
X +∇ I2

Y

]
. (18)

We therefore need to compute the gradient dhs
dr ,

which is in fact given by

dhs

dr
= 1

n

∑
X

∑
Y

(
dhs

dX
LT

X + dhs

dY
LT

Y

)
. (19)

After some rewriting, we finally obtain

dhs

dr
= 2

n

∑
X

∑
Y

[(
d2 I

dX2
∇ IX + d2 I

dY dX
∇ IY

)
LT

X

+
(

d2 I

dX dY
∇ IX + d2 I

dY 2
∇ IY

)
LT

Y

]T

.

(20)

Moving the light

Considering a static light and a mobile camera is not
the most interesting context. Indeed if the camera is
moving, the aspect of the object will change over
time. It would be more interesting to control the light
position and orientation while the camera remains
static.
Here again we consider the visual servoing frame-
work to point the light toward the object of inter-
est and to achieve well-lit conditions. We first add



10 É. Marchand, N. Courty: Visual servoing in computer animation

a virtual camera (with the same location and di-
rection) to the light. The main task is specified as
a simple focusing task that constrains the rotation
d.o.f. of the virtual camera/light system. We then
consider the redundancy to control the translation
d.o.f. of the camera/light to impose the correct il-
lumination of the object within the image acquired
by the other camera. The task function is then de-
fined as

e = W+W LT+
(P − Pd)︸ ︷︷ ︸

main focusing task

+ (I − W+W)

(
R − R Skew(−RT T)
0 R

)
dhs

dr
.︸ ︷︷ ︸

secondary task defined
with respect to the other camera

(21)

where R and T denotes the rotational and transla-
tional mappings of the camera frame onto the light
frame.
Let us note here that if the camera is now moving,
the problem remains exactly the same as long as we
know the transformations R and T between the cam-
era and the light.

5 Results

In this section some results are presented to illus-
trate our approach. Most of the images are gener-
ated in “real-time” (i.e., less than 0.1 s/frame with-
out texture-mapping) on a simple SUN Ultra Sparc
(170 Mhz) using Mesa GL (the images produced us-
ing this process can be seen in, for example, Fig. 13).
The animations in Figs. 7, 10 and 11 integrate texture
mapping and are not generated in real-time (how-
ever, the program was not optimized at all), while
Fig. 8 was computed afterward using Maya from
Alias Wavefront.

5.1 Elementary positioning tasks

We present in this paragraph experiments related
to very simple positioning tasks: a positioning task
with respect to four points and with respect to
a segment with a trajectory tracking. Although such
tasks are widely described in the robotics litera-
ture e.g., [6, 10] and in computer graphics papers [7,

11], we propose here some results for illustration
issue.

Positioning with respect to a rectangle:
rigid link

The goal of this experiment is to see a rectangle at
a given position in the image. To achieve this task we
have to control all the d.o.f. of the camera. One way
(among others) to achieve this task is to define the
rectangle as four points. This will give us the follow-
ing interaction matrix:

LT
P = [

LT
P1

, LT
P2

, LT
P3

, LT
P4

]T
(22)

with LT
Pi
, i = 1 . . . 4 defined as in (5). LT

P is then a
8×6 matrix and is full rank 6. Therefore the 6 d.o.f.
are controlled.
In Fig. 7 we consider the painting by Monet as the
object of interest. We want to see it centered in the
screen. We therefore defined the desired position
as four points defined by (a, b), (−a, b), (−a,−b),
(a,−b), where a and b are functions of the real paint-
ing size and of the desired painting size in the im-
age. Figure 7a shows 6 key frames of a 600 frames
animation of the camera view along with a bird’s
eye view that shows both the camera (in green) and
the painting. Figure 7b and c show the camera ve-
locities in translation and in rotation, while Fig. 7d
depicts the error in the image between the current
position of the painting and the desired one. Let us
note that as the 6 d.o.f. are constrained by the camera,
no additional constraint can be added on the camera
trajectory.

Trajectory tracking

In the experiment described in Fig. 8, the camera fo-
cuses on the tower (i.e., we want to see this tower
vertically and centered in the image). Let us note
here that a similar task has been considered in [7].
Let us first consider the positioning task itself. It can
be handled in various ways according to the chosen
visual features. The simplest way to define a seg-
ment is to consider its two extremities. In that case
LT

P is a full rank-4 matrix. The distance between
the camera and the middle of the segment must re-
main constant. If we want to follow a trajectory that
does not ensure this constraint, we will have to mod-
ify the focal length of the camera to ensure both
the main task and the trajectory tracking [7]. This



É. Marchand, N. Courty: Visual servoing in computer animation 11

a

b c d

Fig. 7a–d. Positioning with respect to a painting (visual features are the four corners of the rectangle). a Six camera and bird’s eye
views; b camera translational velocities; c camera rotational velocities; d errors P − Pd in the image



12 É. Marchand, N. Courty: Visual servoing in computer animation

a

b

Fig. 8a,b. Positioning wrt. a line and trajectory tracking. a View of the camera; b 3D camera trajectory wrt. the line

solution is usually not suitable for cinematographic
issues. The other way to consider this segment is
to choose the segment support straight line as a vi-
sual feature. In that case, the interaction matrix is
a full rank-2 matrix and only two d.o.f. are then con-
strained (note that a similar solution would have been
to constrain the orientation of the segment and the
position of its middle point). The first two frames of
Fig. 8a show the beginning and the end of this focus-
ing task. Once this is achieved, the camera follows
a given 3D trajectory. The tracked trajectory is plot-
ted on Fig. 8b.

5.2 Avoiding occlusions: museum
walkthrough

In this example, we applied the proposed methodol-
ogy to a navigation task in a complex environment.
The target to be followed is moving in a museum-like
environment. This “museum” has two rooms linked
by stairs. The experiment goal is to keep the target in
view (i.e., to avoid occlusions) while considering on-
line the modifications of the environment (i.e., other
moving objects).



É. Marchand, N. Courty: Visual servoing in computer animation 13

Fig. 9. Museum walk-
through: camera trajecto-
ries for various strategies

We do not address in this paper the definition of
the target trajectory. Finding a path for the target is
a planning problem on its own. Solutions are pro-
posed in, e.g., [5, 14]. Most of these approaches are
based on a global path planning strategy (usually
based on the potential field approach [12]).
In this example, we consider a focusing task with
respect to an image-centered virtual sphere that has
to be centered in the image. This task constrains
3 d.o.f. of the virtual camera (i.e., to achieve the
focusing task and to maintain the radius constant
in the image). The reader can refer to [6] for the
complete derivation of the interaction matrix re-
lated to a sphere. Figure 9 shows the camera tra-
jectories for various applied strategies while target
and camera are moving in the first room of the
environment. Obstacles appear in yellow. The tar-
get trajectory is represented as a red dotted line,
while the trajectory of another moving object is
represented as a blue dotted line. The red trajec-
tory represents the simplest strategy: just focus on
the object. As nothing is done to consider the en-
vironment, occlusions and then collisions with the
environment occur. The blue trajectory only con-

siders the avoidance of occlusions by static ob-
jects; as a consequence, occlusion by the moving
object occurs. The green trajectory considers the
avoidance of occlusions by both static and moving
objects.
Figure 10 shows the views acquired by the camera
if no specific strategy is considered to avoid oc-
clusion of the target and obstacle avoidance. This
leads to multiple occlusions of the target and mul-
tiple collisions with the environment. In Figs. 11
and 12 the control strategy considers the presence
of obstacles. This time, the target always remains
in the field of view and at its desired position in
the image. The collisions with the wall and the
occlusions of the target are correctly avoided. Let
us note that the environment is not flat, and nei-
ther the target nor the camera move within a plane
(the target “gets down” stairs in the last row of
Fig. 11). The tracking and avoidance processes per-
form well despite the fact that the target moves in
3D. From the bird’s eye view the yellow volume
(associated with the camera–target couple) corre-
sponds to the bounding volumes used to predict the
occlusions.



14 É. Marchand, N. Courty: Visual servoing in computer animation

Fig. 10. Museum walkthrough. The occlusions/obstacles avoidance process is not considered. This leads to multiple occlusions of
the target and multiple collisions with the environment

5.3 Walking in a corridor: Merging multiple
constraints

In this experiment the considered task is the same
but the target is moving within a narrow corri-
dor and is turning right (see Fig. 13). It is not
possible to achieve this task if the distance be-
tween the camera and the target remains constant.
If one wants the camera to keep the target in
view, an occlusion avoidance process has to be
performed. The problem is that the motion com-

puted to avoid the occlusion moves the camera to-
ward the red wall. An obstacle avoidance process
is then necessary. We then have three secondary
tasks: one related to the camera–target distance,
one related to obstacle avoidance (see Sect. 3.1)
and the last one related to occlusion avoidance
(see Sect. 3.2). The resulting control law automat-
ically produces a motion that moves the camera
away from the wall and reduces the camera–target
distance. This distance, initially set to 3.5 m, de-
creases and reaches less that 2.5 m to ensure the
task.



É. Marchand, N. Courty: Visual servoing in computer animation 15

Fig. 11. Museum walkthrough (part 1): camera views and corresponding bird’s eye views

5.4 The “photography” problem

As regards this issue, we first perform a position-
ing experiment involving a complex object. We
consider a model of the Venus de Milo. In this

experiment we first consider a static camera and
a moving light. Second, when a minimum of the
cost function is reached, we impose motion on the
camera. The light must then move in order to main-
tain a correctly lit statue. The results presented



16 É. Marchand, N. Courty: Visual servoing in computer animation

12

13

Fig. 12. Museum walkthrough (part 2): camera views and corresponding bird’s eye views
Fig. 13. Moving in a corridor: bird’s eye views and camera views



É. Marchand, N. Courty: Visual servoing in computer animation 17

14

15

Fig. 14. Illuminating the Venus de Milo: maximizing the contrast. In the three first columns the camera remains static, then it turns
around the object
Fig. 15. Illuminating the Venus de Milo: camera and light trajectories



18 É. Marchand, N. Courty: Visual servoing in computer animation

(see Fig. 14) show the validity of our approach. One
can see that the light trajectories around the statue
in Fig. 15.

6 Conclusion

There are many problems associated with the man-
agement of a camera in a virtual environment. It is
not only necessary to be able to carry out a visual
task (often a focusing task or more generally a po-
sitioning task) efficiently, but it is also necessary to
be able to react in an appropriate and efficient way to
modifications of this environment. We chose to use
techniques widely considered in the robotic vision
community. The basic tool that we considered is vi-
sual servoing, which consists of positioning a camera
according to the information perceived in the im-
age. This image-based control constitutes the first
novelty of our approach. The task is indeed speci-
fied in 2D space, while the resulting camera tra-
jectories are in 3D space. It is thus a very intuitive
approach of animation, since it is carried out accord-
ing to what one wishes to observe in the resulting
images sequence.
However, this is not the only advantage of the
method. Indeed, in contrast to previous work [7],
we did not limit ourselves to positioning tasks with
respect to virtual points in static environments. In
many applications (such as video games) it is in-
deed necessary to be able to react to modifications
of the environment, of trajectories of mobile ob-
jects, etc. We thus considered the introduction of
constraints into camera control. Thanks to the redun-
dancy formalism, the secondary tasks (which reflect
the constraints on the system) do not have any ef-
fect on the visual task. To show the validity of our
approach, we have proposed and implemented var-
ious classic problems from simple tracking tasks to
more complex tasks such as occlusion and obstacle
avoidance or positioning with respect to lit aspects of
an object (in order to ensure good “photography”).
The approach that we proposed has real qualities,
and the very encouraging results obtained suggest
that the use of visual control for computer animation
is a promising technique. The main drawback is a di-
rect counterpart of its principal quality: the control is
carried out in the image, thus implying loss of con-
trol of the 3D camera trajectory. This 3D trajectory is
computed automatically to ensure the visual and the
secondary tasks but is not controlled by the animator.

For this reason, one can undoubtedly see a wider in-
terest in the use of these techniques within real-time
reactive applications.

Acknowledgements. The authors wish to thank François Chaumette for
valuable comments and Rémi Cozot for submitting the lighting prob-
lem to us.

Animations online

Most of the animations presented in this paper can
be found as mpeg films on the VISTA group Web
page (http://www.irisa.fr/vista; follow
the “demo” link).

References

1. Arijon D (1976) Grammar of the Film Language. Commu-
nication Arts Books, New York

2. Blinn J (1998) Where am I? what am I looking at? IEEE
Comput Graph Appl 8:76–81

3. Christianson DB, Anderson SE, He L-W, Salesin DH, Weld
DS, Cohen MF (1996) Declarative camera control for au-
tomatic cinematography. In: Proc. of AAAI’96 Conference,
Portland, Ore., pp 148–155

4. Cowan CK, Kovesi PD (1988) Automatic sensor placement
from vision task requirements. IEEE Trans Pattern Anal
Mach Intell 10(3):407–416

5. Drucker SM, Zeltzer D (1994) Intelligent camera control in
a virtual environment. In: Davis WA, Joe B (eds) Graphics
Interface’94, Banff, pp 190–199

6. Espiau B, Chaumette F, Rives P (1992) A new approach
to visual servoing in robotics. IEEE Trans Rob Autom
8(3):313–326

7. Gleicher M, Witkin A (1992) Through-the-lens camera
control. In: ACM Computer Graphics, SIGGRAPH’92,
Chicago, pp 331–340

8. Hashimoto K (1993) Visual Servoing: Real Time Control
of Robot Manipulators Based on Visual Sensory Feedback.
World Scientific Series in Robotics and Automated Sys-
tems, Vol. 7, World Scientific, Singapore

9. He L-W, Cohen MF, Salesin DH (1996) The virtual cin-
ematographer: a paradigm for automatic real-time camera
control and directing. In: Proc. of ACM SIGGRAPH’96, in
Comput. Graphics Proc., New Orleans, pp 217–224

10. Hutchinson S, Hager G, Corke P (1996) A tutorial on visual
servo control. IEEE Trans Rob Autom 12(5):651–670

11. Kyung MH, Kim M-S, Hong S (1995) Through-the-lens
camera control with a simple jacobian matrix. In: Davis
WA, Prusinkiewicz P (eds) Proc. of Graphics Interface ’95,
Quebec, pp 171–178

12. Latombe JC (1991) Robot Motion Planning. Kluwer Aca-
demic, Dordrecht

13. LaValle M, González-Baños H-H, Becker C, Latombe
J-C (1997) Motion strategies for maintaining visibility of
a moving target. In: Proc. IEEE Int. Conf. on Robotics and
Automation, ICRA ’97, Vol. 1, Albuquerque, N. Mex., pp
731–736



É. Marchand, N. Courty: Visual servoing in computer animation 19

14. Li TY, Lien J-M, Chiu S-Y, Yu T-H (1999) Automati-
cally generating virtual guided tours. In: Proc. of Com-
puter Animation 1999, Geneva, ed. by IEEE Comput. Soc.,
pp 99–106

15. Marchand E, Hager G-D (1998) Dynamic sensor planning
in visual servoing. In: IEEE Int. Conf. on Robotics and Au-
tomation, Vol. 3, Lueven, pp 1988–1993

16. Nelson B, Khosla PK (1994) Integrating sensor placement
and visual tracking strategies. In: IEEE Int. Conf. Robotics
and Automation, Vol. 2, San Diego, pp 1351–1356

17. Noma T, Okada N (1992) Automating virtual camera con-
trol for computer animation. In: Thalmann N, Thalmann D
(eds) Creating and Animating the Virtual (Proc. Computer
Animation ’92), Springer, Berlin, pp 177–187

18. Samson C, Le Borgne M, Espiau B (1991) Robot Control:
the Task Function Approach. Clarendon, Oxford

19. Tarabanis K, Allen PK, Tsai R (1995) A survey of sen-
sor planning in computer vision. IEEE Trans Rob Autom
11(1):86–104

20. Ware C, Osborne S (1990) Exploration and virtual cam-
era control in virtual three dimensional environments.
In Proc. ’90 Symposium on Interactive 3D Graphics,
pp 175–183

21. Weiss LE, Sanderson AC, Neuman CP (1987) Dynamic
sensor-based control of robots with visual feedback. IEEE J
Rob Autom 3(5):404–417

ÉRIC MARCHAND is cur-
rently an INRIA research sci-
entist at IRISA–INRIA Rennes
in the Vista project. He received
a PhD in Computer Science from
Rennes University in 1996 and
spend one year as a Postdoc-
toral Associates in the AI lab of
Computer Science Department
at Yale University. His research
interests include robotics, com-
puter vision, perception strate-
gies and especially the cooper-
ation between perception and
action. The considered applica-

tions are 3D reconstruction and multi-sensor cooperation. More
recently, he studies new application fields such as active vision
in micro-robotics, in mobile robotics, in underwater robotics,
and in computer animation.

NICOLAS COURTY is cur-
rently a PhD candidate in Com-
puter Science in the SIAMES
project at IRISA and for France
Telecom R&D in Rennes, France.
His research interests include
visual servoing for computer an-
imation, behaviour modelling,
and controlling humanoid avatars.
He obtained an engineering de-
gree from INSA Rennes in
computer science, and a DEA
from the National University of
Rennes in 1999.


