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This work presents a predictive visual
control  system for laparoscopic
robotized surgery. The aim is to cancel
the motion of organs due to breathing
movements by keeping constant the
distance measured in endoscopic images
along the instrument, from its tip to the
viewed organ’s surface. The period of
the observed movement is estimated by
use of a recursive algorithm.
Experimental results are shown on an
endo-training box that prove the
efficiency of this active mechanical
filtering method.

INTRODUCTION

Robotic systems appeared recently in
the field of laparoscopic surgery.
Several commercial systems are already
in use, e.g., ZEUS (Computer Motion,
Inc.) or DaVinci (Intuitive Surgical,
Inc.). In these systems, robot arms are
used to manipulate the surgical
instruments as well as the endoscope.
The surgeon tele-operates the robot
through master arms using the visual
feedback from the endoscope (see Fig.
1). Such  systems have a lot of
advantages: the surgeon's tiredness is

reduced as he can comfortably seat
during the operation; natural tremor is
eliminated by translating the surgeon's
hand motions to robotic movements; the
use of a high master/slave motion ratio
can increase the surgeon's motion
accuracy. Furthermore, teleoperation
allows long distance surgical procedures
to be performed (see, e.g., the Lindberg
Operation [7]).

In a typical surgical procedure, the
surgeon first drives the laparoscope into
a region of interest (for example by
voice, with the AESOP system of
Computer Motion Inc.). Then, he or she
drives the surgical instruments at the
operating position. Several works have
been conducted in this context to
develop visual servoing techniques to
control the robotic arms in order to
assist the surgeon or even to realize
semi-autonomous tasks. Systems
appeared that use patterned (Casals et al.
[2]) or coloured (Wei et al. [10]) marks
to make the endoscope track
instrument's motions. The system
proposed by Krupa et al. [5] can
automatically bring the instrument at the
center of the endoscopic image. This
helps the surgeon when he or she has to



blindly move its instruments when they
are not in the endoscope's field of view,
thereby avoiding possible undesirable
contacts with internal organs. This
system includes a specially designed
instrument holder. It is equipped with
tiny laser pointers which project laser
spots in the laparoscopic image even if
the surgical instrument is not in the field
of view. The image of the projected
laser spots is used to automatically guide
the instrument towards the endoscopic
field of view.

This system is combined in [4] with
optical markers mounted on the tip of
the instrument (see Fig. 1, right) to
provide a robust measurement of the
distance between the organ and the
instrument's tip. This measurement is
then fed back in a servo loop that
regulates the distance at a specified
value. The advantage of this system is
that it allows the surgeon to
automatically move the instrument at a
chosen 3-D location, by means of, e.g., a
mouse-like device.

Nevertheless, these systems do not
explicitly consider the motion of the
organs in tele-operated laparoscopic
surgery; organs' motions induced by the
patient's breathing or heart beating have
to be manually compensated for by the
surgeon through the manipulation
interface while he or she is doing precise
tasks. In [8], authors consider the non-
rigid motion of the heart during cardiac
surgery and show a  visual
synchronization technique to cancel the
motion of a target point in the image. A
high-speed camera and a special robotic
device are wused, and their system
requires that an artificial reference point
be put on the beating heart. In our work,
we use the active vision system
described above (see [5,4] for more

details) and develop a predictive control
scheme in order to accurately
compensate the periodic motion of the
organs induced by the breathing during
laparoscopic surgery. We address the
problem of keeping constant the
distance from the instrument to the
organ under the influence of breathing
movements.

Fig. 1: left: robot tele-operation; right:
laser pointing instrument holder during an
in-vivo test at IRCAD [5,4].

The paper is organized as follows: The
first section presents the laparoscopic
robotic setup used in our experiment
with the visual servoing loop. The
second section introduces the basics for
generalized predictive control (GPC)
and show how repetitive perturbations
can be rejected by the predictive
controller. The third section briefly
explains the recursive algorithm used to
estimate the breathing period and to
adaptively update the controller. The last
section presents experimental results
obtained on an endo-trainer box with
simulated breathing motion and a
laparoscopic surgery robotic arm.

LAPAROSCOPIC
ROBOTIC SETUP

The system configuration is shown in
Fig. 4: A monochrome PAL camera is
mounted on a fixed rigid support and
provides images of the scene through an



endoscopic lens and a trocard. Images
are updated every Te = 40 ms and are
made of two interlaced frames showing
laser pointers and optical marks
mounted on the instrument. Distance
from the tip of the instrument to the
observed scene is estimated using the
technique described in [5,4]. This
measure is fed into the generalized
predictive controller, which, in turn,
returns the optimal command to apply as
the desired speed along the instrument’s
axis (see Fig. 2). The model used in the
GPC predictor is the identified transfer
function of the translational joint of an
AESOP arm.

estiroation of
brathing period
T

= fercnes uit)
digtance GRC whot
contmller

SRC
pradictar

Fig.  2: block-diagram of the GPC-
controlled system.

The GPC control thread and the vision
thread are hosted by a 800 MHz bi-
processor PC computer that
communicates via a serial link with the
AESOP robot. The GPC computations
are synchronized with the image
acquisition and made within a single
control period (Te). A supplementary
device is shown in Fig. 4 that is used to
simulate repetitive organs’ motions
under the influence of breathing (see
experimental results in the last section).
The motion period is estimated using the
corresponding block in Fig. 2 (see next
section).

PREDICTIVE CONTROL

1. Generalized Predictive Control

The Generalized Predictive Control was
originally introduced by Clarke et al.
[3]. It is based on the minimization of a
cost function J over a finite receding
horizon:
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with N, <N; and Au(t +j — 1) =0 for j>
Ny, N; is the minimum costing horizon,
N; is the maximum costing horizon and
N, is the control costing horizon; A
weights the relative importance of the
control energy. This controller is
predictive because it takes into account
the future reference signals r. The
arguments of the minimization are the
N, future steps of the control input. The
computation of the output predictions
¥ requires the knowledge of a system

model expressed in the ARIMAX form:
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where q'1 is the discrete backward
operator, A and B are two polynomials
(or matrix polynomials in the
multidimensional case) modelling the
system dynamics (B may also include
pure delays), & represents a zero mean
white noise, and polynomial C is used to
color it. Polynomial A can be used to
make noise & /A be non-stationary,
which is suitable to model any
perturbation in a control loop.
Polynomial C can also be selected to
have a filtering effect on non-modelled
noise [1]. For our experiments, we use



the identified model of the translational
joint of the AESOP robotic arm as the
system model in the GPC control
scheme.
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Fig. 3: periodic signal generator.

Classical GPC schemes [3,1] consider
A=1- q‘1 , which allows the rejection
of step perturbations and, therefore, is
equivalent to the introduction of an
integrator in the controller. In order to
reject a periodic perturbation, one can
use A=1- q'T , where T is the number
of sampling periods in one perturbation
period. Indeed, the perturbation model
& I A is made periodic, as shown in Fig.
3. In this paper, we propose the use of

A=(1-q")(1-aq™")

where o [1 ]0; 1] is a forgetting factor,
that acts as an additive low-pass filter.

2. Recursive estimation of an
unknown period

For effective cancelling of the breathing
disturbance, the actual disturbance
frequency is required to be known. We
will further suppose that a disturbance
period always contains an integer
number of sampling periods so that the
T parameter in the GPC controller can
be precisely adjusted. This is not a
limitation since the robot control system
is run with a period of Te = 40 ms which
is largely less than typical breathing
periods (see in-vivo measurements in
Fig. 5). Even if the frequency could be
measured directly (e.g., by use of

external monitoring systems), the effect
of the disturbance in the feedback loop
will be seen in the control signal. We
use the recursive algorithm that was
proposed by Tsao et al. [9,6] in the
context of repetitive control, considering
a periodic signal u(t) that is not
identically zero with period T*. The
identification algorithm is based on the
gradient minimization of a quadratic
energy function:

J(T) = % [L, e -us-1rds
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where Tha > T*. One can note that the
cost function J(T) is periodic and has
local minima at integer multiples of the
base period T. For the gradient iterations
to converge to T*, the initial condition
must therefore lie within the concave
region containing T*. This technique
only requires the knowledge of the T
parameter.

The GPC control strategy is modified to
account for changes in the disturbance
signal's period. This is used to estimate
the true period T* of the motion
perturbation when it is not known, or to
track its temporal variations (see fig. 2).
Note that we apply the gradient descent
algorithm of [9,6] to filtered values of
the control signal. Typical values of
breathing disturbance frequency in the
endobox trainer are 0.3-0.4 Hz (see
experimental measurements in Fig. 5)
and the elliptic low-pass filter used for
the identification is designed with a
stop-band of 1 Hz.

EXPERIMENTAL
RESULTS

This section gives results of the
predictive controller obtained with an



endo-trainer box. A periodic motion of
the organ is simulated through the use of
an additive platform mounted on a semi-
rotating motor (see fig. 4). The platform
exhibits an oscillating motion and is put
in the laser pointers' field-of-view. The
laser-pointing instrument is held by an
AESOP arm, as explained in the first
section. Figure 6 shows the error
observed on the endo-trainer box, with a
depth-servoing algorithm running a
proportional controller and a constant
reference signal. The curve of Fig. 5
shows the perturbations obtained with
the same controller during in-vivo tests
at the operating room of IRCAD.
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In Figure 6, the perturbation period was
set to 2.4 s and the sampling period is
0.04 s. The reference signal was to keep
a constant distance of 20 mm between
the instrument and the oscillating
platform. The amplitude of the
oscillations were about 25 mm.
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Fig. 5: original breathing perturbations
during depth servoing during in-vivo tests
with a proportional controller.
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Fig. 6: error during depth servoing in a
endo-trainer box.

Fig. 7 shows the error obtained with the
repetitive GPC controller that was set
with T=2.4 s and 0=0.98. Variance of
the error is divided by a factor 30.
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Fig. 7: error during depth servoing with a
repetitive GPC controller.

Figure 8 shows the evolution of the error
when the GPC switches from T=1.8 s to
T=2.4 s after the period estimation is
recovered by the gradient descent
algorithm.
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Fig. 8: period switching in GPC controller.



Fig. 9 depicts the gradient descent and
the evolution of the period estimation
before the GPC switches in Fig.8.
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Fig. 9: gradient descent (left) and evolution
of the period estimation (right) when the
initial period of the GPC is set to 1.8 s and
the true period is 2.4 s.

CONCLUSION

This paper presented a repetitive
predictive controller approach for an
active mechanical filtering of periodic
motions (induced by respiration or even
heart beating) in laparoscopic robotized

anticipate the motion of the tool in order
to increase the accuracy. The GPC is
made adaptive against the perturbation
period by use of a recursive estimation
algorithm. We have shown successful
experimental results on an endo-training
box and an AESOP surgical robotic arm.
In-vivo tests are planned in the coming
months in the training room of IRCAD.

Application of such a filtering is for
thermal ablation of liver tumors with RF
probe. Currently, the surgeon has to
manually compensate for the breathing
movements, whereas the probe
penetration depth could be filtered by
the robot, yielding to a better accuracy.
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