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Theoretical impro v ements in the stability analysis of
a new class of model-free visual serv oing methods

Ezio Malis and Fran�cois Chaumette

Abstract | This pap er concerns the stabilit y analysis of a
new class of mo del-free visual serv oing metho ds. These meth-
ods are \mo del-free" since they are based on the estimation
of the relativ e camera orien tation b et ween t wo views of an
ob ject without kno wing its 3D mo del. The visual serv oing
is decoupled by con trolling the rotation of the camera sepa-
rately from the rest of the system. The way the remaining
degrees of freedom are con trolled di�eren tiates the metho ds
within the class. For all the metho ds of the class, the robust-
ness with resp ect to b oth camera and hand-ey e calibration
errors can b e analytically studied. In some cases, necessary
and su�cien t conditions can b e found not only for the lo cal
asymptotic stabilit y but also for the global asymptotic stabil-
it y. In the other cases, simple conditions on the calibration
errors are su�cien t to ensure the global asymptotic stabilit y
of the con trol la w. In addition to the theoretical pro of of the
stabilit y, the exp erimen tal results pro ve the validit y of the
con trol strategy prop osed in the pap er.

Index Terms | Visual serv oing, stabilit y analysis, robust-
ness, mo del-free reconstruction.

I. Introduction

Visualservoingis apromisingmethod tocontroldynamic

systemsusingtheinformationprovided b y visualsensors.

In thispaper,we focus on thecontrolofa singlecamera

mountedon theend-e�ectorofa robotmanipulator.The

computervision systemcontrolstherobot’send-e�ectorin

ordertopositionit withrespecttoan object. Similarly

tomostofthevision-basedcontrolapproaches,we consider

only robotkinematics.Indeed,mostmanufacturersonly

provide robotswithaccesstokinematicscontrollers.The

robotdynamicsis generallytakenintoaccountinalow-level

controllerwhich cannotb emodi�ed b y users.Evenifrobots

dynamicsis importantwhentrackingobjectathighspeed,

kinematicsis fundamentaltorobotcontrolandcannotb e

ignored.Since thedesignofthevision systempresentedin

thepaperis general,therobotdynamicscanb e easilytaken

intoaccountafterwards,as itwasdonein [11] and[4] fora

standardimage-basedcontrol.

Man y di�erentvisualservoingapproacheshave b eenpro-

posed[13] [14] andthecorrespondingcontrollawsaregener-

allystableinabsenceofcalibrationerrors
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To solve this inverse problem seems to be very complex.
Similarly, introducing in a pure image planner the con-
straint that the camera 3D trajectory has a particular
form seems to be out of reach. We prefer thus to plan
first the camera trajectory and then to deduce the cor-
responding trajectories in the image space. The discrete
geometric camera path is performed as a sequence of N
intermediate camera poses which approaches as much as
possible a straight line translation. In this phase, the me-
chanical and visibility constraints are introduced. Con-
trary to other approaches exploiting the robot redundan-
cy [2], [17], the mechanical and visibility constraints can
be ensured even if all the robot degrees of freedom are
used to realize the task.
2. In order to use a purely image-based control, the dis-
crete geometric trajectory of the target in the image is
then determined from the camera path. The obtained
image trajectories are not disturbed by modeling errors
as shown in Sections IV-D and IV-E contrarily to the
corresponding camera trajectory.
3. In the third phase, continuous and differentiable ge-
ometric paths in the image with an associated timing
law are generated to improve the control behavior and to
manage easily the computation of the reference. These
trajectories are tracked efficiently by exploiting the local
robustness and stability of a purely image-based control.

Only few papers deal with path planning in image space.
For a very simple case (the world is supposed to be planar
and the camera is one dimensional), Cowan and Koditschek
describe in [3] a globally stabilizing method using naviga-
tion function guaranteeing visibility. In [8], a trajectory
generator using a stereo system is proposed and applied
to obstacle avoidance. An alignment task using interme-
diate views of an object synthesized by image morphing
is presented in [21]. A path planning for a straight-line
robot translation observed by a weakly calibrated stereo
system, is performed in [19]. However, none of these previ-
ous works were dealing with robustness issues. In [16], we
have described preliminary results concerning our potential
field-based path planning scheme described in this paper.

The paper is organized as follows. In Section II, we recall
some basic fundamentals. The method of path planning for
a known object is presented in Section III and extended to
the case where a 3-D model of the object is not available in
Section IV. Camera calibration errors are also considered.
In Section V, a timing law is associated to the geometric
path. In Section VI, we show how to use an image-based
control approach to track the trajectories. The experimen-
tal results are given in Section VII.

II. Fundamentals

In this section, we introduce notations and concepts that
are necessary to design our path planning generator.

A. General description and notation

Let Fo be a frame attached to the target, Fi, Fk and
F� be the frames attached to the camera in its initial,
current and desired positions respectively (see Figure 1).
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Fig. 1. Computing intermediate views of the target points

Mj denotes a 3-D target point with homogeneous coor-

dinates Mj
x = [M̃jT

x 1]T = [Xj
x Y j

x Zj
x 1]T in Fx (with

x 2 fo, i, k, �g). Mj is projected in the image at time
k onto a point with homogeneous normalized coordinates
mj

k = [xj
k yj

k1]T . The corresponding coordinates in pixels

are denoted pj
k = [uj

k vj
k 1]T = [p̃jT

k 1]T = Amj
k, where the

matrix A is a non singular matrix containing the camera
internal parameters. More precisely, we have:

A =




fpu �fpucot(θ) u0

0 fpv/ sin(θ) v0

0 0 1


 =




αu αuv u0

0 αv v0

0 0 1




where u0 and v0 are the pixels coordinates of principal
point, f is the focal length, pu and pv are the magnifica-
tions respectively in the u and v directions, and θ is the
angle between these axes.
The aim of our work is to design a trajectories gen-
erator performing a continuous and differentiable curve

s(t) = [p̃1T

(t) � � � p̃nT

(t) ]
T between the initial configuration

si = [p̃1T

i � � � p̃nT

i ]T and the desired one s� = [p̃1T

� � � � p̃nT

� ]T .
First, the discrete geometric camera path is performed as
a sequence of N intermediate camera poses τ = fΥk / k 2
1 � � � Ng using the potential field strategy described in the
next subsection. Then, the discrete object trajectory in
the image S = fsk / k 2 1 � � � Ng and the robot trajecto-
ry in the joint space Q = fqk / k 2 1 � � � Ng are obtained
from τ . Finally, a continuous and differentiable geometric
path in the image s(t) is performed and tracked (see Figure
2).

B. Potential field method

Our path planning strategy is based on the potential
field method. This method was originally developed for an
on-line collision avoidance [10], [11].

B.1 Classical approach

In this approach the robot motions are under the influ-
ence of an artificial potential field (V ) defined as the sum
of an attractive potential (Va) pulling the robot towards
the goal configuration (Υ�) and a repulsive potential (Vr)
pushing the robot away from the obstacles. Motion plan-
ning is performed in an iterative fashion. At each iteration
an artificial force F(Υ), where the 6 � 1 vector Υ repre-
sents a parameterization of the robot workspace W � Rp,
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Fig. 2. Block diagram of the proposed method

is induced by the potential function. This force is defined
as F(Υ) = �~rT

�V where ~rT
�V denotes the transpose of

the gradient vector of V at Υ. Using these convention-
s, F(Υ) can be decomposed as the sum of two vectors,

Fa(Υ) = �~rT
�Va and Fr(Υ) = �~rT

�Vr , which are respec-
tively called the attractive and repulsive forces. Path gen-
eration proceeds along the direction of F(Υ) regarded as
the most promising direction of motion. Thus, each seg-
ment is oriented along the negated gradient of the poten-
tial function computed at the configuration attained by the
previous segment. The discrete-time trajectory is given by
the transition equation:

Υk+1 = Υk + εk
F(Υk)

kF(Υk)jj
(1)

where k is the increment index and εk is a positive scaling
factor denoting the length of the kth increment.

B.2 Modified Forces

Consider the unconstrained problem:

min V (Υ), Υ 2 Rp

A classical continuous gradient strategy for finding a min-
imum of V consists of making Υ(t) vary according to the
evolution equation:

Υ̇ = �εQ~rT
�V (2)

where ε is a positive scalar and Q is a constant positive
matrix. Pre-multiplying (2) by ~r�V , we get:

d

dt
V (Υ) = �ε~r�V Q~rT

�V � 0 (3)

Thus V decreases with time as long as ~r�V 6= 0, and
remains constant when ~r�V = 0. A common and simple
choice for Q is the identity matrix I. In this case, Υ moves
in the direction opposite to the gradient at Υ. This strategy
is adopted in the classical approach described previously,
where F = �~rT

�V . Consider now a potential field Vf =
V (f(Υ)) where f is differentiable everywhere in W . The
evolution equation of f , when Υ moves according to (2), is
given by:

ḟ = �ε

(
∂f

∂Υ

)
Q~rT

�V = �ε

(
∂f

∂Υ

)
Q

(
∂f

∂Υ

)T

~rT
f V (4)

In order that f moves in the direction opposite to the gra-
dient of V at f , the matrix Q can be chosen adequately:

Q = Qf =

(
∂f

∂Υ

)+ (
∂f

∂Υ

)+T

(5)

Note that Q is a positive matrix and thus the relation (3) is
verified. The evolution equation (4) can thus be rewritten:

ḟ = �ε~rT
f V

The artificial force associated to the potential field Vf (f(Υ))
is thus:

Ff (Υ) = �Q~rT
�Vf = �

(
∂f

∂Υ

)+

~rT
f Vf (6)

When several potential functions are considered, the dom-
inant artificial force derived from the potential Vf creates
a dominant motion of f in the direction opposite to the
gradient of Vf at f . In practice, by using such process, it
is more easy to control the relative influence of each force
and thus to control the camera or the object trajectories.
In our case the control objective can be formulated as fol-
low: to transfer the system to a desired point in the sensor
space satisfying the following constraints:

1. the image trajectories correspond to a valid robot tra-
jectory
2. all the considered image features remain in the camera
field of view
3. the robot joint positions remain between their limits

To deal with the first constraint, the motion is firstly
planned in the 3-D Cartesian space and then projected in
the image space. The attractive potential (V�) pulling the
robot toward the goal configuration (Υ�) is thus defined
in the 3D-Cartesian space. The second and the third con-
straints are introduced through a repulsive potential Vs de-
fined in the image and a repulsive potential Vq defined in
the joint space. The total force is given by:

F = F� + γFs + χFq (7)

where the scaling factors γ and χ allow us to adjust the
relative influence of the different forces. The total force
given by the formula (7) can potentially lead to local mini-
ma. This is intrinsically due to the path planning strategy
used. In practice, we have never encountered configura-
tions leading to local minima and the parameters γ and χ
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have been �xed to 1. Note that the de�ned forces are 6-
dimensional vectors and thus to reach a local minima, the
6 components of the total force (that is the ponderedsum
of the 3 forces)must be equal to zero. Such con�gurations
have a low probabilit y to be attained. A basic strategy to
take out of potential local minima is to executea motion
by favoring the repulsive force (i.e by increasing parame-
ters 
 and � ). Obviously such strategy makes no formal
guarantee to reach the global minimum. In [3], to guaran-
tee such property in the context of visual servo, potential
function free of stable local minima (navigation function
[18]) are constructed. However, constructing such a nav-
igation function requires the complete knowledge of the
spacetopology, and many advantagesof the proposedap-
proach in this paper would be lost:robustnesswith respect
to modeling errors, application to object with unknown
CAD model. According to (6), the arti�cial forcescan be
written as follow:

8
>>>>><

>>>>>:

F � = �
�

@�
@� �

+
~r T

� V� = � ~r T
� V�

F s = �
�

@s
@r

@r
@�

�

+
~r T

s Vs = � M + L + ~r T
s Vs

F q = �
�

@q
@r

@r
@�

�

+
~r T

q Vq = � M + J (q) ~r T
q Vq

(8)

where M is the Jacobian matrix that relates the variation
of the camera velocity T c to the variation of the chosen
parameterization �: T c = M _�. The form of the matrix
M will be given in the sequel for the chosen workspace
parameterizations. The matrix J(q) denotesthe robot Ja-
cobian and L is the interaction matrix related to s (also
called image Jacobian). It links the variation of the visual
features with respect to the cameravelocity T c: _s = LT c.
For a point M j with coordinates [X j Y j Z j ]T in the cur-
rent camera frame and coordinates p j = [uj vj 1]T (and
[x j yj 1]T = A � 1p j ), the interaction matrix L (p j ; Z j ) re-
lated to s = [x j yj ]T is given by:

a

2

6
4

� 1
Z j 0 x j

Z j x j yj � (1 + x j 2
) yj

0 � 1
Z j

yj

Z j (1 + yj 2
) � x j yj � x j

3

7
5

where:

a =
�

� u � uv

0 � v

�

When s is composedof the image coordinates of n points,
the corresponding interaction matrix is:

L (s; Z) =
�
L T (p1; Z 1) � � � L T (pn ; Z n )

� T

I I I. Path planning f or a kno wn t ar get

In this part, the calibration parameters and the 3-D
model of the target are supposed to be perfectly known.
Knowing the coordinates M j

o, expressedin Fo, of at least
four points M j , it is possiblefrom their projection to com-
pute the initial and desired poseswith respect to F o [4],
[12], that is the rotation matrix i R o (resp. � R o) and the
translation vector i t o (resp. � t o) betweenF i and Fo (resp.
betweenF � and Fo).

A. Camera trajectory in the 3-D Cartesian space

Let � R k and � t k be the rotational matrix and the trans-
lational vector betweenF k and F � (seeFigure 1). Let uk

and � k be the axis and the rotation angle obtained from
� R k . We choose � k = [ � t T

k (u� )T
k ]T as a parameteriza-

tion of the workspace. We thus have � i = [ � t T
i (u� )T

i ]T

and � � = 01� 6. The initial cameraposition � i is obtained
from � t i and � R i :

8
<

:

� R i = � R o
i R T

o

� t i = � � R i
i t o + � t o

According to the transition equation (1), where the at-
tractiv e and the repulsive forces will be given in the sub-
section I I I-D and I I I-E respectively, we construct a path
� = f � k = k 2 1� � � N g as the sequenceof successive path
segments starting at the initial con�guration � i . Further-
more, the Z j -coordinate in F k of each point M j , which
will be used in the repulsive force and in the control law,
can be easily obtained at each iteration since:

�

M j
k = [X j

k Y j
k Z j

k ]T = �

� R T
k

� R o
� R k ( � t o � � t k ) � M j

o

A complete camera path in the 3-D Cartesian space is
obtained as the sequence� of N intermediate camerapos-
es. A position-based control could thus be used to track
it. However, as already explained, it is more interesting to
perform featurestra jectories in the image. Indeed, we thus
exploit as well as possible the local stabilit y and robust-
nessof image-basedservoing. Furthermore, it avoids the
computation of the camera pose at each iteration of the
servoing process.

B. Object trajectory in the image space

To perform image-basedcontrol, we build the tra jectory
of the projection p j of each point M j onto the imageusing
the known coordinates M j

o of M j in Fo. The tra jectory in
the image is obtained using the classicalassumption that
the camera performs a perfect perspective transformation
with respect to the cameraoptical center (pinhole model):

r j
k p j

k = [r j
k uj

k r j
k vj

k r j
k ]T = A [k R o

k t o]M j
o (9)

p j
k is easily obtained from (9) by dividing r j

k p j
k by its last

component.

C. Trajectories in the joint space

To anticipate the possibleencounter of a joint limit and
to avoid it, we have to estimate the tra jectory of the robot
in the joint space. Indeed, the measure of the current
joint coordinates is used in the computation of the repul-
sive potential related to the joint limits avoidance. If the
manipulator position in the joint spaceis represented by
q = [q1 � � � qm ]T , we have:

@q
@�

=
@q
@r

@r
@�

= J+ (q)M (10)

M is the 6 � 6 Jacobian matrix that relates the variation
of the cameravelocity T c to the variation of �:

M =
�

� R T
k 03� 3

03� 3 L +
wk

�
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Fig. 5. Block diagram of the path planning for a known object

as visible if uj 2 [um uM ] and vj 2 [vm vM ], where um,
uM , vm, vM are the limits of the image. The vector of
image features s is called acceptable if for all j 2 f1 � � � ng,
uj 2 [um + α; uM � α] and vj 2 [vm + α; vM � α], where
α is a positive constant denoting the distance of influence
of the image boundary (see Figure 4(a)). We denote C
the set of acceptable image features. One way to create a
potential barrier around the camera field of view, ensuring
that all features are always visible and do not affect the
camera motion when they are sufficiently far enough from
the image limits, is to define the repulsive potential Vs(s)
as (see Figure 4(b)):

{
�v2

s log
(∏n

j=1(1� uj

uM
)(1� uj

um
)(1� vj

vM
)(1� vj

vm
)
)
, if s /2 C

0, if s 2 C
(13)

As for the previous potential function, vs is chosen as a
bounded function with null value in the boundary of C:

vs(s) =

n∏

j=1

(uj � u�
M )(uj � u�

m)(vj � v�
M )(vj � v�

m)

where u�
m = um + α, u�

M = uM � α, v�
m = vm + α and

v�
M = vM � α.

The function Vs is positive or null, tends to infinity when
at less one selected image features gets closer to the image
limits, and it is null when all image features are sufficiently
far away from the image limits. The artificial repulsive
force deriving from Vs is:

Fs(Υ) = �M+L+~rT
s Vs (14)

where ~rT
s Vs is easily obtained from (13).

F. Summary

By using a target model and a calibrated camera, the
trajectory of a set of n points in the image has been ob-
tained as a sequence of N vectors S = fsk/k 2 1 � � � Ng.
A block diagram of the path planning scheme is given in
Figure 5. The obtained trajectory provides some good ex-
pected properties: along this trajectory the target remains
in the camera field of view, the corresponding robot mo-
tion is physically realizable and the camera trajectory is
a straight line outside the area where the repulsive forces

are needed. The set Z = fZk = [Z1 � � � Zn]/k 2 1 � � � Ng,
which will be used in the control law, has been also deter-
mined.
In the next part, we extend this method to the case where
the object shape and dimensions are unknown and where
the calibration is well or badly estimated.

IV. Path planning for an unknown target

In this section, we consider that the target model is not
available. In this case the camera pose can not be estimat-
ed. Only a scaled Euclidean reconstruction can be obtained
by performing a partial pose estimation as described in the
next subsection. This partial pose estimation and the rela-
tions linking two views of a static object are then exploited
to design a path of the object in the image space. First, we
present the method with accurate calibration parameters
and then, the robustness with respect to modeling errors is
studied. For convenience, the rotation matrix �Rk and the
translation vector �tk are denoted Rk and tk in the sequel.

A. Scaled Euclidean reconstruction

Consider a 3-D reference plane Π given in the desired
camera frame F� by the vector πT = [n� �d�], where n� is
its unitary normal in F� and d� is the distance from Π to
the origin of F� (see Figure 6). It is well known that there
is a projective homography matrix Gk, relating the image
points in the current and the desired images, such that [5]:

αj
kp

j
k = Gkp

j
� + βjek with ek = �ART

k tk (15)

where αj
k is a positive scaling factor and βj is a constant s-

caling factor null if the target point belongs to Π. More pre-
cisely, if we define the signed distance d(Mj , Π) = π Mj

�,
we have:

βj = �
d(Mj , Π)

Zj
�d�

(16)

Given at least four matched points belonging to Π, Gk can
be estimated by solving a linear system. If the plane Π
is defined by 3 points, at least five supplementary points
are necessary to estimate the homography matrix by using
for example the linear algorithm proposed in [13]. Assum-
ing that the camera calibration is known, the Euclidean
homography Hk of plane Π is estimated as follow:

Hk = A+GkA (17)
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Fig. 6. Scaled 3-D Cartesian trajectory

and it can be decomposed into a rotation matrix and a
rank 1 matrix [5]:

Hk = RT
k � RT

k tdkn
�T where tdk =

tk

d�
(18)

From Hk, it is thus possible to determine the camera mo-
tion parameters (that is the rotation Rk and the scaled
translation tdk) and the structure of the observed scene

(for example the vector n�) [5]. The ratio ρj
k = Zj

k/d� can
easily be estimated [14]:





ρj
k =

Zj
k

d� =
1 � n�T R2T

k tdk

n�T Rkm
j
k

if Mj 2 Π

ρj
k =

Zj
k

d� = σj
k

kRT
k tdkk

kσj
km

j
k � RT

k mj
�k

if Mj /2 Π

(19)

where σj
k =

k[RT
k tdk]^RT

k mj
�k

k[RT
k tdk]^mj

kk
. These parameters are im-

portant since they are used in the path planning generator
and in the control scheme.

B. Scaled 3-D Cartesian trajectory

We now choose Υk = [tT
dk (uθ)T

k ]T as parameterization
of the workspace, since tdk is available while tk is not.
We thus have ΥT

i = [tT
di (uθ)T

i ] and Υ� = 06�1. From
initial and desired images, it is possible to compute the
homography Hi and then to obtain Ri, tdi, n

� and thus Υi.
As in the previous section, we construct a path τ starting
at Υi and oriented along the induced forces given in this
case by: 




F�(Υ) = �Υ

Fs(Υ) = �M+L+~rT
s Vs

Fq (Υ) = �M+J~rT
q Vq

The Jacobian matrix of parameterization M(d�) is now
given by:

M(d�) =

[
d�RT

k 03�3
03�3 L+

wk

]
(20)

Note that M now depends of the unknown parameter d�.
However, as shown in the sequel, this parameter does not
have any influence on the path planning process if only
the visibility constraint is considered. Furthermore, the
interaction matrix depends of the depth vector Z. Contrary
to the previous case, it can not be computed directly from
the scaled parameterization Υ. But the ratio ρj

k = Zj
k/d�

can easily be estimated from the scaled parameterization
and the image features according to (19). Thus we rewrite
the interaction matrix L(s,Z) as follow:

L(s, Γ, d�) =
[

1
d�S Q

]
(21)

where Γ =
[
ρ1

k � � � ρn
k

]
, S = [S1T � � � SnT ]T and Q =

[Q1T � � � QnT ]T are two 2n � 3 matrices independent of d�:





Sj = a




� 1

�j

k

0
xj

k

�j

k

0 � 1

�j

k

yj

k

�j

k




Qj = a




xj
kyj

k �1 � xj
k

2
yj

k

1 + yj
k

2
�xj

kyj
k �xj

k




The partial pose of the camera Υk is thus computed at each
iteration. Then, Rk and tdk are directly obtained from Υk.
According to (19), the vector Γ =

[
ρ1

k � � � ρn
k

]
is obtained

from Υk. Note that in this case the path of the robot in
the joint space can be approximated by:

qk+1 = qk + J+(qk) Mk(d�) (Υk+1 � Υk)

Finally, the image features at iteration k are computed as
described in the next subsection.

C. Object trajectory in the Image space

The homography matrix Gk of plane Π relating the cur-
rent and desired images can be computed from Υk by using
(17) and (18):

Gk = A(RT
k � RT

k tdkn
�T )A+ (22)

According to (15) the image coordinates of the points Mj

at time k are given by:

µj
kp

j
k = [µj

kuj
k µj

kvj
k µj

k] = Gkp
j
� + βjek (23)

where (refer to (15) and (16)):

βjek =
d(Mj , Π)

Zj
�d�

ART
k tk =

d(Mj , Π)

Zj
�

ART
k tdk

Using the previous relation, (23) can be rewritten:

µj
kp

j
k = Gkp

j
� +

d(Mj , Π)

Zj
�

ART
k tdk (24)
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Furthermore, if we apply the relation (24) betweenthe de-
sired and the initial camerapositions, we obtain easily:1

d(M j ; �)

Z j
�

= sign

0

@

�
� j

i p j
i � G i p

j
�

�

1

(AR i t di )1

1

A kG i p
j
� ^ p j

i k

kAR i t di ^ p j
i k

(25)

The relations (22), (24) and (25) allow to compute � j
k p j

k
from � k and the initial and desiredvisual features. The im-
agecoordinates p j

k are �nally computed by dividing � j
k p j

k
by its last component.
In the next subsections,weconsiderthat the repulsive force
related to the joint limit avoidance is not activated (i.e
� k = 0) and the e�ects of error on the intrinsic parameters
and on the depth d� are studied.

D. In
uenc e of errors on d�

If the joint limits avoidance is not considered, the pa-
rameter d� appearsonly in repulsive force through the ma-
trix W de�ned as the product of M + (d� ) and L + (s; � ; d� ).
However, according to (20) and (21), we have at time k:

W (� k ; � k ; sk ) = (L (sk ; � k ; d� )M k (d� )) + = 
�

S(sk ; � k )R T
k

Q (sk )L +
w k

�
 +

W is independent on the parameter d� . Thus, the tra jec-
tories in the retinal spaceare also independent on d� and
are not a�ected by possibleerrors on d� . Let us note that
it is unfortunately not the caseif joints limits avoidanceis
also considered.

E. In
uenc e of errors on the intrinsic parameters

If the camera is not perfectly calibrated and bA is used
instead of A , the estimated initial homography matrix is:

bH i = bA + AH i A + bA = � AH i � A + (26)

where � A = bA + A . Let us make the following assumption:

bH i = � AH i � A + =) bH k = � AH k � A + (27)

It meansthat the initial error on the estimatedhomography
is propagated along the tra jectory and implies that the
estimated homography at time k can be decomposed in
the sum of a matrix similar to a rotation matrix and a
rank 1 matrix:

bH k = bH 1 k � bT k bn � T (28)

where bH 1 k = � AR T
k � A + , bn � T = n � T � A

kn � T � A + k and bT k =

kn � T � A + k� AT k with T k = R T
k t dk [14]. Obviously, G i ,

p j
� and p j

i are not a�ected by errors on intrinsic param-
eters, since they are extracted or computed directly from
imagedata. According to (24), (25) and (28), the obtained
homogeneousimage coordinates bp j

k in the presenceof cal-
ibration errors are given by:

�

� j
k

�

p j
k =

�

A
�

H k

�

A + p j
� + sign ��

�

�

� j
i p j

i � G i p
j
�

� 1
�

�

A
�

T i
� 1

���

	

kG i p
j
� ^ p j

i k

k
�

A
�

T i ^ p j
i k

�

A
�

T k

(29)

1(v ) j is the j th components of v .

Since bA bT k = kn � T � A + kAT k , we have:

8
>>><

>>>:

sign
�

(� j
i p j

i � G i p j
� )

1

( �

A
�

T i )1

�
= sign

�
(� j

i p j
i � G i p j

� )
1

(A T i )1

�

kG i p j
� ^ p j

i k

k
�

A
�

T i ^ p j
i k

bA bT k = kG i p j
� ^ p j

i k

kA T i ^ p j
i k

AT k

(30)

Furthermore, we also have:

bA bH k bA + = bA � AH k � A + bA + = AH k A + (31)

By injecting (30) and (31) in (29), we �nally obtain:

b� j
k bp j

k = � j
k p j

k

Therefore, under assumption (27), the tra jectories in the
image are not disturb ed by errors on intrinsic parameters.
Wewill check this niceproperty on the experimental results
given in Section VI I.

F. Summary

In this part, tra jectories of a set of n points in retinal
spacehave beenobtained as a sequenceof N vectors S =
f sk =k 2 1� � � N g without any model of the scene.The set
R = f � k =k 2 1� � � N g, which will be used in the control
law, has beenalso computed. Moreover, we have seenthat
the planned path is independent of camera calibration if
the joint limit avoidance constraint is not considered. A
block diagram of the path planning is given in Figure 7.

V. Perf orming C2 image trajectories

In the previous subsections,we have obtained discrete
tra jectories. In order to design continuous and di�eren-
tiable curves and thus to improve the dynamic behavior
of the system, we use cubic B-spline interpolation. Note
that, if the discrete imagedata is not su�cien tly dense,lo-
cal minima can theoretically be reachedon the interpolated
tra jectory betweentwo successive points (that corresponds
to not physically valid camerapositions). To deal with this
potential problem, the density of the points distribution is
chosensu�cien tly high. Sincethis density is chosenby the
user by tuning parameter � k in (1), it can be chosenarbi-
trarily high (t ypically 500 in the following experiments).

The spline interpolation problem is usually stated as:
given data points S = f sk =k 2 1� � � N g and a set of param-
eter values T = f tk =k 2 1� � � N g, obtain a cubic B-spline
curve s(t) such that s(tk ) = sk . In practice, parameter
valuesare rarely given. In our case,we can adjust them to
the distribution of the vector of image featuressk or using
the distribution of the camerapositions � k . The distance
betweentwo successive camerapositions � k and � k+1 can
be chosenconstant by �xing " k at a constant value. Let
us note that the distance in the image betweena point at
time k and k+ 1 is not necessarilyconstant usinga constant
value for " k (seeFigure 8). In order to control e�cien tly
the camera velocity, the time values are chosen spacing
proportionally to the distancesbetween camerapositions.
Thus, the time betweentwo consecutive framesis constant:
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Fig. 13. Same experiment without using the target model and using correct calibration
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Fig. 14. Same experiment using coarse calibration
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Fig. 15. Same experiment using bad calibration

given in Figure 13(e), remains small during the servoing
(less than 5 pixels). Thus, the previous comments, in the
case of a known model target, are also valid. The task is
correctly realized. This is shown by the convergence of the
image points coordinates to their desired value (see Figure
13(d)).
2) and 3) Coarse and Bad Calibrations: We now test the
robustness of our approach with respect to calibration er-
rors and errors on the parameter d�. As can be seen in Fig-
ures 13(a), 13(b) and in Figures 14(a), 14(b), the planned
and tracked trajectories in the cases of a correct and coarse
calibration are similar. The trajectories obtained with bad
calibration are close to those obtained in the other cases
(see Figure 15). That confirms the robustness of the path
planning and of the control scheme with respect to calibra-
tion errors and errors on d�. The tracking error (Figure
14(e)) remains small in the coarse calibration case (less
than 5 pixels). It remains satisfactory in the bad calibra-
tion case, since always less than 10 pixels (Figure 15(e)).
In all the configurations, the tracking error remains suffi-
ciently little to ensure a good behavior of the 2-D control
scheme. We note the stability and the robustness of the
control law (see Figures 13(f), 14(f) and 15(f)). Finally,
we note that the task is correctly realized as well for the
coarse calibration case as for the bad calibration case (refer
to Figures 14(d) and 15(d)).

D. Experimental results for an unknown non-planar object

The target is now composed of nine white marks lying on
three different planes (see Figure 16). In this experiment,
the camera displacement is very important (tx = �672mm,
ty = �1062mm, tz = 468mm, (uθ)x = 30.6dg, (uθ)y =
56dg, (uθ)z = 137dg). As previously, the path planning

algorithm is initialized by using a projective reconstruction
and a scaled Euclidean reconstruction. The same values of
intrinsic parameters that in the case of a planar object have
been used. The depth d� has been set to 70cm, 50cm and
100cm in the cases of correct, coarse and bad calibration
respectively. The number of intermediate points used is
now 800 (since the displacement to realize is larger than
in the previous experiment). In this part, we only exhibit
the results since the comments in the case of an unknown
planar object are also valid here. However, we note, once
again, that the results are satisfactory in the three cases.
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Fig. 16. (a) Initial, (b) desired images of the target

E. Introducing joint limits avoidance

The images corresponding to the desired and initial cam-
era positions are given in Figures 20(a) and 20(b) respec-
tively. On all the following plots, joint positions are nor-
malized between [-1;1], where -1 and 1 represent the joint
limits.
We first perform the path planning without repulsive po-
tential. The results are given in Figures 20(c) and 20(d).
We can see that the visual features get out largely of the
camera field of view and the axis q5 attains its joint limit.
Then, only the repulsive potential associated to the visibil-
ity constraint has been activated. In that case, even if the
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Fig. 17. Experiment with a non-planar object without using the target model and correct calibration: (a) planned trajectories, (b) followed
trajectories, (c) camera trajectory, (d) error in image points coordinates (pixels), (e) tracking error (pixels) and (f) velocities (cm/s and
dg/s)
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Fig. 18. Same experiment using coarse calibration
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Fig. 19. Same experiment using bad calibration
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Fig. 20. Initial (a) and desired (d) images; planned tra jectories without repulsiv e potential: (b) in the image, (e) in the join t space; planned
tra jectories without repulsiv e potential associated to the join t limits avoidance: (c) in the image, (f ) in the join t space


