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Abstract

In this paper we present a method to control the displacement of a
robot arm with no proprioceptive sensor. The joint positions are not
available and this manipulator is usually open-loop controlled. In
order to get a more efficient control interface, we propose a closed-
loop system based on an eye-to-hand visual servoing approach. We
show that, using such an approach, measurement of the manipulator
motion with proprioceptive sensors is not required to precisely con-
trol the end-effector motion. We propose solutions for position-based
control and velocity control of the manipulator. To maintain the end
effector in the camera field of view, the camera orientation is also
controlled. Various results show the validity and the efficiency of the
approach.

KEY WORDS—eye-to-hand visual servoing, no propriocep-
tive sensors, pose computation, real-time

1. Introduction

Visual servoing (Hutchinson et al. 1996) has long proved to be
a very efficient method to control manipulators in hostile envi-
ronments (nuclear environment, space, underwater robotics,
etc.). In this paper we present a generic framework to control
a roughly modeled and calibrated manipulator using an eye-
to-hand visual servoing system (Allen et al. 1993; Hager et al.
1995; Horaud et al. 1998).
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The motivation was the control of the manipulator of the
Victor 6000. Victor 6000 (Nokin 1997) is a deep underwater
Remote Operated Vehicle (ROV), built and operated by Ifre-
mer, used for the exploration of the ocean floor (Figure 1). It is
a cabled vehicle which is controlled from a support vessel and
is designed to make optical surveys, to carry out local assign-
ments for imagery, implement instrumentation, and to sample
water, sediments or rocks. Victor 6000 is equipped with two
manipulators: a 6 dof manipulator called Maestro and a 4 dof
manipulator called Sherpa. In this underwater context, eye-in-
hand visual servoing has already been used to control ROVs
(e.g., Rives and Borrelly (1997); Lots et al. (2000, 2001); Van
Der Zwaan and Santos-Victor (2001)). As already stated, the
goal is not to control the ROV itself, but to control the motion
of its manipulator using information provided by a camera.
This camera is mounted on a pan/tilt head available on the
ROV and observes the end-effector of the manipulator. To re-
duce its cost, the manipulator was not instrumented. Due to
this lack of proprioceptive sensors, the odometry, and in par-
ticular the joint positions q, are not available and therefore the
robot is usually open-loop controlled with a joystick. Hence
there is no way to measure the manipulator motion and ac-
cordingly any control will be imprecise if no external sensor
is used to provide a closed-loop system. This motivates the
introduction of a generic framework to control such a non-
instrumented manipulator from a moving camera within the
visual servoing framework.

The proposed vision-based approach features several main
interests and contributions. Hostile environments (e.g., pres-
sure in deep underwater conditions) may increase dramati-
cally the cost of sensors, in this case proprioceptive sensors.
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Fig. 1. The Ifremer Victor 6000 underwater ROV and its 6 dof Maestro manipulator (© Ifremer).

In this paper we show that measurements using these propri-
oceptive sensors are not required to precisely control the mo-
tion of an end-effector. Indeed, the control loop is “closed” by
the camera which replaces efficiently odometry sensors. This
control can be achieved even if the camera is itself in motion.
Finally, this approach is robust to bad/rough calibration of the
system. Furthermore a major interest lies in the independence
of the position reached by the arm to the various modeling
and calibration errors, of the sensor as well as the arm, if it
is possible to express the task assigned with the manipulator
directly in the measurement space of the sensor (i.e., as an
image to reach).

In the proposed system, the manipulator is controlled us-
ing an eye-to-hand 3D visual servoing approach, while the
pan-tilt camera motion itself is also controlled by visual ser-
voing. We will consider a coarse calibrated camera. Indeed,
because of the closed loop used in the control, visual servoing
techniques are known to be robust with respect to calibration
errors. The proposed system features three main capabilities:
pose control and velocity control. In the basic pose control
mode, the manipulator has to achieve a specified displace-
ment. Before carrying out this displacement, a necessary step
is to compute the corresponding desired position of the ma-
nipulator end-effector in the camera frame. When the desired
manipulator position is computed, one can then use the tra-
ditional visual servoing techniques to achieve the positioning
task. The presented control strategy presents the advantages
of position-based control (optimal trajectory: geodesic for ro-
tation, straight-line for translation), while avoiding its main
drawback by ensuring that the target remains in the camera
field of view due to the pan-tilt control of the camera. This
phase of control requires the use of the inverse manipulator
Jacobian which depends on the current value of the manipu-
lator joints. Since these values are unknown, the position of
the end-effector in the camera frame is estimated for each ac-
quired image using a pose computation algorithm. The manip-
ulator joint values are then computed by solving the equation

of the inverse robot geometrical model. Next, this approach is
expanded to permit a velocity control mode. From a specified
displacement expressed as a velocity, the control problem then
consists in determining the trajectory that the end-effector has
to track and to propose a control law able to follow this trajec-
tory while minimizing tracking errors. Finally, it is important
to control the camera pan and tilt in order to ensure that the
end effector of the manipulator remains in the camera field of
view whatever the specified displacement. Though the con-
trol of this camera is a trivial problem from a visual servoing
point of view, its motion induces a more complex modeling
of the eye-to-hand manipulator control.

The remainder of this paper is organized as follows: the
next section presents how to control the manipulator motion
by visual servoing both in position (the operator specifies a
displacement to achieve) and in velocity (in that case the oper-
ator specifies a velocity to follow); then the image processing
algorithm is described; finally we show with various experi-
mental results the efficiency of the approach.

2. Image-Based Control

2.1. Notation and Definitions

Let us note by aMb the transformation between frame Ra and
frame Rb. aMb is an homogeneous matrix defined as:

aMb =
(

aRb
aTb

0 1

)
where aRb and aTb define respectively the rotation ma-
trix and the translation vector between the two frames. If
(xb, yb, zb, 1)T are the coordinates of a point expressed in Rb,
the coordinates (xa, ya, za, 1)T of this same point expressed
in Ra are given by (xa, ya, za, 1)T = aMb(xb, yb, zb, 1)T .

The frames used in this paper are represented in Figure 2.
The first letter represents the origin of the frame (c for camera,
e for effector, and o for the object linked to the effector and
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Fig. 2. Overview of the various frames.

observed by the camera) and the second letter the position
of this frame (i for initial position, c for current, and d for
desired). Finally, Fm represents the base frame of the manip-
ulator while Fpt represents the base frame of the pan/tilt unit.
For example ciMod defines the desired position of the object
in the initial camera frame.

In the remainder of this paper, we will refer to many frame
transformations that must be estimated in a rough calibration
step using either information provided by the camera or by
the system itself:

• FptMFm
is constant and hand-measured;

• eiMoi = ecMoc = edMod = eMo is constant and hand-
measured;

• FptMc is measured using the pan/tilt head odometry.

2.2. Visual Servoing: Overview

Visual servoing techniques (Espiau et al. 1992; Hutchinson
et al. 1996; Hashimoto 1993; Papanikolopoulos et al. 1993)
allow automatic positioning of a robot with respect to its en-
vironment using visual data. It consists of specifying a task

as the regulation of a set of information extracted from the
images (Espiau et al. 1992; Hashimoto 1993).

As usual, a vision-based task e is defined by (Espiau et al.
1992 and Samson et al. 1991):

e = J+(P − Pd), (1)

where P denotes the set of selected visual features used in
the visual servoing task and Pd their desired value. J+ is the
pseudo-inverse of the Jacobian matrix that links the image
space to the operational space of the manipulator.

To make e decreases exponentially and behave like a first
order decoupled system, the velocity T = (VT, �T)T of the
end-effector given as input to the manipulator controller is
given by:

(
V
�

)
= −λe, (2)

where λ is a proportional coefficient.
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2.3. Control of the Manipulator Position

2.3.1. Overview of the Algorithm

Task specification. The goal of the task is for the ma-
nipulator to achieve the displacement specified by the ROV
operator. Two methods are available to specify this desired
displacement:

• First a direct definition of the desired manipulator dis-
placement�T ,�R in, possibly, three different frames
Rci (initial camera frame), Roi (initial object frame),
and RFm

(end effector frame).

• Second a definition in the image space. It corresponds
to reach again a position that has been learned in an off-
line learning step. From this previously learned image,
the desired pose ciMod can be directly computed.

This process is described in detail in Section 2.3.3.

Manipulator control. A classical position-based control
law is considered to achieve the displacement. The goal is
to minimize the error between the desired and current po-
sitions of the object expressed in the manipulator reference
frame. Therefore the current and desired positions of the ef-
fector in this frame have to be known. Since the robot has
no proprioceptive sensors, the current position is a priori un-
known and has to be computed using an external sensor. Let
us just say here that this is done knowing the position of the
object in the camera frame (the pose) and by applying some
frame transformations (details are given in Section 2.3.2).

We present now an overview of the control algorithm based
on the visual servoing approach that allows us to achieve the
task.

– Acquire the image and track the object (see Sec-
tion 3.1);

– Compute the current pose ccMoc and desired pose ccMod

(see Section 3.1) and determine the current and desired
positions of the object in the manipulator reference
frame (see Section 2.3.2). A first control law expressed
in the reference frame can be given.

– Since the robot is controlled in the articular space we
need to compute the articular joint positions q . This
can be done knowing the object position and the inverse
geometrical model of the manipulator (see Section 2.5).
A new control law expressed this time in the articular
space can then be simply computed (see Section 2.3.2)
and given as input to the robot controller;

– Since the displacement may be important we control
the camera orientation in order to always maintain the
object in the camera filed of view. We consider a simple
visual servoing task to control the pan and tilt d.o.f of
the camera (see Section 2.6).

This process is now described in detail.

2.3.2. Visual Features and Resulting Control Law

The choice of the visual features (i.e., of the vector P) is very
important with respect to the desired properties of the system:
stability, robustness, lack of singularities or local minima, ad-
equate trajectories in both the image and articular space.

It is possible to use 2D visual data (Espiau et al. 1992;
Hutchinson et al. 1996) (say, coordinates of points extracted
from the images) or 3D data obtained after a pose computa-
tion (for example, coordinates of 3D points (Martinet et al.
1996) or the six parameters that represent the displacement to
achieve (Wilson et al. 1996)). Finally, it is possible to com-
bine 2D and 3D visual features: this is 2D 1/2 visual servoing
(Chaumette and Malis 2000).

In our case, since we use an eye-to-hand camera whose
orientation is controlled in order to maintain the object cen-
tered in the image, the optimal solution is to choose as visual
features P = (FmTT

oc
, θuT )T where odToc is the translation that

the object has to realize (expressed in the final object frame)
and where θ and u are respectively the angle and the rotation
axis of odRoc. In this case, we have Pd = (FmTT

od
, 0T3 )

T . The
rotation and the translation motions are thus fully decoupled.
Furthermore, if no errors (with regard to measures and calibra-
tion) occur, then the object trajectory is a pure straight line as
well in the image as in the 3D cartesian space. We thus obtain
a better behavior than classical image-based visual servoing.

The equations that link the variation Ṗ of the visual features
P to the object velocity in the reference frame are given by:( ˙FmToc˙θu

)
=
(

II3×3 03×3

03×3 Jω

)(
V
�

)
RFm

, (3)

with

Jω = Lω
ocRFm

, (4)

where Lw is such that L−1
w
θu = θu (Malis et al. 1999;

Chaumette and Malis 2000).
We finally get the following control law:(

V
�

)
RFm

= −λ
(

II3×3 03×3

03×3 J−1
w

)
(P − Pd)

= −λ
(

FmToc − FmTod

FmRocθu

)
, (5)

where the transformations odMoc and ocMFm
, that allow us

to compute all the values involved in the computation of the
control law, are given by:

ocMFm
= ocMcc

ccMFpt

FptMFm
(6)

FmMod = FmMFpt

FptMci
ciMod (7)

odMoc = odMcc
ccMoc. (8)
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In these equations:

• ocMcc is the pose computed at each iteration using the
image processing algorithm;

• odMcc is also estimated through pose computation
(see eq (10)).

Our goal is to control the manipulator in the articular space.
We finally get:

q̇ = J−1

Fm

(q)
(

II3×3
FmRec

ẽTo
ecRFm

03×3 II3×3

)(
V
�

)
RFm

,

(9)

where J−1

Fm

(q) is the Jacobian matrix that allows us to trans-
form velocities expressed in the manipulator reference frame
to joint velocities and where T̃ is the skew related to vector T.

2.3.3. Definition of the Desired Position

As already stated, four methods are possible to define the
desired position of the object. The user is able to define a
displacement in the initial camera frame, in the initial object
frame, in the reference frame, and finally as a desired image.

Let us first examine the first three cases. We define by
�T,�R the required displacement, respectively, in transla-
tion and rotation. To use the presented control law, we must
compute the transformation ccMod that defines the desired po-
sition of the object in the current camera frame. As the current
and initial positions of the camera with regard to its reference
frame Fpt are known, the desired position of the object in the
current camera frame ccMod is obtained as follows:

ccMod = ccMFpt

FptMci
ciMod . (10)

We then have to compute the transformation ciMod . If the
displacement is given in:

• the initial camera frame, in that case, we have:
ciTod = ciToi +�T (11)
ciRod = �RciRoi (12)

• the reference frame, in that case we have:
ciTod = ciToi + ciRFm

�T (13)

ciRod = ciRFm
�RFmRoi (14)

• the initial object frame, in that case we have:
ciMod = ciMoi�M (15)

with �M = (�R,�T).

Dealing with the last case, the desired position is given
as a position to be reached in the desired image. From this
position, a pose computation algorithm is used to compute
the transformation matrix ciMod . From ciMod , we then deduce
ccMod using the odometry of the pan/tilt head.

2.4. Control of the Manipulator Velocity

A position-based control does not always appear to be the
best way to control a robot. A velocity control is often more
intuitive for a human operator especially if he has access to a
3D mouse or another similar device.

2.4.1. Overview of the New Visual Servoing Control Law

The control law is no longer specified as a position to reach
but as a trajectory to follow. It is then necessary to determine
the trajectory that the object, observed by the camera, has to
follow and to build a control law that tracks this trajectory
and, finally, minimizes the tracking errors.

The idea is to produce a trajectory Pd(t). As in the previous
paragraph, we want to minimize the error:

e(q(t), t) = P(q(t))− Pd(t). (16)

We obtain

ė = Jq̇ − ∂Pd

∂t
with J = ∂P

∂q

and the control law is then given by:

q̇ = −λJ+ (P(q(t))− Pd(t))+ J+ ∂Pd

∂t
.

In this equation, the second term is used to minimize the track-
ing errors.

2.4.2. Velocity Control Law

Since we no longer specify a position to reach Pd but a tra-
jectory Pd(t), the position FmMof (t) to reach in the reference
frame is modified at each iteration. As in the previous case,
the error is then defined by:

P − Pd(t) =
(

FmToc − FmTof (t)

FmRocθu

)
, (17)

where θ and u are the angle and the axis of the rotation of (t)Roc

and where

FmMof (t) = FmMFpt

FptMci
ciMof (t) (18)

of (t)Moc = of (t)Mci
ciMFpt

FptMcc
ccMoc. (19)

The trajectory to follow is thus a function of ciMof (t) (see
eqs. (18) and (19)) that is updated at each iteration using the
velocity specified by the operator. At the beginning, we have
of course:

ciMof (0) = ciMoi . (20)

Then, if the velocity is specified in
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• the object frame, ciMof (t+�t) is given by:

ciMof (t+�t) = ciMof (t)
of (t)Mof (t+�t), (21)

with

of (t)Mof (t+�t) = �M =
(
�R �T
01×3 1

)
(22)

• in the camera frame, ciMof (t+�t) is given by:

ciTof (t+�t) = ciTof (t) +�T (23)
ciRof (t+�t) = �RciRof (t) (24)

• in the manipulator reference frame, ciMof (t+�t) is given
by:

ciTof (t+�t) = ciTof (t) + ciRFm
�T (25)

ciRof (t+�t) = ciRFm
�RFmRof (t). (26)

In these equations we have

�T = V�t

�R = cos(ω�t)I3×3 + (1 − cos(ω�t))v.vT + sin(ω�t)ṽ,

where V is the specified translation, v is the axis of the rotation
and ω is the velocity of this rotation around v. All these value
are expressed in the frame specified by the operator.�t is the
rate of the closed-loop. In the remainder we note � = ωv.

The final control law is given by:

q̇ = J−1

Fm

(q)
(

II3×3
FmRec

ẽTo
ecRFm

03×3 II3×3

)
−λ (P − Pd(t))+

(
V
�

)
RFm

 . (27)

To use this equation properly, it must be noted that the term
(V, �)T is expressed in the reference frame. Since the operator
may specify the desired velocity in 3 different frames, a frame
manipulation may be necessary to express (V, �)T in RFm

.
If the velocity is initially expressed in:

• the camera frame(
V
�

)
RFm

=
(

FmRcc 03×3

03×3
FmRcc

)(
V
�

)
Rcc

(28)

• in the object frame(
V
�

)
RFm

=
(

FmRoc 03×3

03×3
FmRoc

)(
V
�

)
Roc

(29)

• in the reference frame, we directly have
(

V �
)T
RFm

.

2.5. Computing Articular Positions

In both position-based and velocity-based control, joints
value q of the manipulator have to be estimated (see eqs. (9)
and (27)). However, as already stated, we do not have direct
access to these values since the robot is not instrumented.

To compute the joints positions q we use the position of
the effector in the manipulator reference frame FmMec and the
inverse geometrical model f −1(.) of the manipulator. We get:

q = f −1(FmMec), (30)

where FmMec is estimated knowing the pose by:

FmMec = FmMFpt

FptMcc
ccMoc

ocMec. (31)

We have considered in this paper only the case of a non-
redundant robot that ensures a finite number of solutions for
the inverse robot geometrical model. However, more than one
solution can be found for the inverse geometrical model. In the
current implementation of our system, if this problem appears
at the initialization, the user has to choose that closest to the
real one. If this appears during the visual servoing control
loop, the solution closest to the previous one is automatically
selected.

2.6. Pan/Tilt Control

It is important to control the camera pan and tilt in order to
ensure that the end effector of the manipulator remains in the
camera field of view. To achieve this task we simply use the
2D visual servoing approach (Espiau et al. 1992). We define
as visual features the projection of the center of gravity of the
target: P = (X, Y )T and we control the camera in order to see
it centered in the image: Pd = (Xd, Yd)

T = (0, 0)T .
The image Jacobian related to the task is given by:

L =
(

XY −(1 +X2)

1 + Y 2 −XY
)
. (32)

We therefore have

e = L+ (P − Pd) =
(

Y

1+X2+Y 2

− X

1+X2+Y 2

)
and the control law at each iteration k is given by:

Tk = −λ2ek −
(
∂̂e
∂t

)
k

. (33)

The second term is due to the target motion. In order to at-
tenuate the tracking error, and assume a constant velocity for
the manipulator end-effector, an adequate estimation of ∂̂e

∂t
is

given by a simple integrator (Chaumette et al. 1991):(
∂̂e
∂t

)
k

= −µ
k∑
j=0

ek. (34)
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3. Experimental Results

3.1. Image Processing and Pose Computation

The image processing algorithm is required to be fast and ro-
bust. To achieve these goals we propose a simple but efficient
tracking algorithm that relies both on the tracking of 2D fea-
tures and the estimation of the 3D position of the object in
the camera frame. As the end-effector of the Victor 6000 ma-
nipulator is cylindrical, tracking the target (the object) raised
many problems.

This target is made of white dots on a black background
and we assume that the CAD model of this target is fully
known (see for example Figure 3). Due to the end-effector
cylindrical shape, all the landmarks cannot be seen at the same
time. Appearance/disappearance of dots must then be handled
by the algorithm.

We give here a brief description of this algorithm. One
iteration of this algorithm includes the image acquisition and
its processing.

Initialization in the very first image (iteration 0). In the
current version of the system described in this paper, initial-
ization of the tracking in the very first image of the sequence
is performed partly manually. This means that the user has
to click at least four points on both the initial image and the
CAD model of the object. This is achieved within an inter-
active procedure ensuring also the matching between the se-
lected model points and their corresponding projections in the
images located by the user.

Description of iteration i. We suppose that at the end of
the iteration i − 1, a set P i−1 of N (N ≥ 4) points are
tracked in the images: P i−1 = {P i−1

1 , . . . P i−1
N } and that we

know the 3D coordinates of each point in the target frame
pi−1 = {pi−1

1 , . . . pi−1
N }.

The first step consists in a 2D tracking of the point be-
tween frame i− 1 and i. To achieve this task, we assume that
the image target motion is small and we use a classical algo-
rithm to compute the center of gravity of the dot. This can be
done since tracking is performed in real time and the target
is moving slowly. However, some points may be lost due to
motion which is too large or an occlusion by other objects or
by the target itself. We therefore get a list P i ofM points with
M ≤ N .

From these M points we compute the pose. A number of
methods have been proposed to compute pose from points.
We have used the method designed by Dementhon (Demen-
thon and Davis 1995) completed by Lowe’s non-linear method
(Lowe 1992). Dementhon’s method calculates the rigid trans-
formation in an iterative way from the knowledge of the co-
ordinates of at least four points in the object coordinate sys-
tem, and of their corresponding projections in the image. Its
principle consists of approximating perspective projection by

scaled orthographic projection, and then iteratively modify-
ing the scaled orthographic projection to converge upon the
perspective projection. We then apply the method proposed
by Lowe to improve the pose estimation: Lowe’s approach
is based on an iterative minimization of a residual using the
non-linear Levenberg-Marquardt minimization technique.

Once the pose ccMoc is available, we can easily determine
visible and invisible points of the target and add new points
in the list P i on a prediction/verification basis.

3.2. Control Experiments

Experiments have been carried out on a 6 dof cartesian robot at
INRIA Rennes. Control and image processing are performed
on a PC Linux (Pentium II, 366 MHz). Unlike the Victor 6000
manipulator, this robot is fully instrumented and the odome-
try is available. We will use this knowledge to compare the
displacement achieved using measured q and using estimated
q. It will also be used to compare the specified displacement
and the real one.

Figure 3 shows four images of the object mounted on the
manipulator end-effector acquired in a typical run of our al-
gorithm. Lines represent the virtual links between the current
and desired position of the landmark in the image. As can
be seen the initial desired position is not (necessarily) in the
image, however as the camera is controlled in pan and tilt to
center the object, this desired position is moving in the images
over time (see also Figure 4).

In all the reported experiments, in order to get a faster con-
vergence of the control law, we considered for λ (see eq (2))
an adaptive gain function of the error P − Pd.

3.2.1. Displacement Specified as an Image to Reach

It is possible to specify the desired position of the manipulator
in the image. Using this image, the desired pose ciMod and
consequently FmMod can be computed. This is a “learning”
step. The camera and/or the manipulator is/are then moved to
another location and then servo back to the learned position.

If the camera calibration parameters used for the learning
step and the servoing step are the same, then no errors in the
positioning process are observed (see Table 1). Indeed, poses
are computed using the same calibration parameters. If these
parameters are wrong and although the poses are incorrect the
relative displacement achieved is correct. Even with very bad
camera calibration parameters, precision remains very good
as long as the resolution of the inverse geometrical model
remains possible. Errors are then less than 5 mm in translation
and one degree in rotation and are due to the rough calibration
of the pan/tilt system and to the lack of precision of the pose
computation.
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Fig. 3. Target tracking in an image sequence and control of both the manipulator and the pan/tilt camera.

a b c

Fig. 4. Effect of the pan/tilt control: the desired position of the object in the image is modified. (a) initial position, (b) desired
position with no pan/tilt control, (c) desired position with pan/tilt control.

3.2.2. Position-Based Control

We now present results dealing with displacement within the
various possible frames The examples reported in Table 2
feature simple displacements, specified in the object initial
frame, by translation, another by rotation, as well as a com-
plex displacement of every axes. Plots on Figure 5 show the
behavior of the algorithm over time (error, control law, and
achieved displacement).

In each case, a small bias between the desired displacement

and the actual one can be observed (mainly in the translation
displacement). This bias is due to calibration errors in the
camera parameters (as can be seen the amplitude of the bias is
correlated to the error introduced in the camera parameters),
but also to errors in the initial estimation of transformation
FmMFpt

and eMo, and measurement errors in the pose com-
putation. Calibration of the full system is a problem of its own
that is not in the scope of this paper.

Moreover if important errors are introduced in the camera
parameters (typically over 40%), the resulting computed pose
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Table 1. Displacement Specified in the Image (the desired and actual positions are computed using the robot odometry)

Desired position in RFm
Tx Ty Tz θx θy θz

Desired 154 44 –98 29.3 6.9 33.6
Actual 150 47 –100 29.3 6.1 33.2
Actual calibration –20% 155 52 –103 29.8 3.2 33.0
Actual calibration +20% 155 45 –100 29.3 6.7 33.6
Actual calibration +40% 155 45 –99 29.3 6.9 33.5

Table 2. Displacement in the Initial Object Frame

� in Roi Tx Ty Tz θx θy θz

Desired 0 0 0 0 0 30
Actual –8.8 –0.5 –1.7 –0.1 –0.3 31.6
Actual with measured q –8.7 –0.9 –1.6 –0.1 –0.3 31.8
Actual calibration +20% 0.9 0.0 1.2 0.2 1.3 30.8
Actual calibration +40% 3.7 –0.1 1.0 0.2 1.1 30.8
Actual calibration –20% –3.5 –0.4 1.4 0.2 2.0 31.7

Desired 300 0 0 0 0 0
Actual 291.7 48.8 –1.0 0.0 0.3 1.9
Actual with measured q 290.6 49.0 0.5 0.1 0.1 2.0
Actual calibration +20% 253.8 41.2 –5.5 0.5 2.1 –0.8
Actual calibration +40% 220.4 39.6 –4.6 0.4 1.7 –1.1
Actual calibration –20% 371.6 42.9 –6.6 0.5 3.6 0.5

Desired 300 50 50 20 20 60
Actual 281.0 102.7 56.9 15.4 23.4 64.3
Actual with measured q 281.1 102.3 57.1 15.4 23.5 64.1
Actual calibration +20% 255.0 97.9 51.3 17.3 27.1 59.2
Actual calibration –20% 362.3 96.0 49.9 15.5 28.9 66.9
Actual (PT) 283.0 94.7 69.1 15.6 24.4 64.3
Actual calibration +20% (PT) 254.6 78.9 41.3 16.9 26.8 59.8
Actual calibration –20% (PT) 373.4 97.9 78.9 16.2 29.9 61.5

and therefore of the object position FmMe may be nonsensical
(e.g., out of the joint-limits) and the inverse geometrical model
may be unsolvable. In that case, visual servoing will fail.

Dealing with the online estimation of the articular position
q, results show that the errors in this estimation (due to cali-
bration and measure errors in FmMFpt

, ccMoc and eMo) have
no effect on the achieved displacement. Indeed, the achieved
displacements considering measured q or estimated q are very
similar (see Table 2).

Figure 6 shows the effect of errors in the calibration of the
camera on the projection of the desired position. We consid-
ered here errors of ±40% with regard to the initial parameters
(which are also certainly wrong since the camera has not been
calibrated). The desired position is therefore very different,
and the actual displacement will be therefore very dependent

of these parameters as can be seen in the various tables.

3.2.3. Velocity Control

Finally, experiments dealing with velocity control have been
carried out. In this experiment, the required displacement was
specified in the reference frame. The specified trajectory is a
rectangle (that is translation along x and y axes) followed by a
rotation around the object axis (the object should not translate
during this step). This trajectory is then iterated a few times.

Figure 7 shows the trajectory achieved by the object in
the reference frame. As expected the trajectory is correctly
achieved minus the small errors due to the system calibration
errors (as stated in the previous paragraph, these errors are
mainly due to the rough estimation of the FptMFm

matrix).
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Fig. 5. Results of a displacement specified in the initial camera frame �T = (50, 50,−300), �R = (20, 15,−30). All the
plots are over time. (a) error P − Pd, (b) control law, (c) displacement in translation (mm), (d) displacement in rotation (deg).

a b c

Fig. 6. Effect of the calibration errors on the desired position. The specified displacement is a translation of −500 mm along
the camera optical axis. (a) initial camera parameters with a noise of −40%, (b) initial camera parameters, (c) initial camera
parameters with a noise of +40%.
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Fig. 7. Velocity control: (a)-(b) position of the object in the reference frame ((a) X-Y view, (b) X-Y-Z view), (c) velocity sent
to the robot controller, (d) measured velocity.

The rotation achieved at the end of the rectangle trajectory is
correctly handled (i.e., no translational motion at this point,
see the bottom left corner of Figure 7(a)). When a new ve-
locity is given, due to tracking errors, a few iterations are
necessary to correctly achieve the newly specified velocity.
The term ∂Pd

∂t
introduced in the control law allows us to sup-

press quickly these tracking errors (see Figure 7(c) for the
computed velocity and 7(d) for the actual measured velocity).

3.3. Peg-in-Hole Experiments

In this last experiment we consider both position-based and
velocity control. The goal is to insert the cylinder of the robot
end-effector on another cylinder in order to achieve a “peg-in-
hole” task. A position-based control task is first considered to
move the target on the second cylinder axis. A velocity control
(motion along the z axis in the target frame) is then performed
to achieve the insertion. The cylinder on the end effector has
a radius of 5 cm while the other has a radius of 4 cm. The
experiment is shown in Figure 8.

3.4. Remark

Currently this algorithm has not been tested in underwater
conditions on the Victor 6000. Indeed, to achieve this goal,
more robust image processing has to be developed to take
into account the effects of the water medium. In particular,
we have to deal with specific optical laws when using under-
water cameras. Specific camera calibration and pose compu-
tation algorithms may have to be considered, as in Lavest et al.
(2000). However, classical perspective models have proved to
be an effective solution to robot control in an underwater en-
vironment (Rives and Borrelly 1997; Lots et al. 2000, 2001;
Van Der Zwaan and Santos-Victor 2001). Furthermore, since
visual servoing is robust with regard to modeling errors, we
have not considered this point.

4. Conclusion

In this paper we have proposed a complete framework to con-
trol in position and in velocity the effector of a manipulator
using a vision-based control approach. On the practical side,
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a b

c d

e f

g h

Fig. 8. Insertion task: the goal is to insert the cylinder on robot end-effector onto another cylinder. (a)-(d) Alignment of the
cylinder axes (position-based control), (e)-(g) cylinder insertion (velocity control), (h) removing the cylinder.
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the primary interest is to use the visual information provided
by the camera to efficiently control a manipulator that was not
instrumented by proprioceptive sensors (no odometry). A sec-
ond interest lies in the independence of the position reached
by the arm compared to the various modeling errors and cali-
bration errors, of the sensor as well as the arm if it is possible
to express the task assigned with the manipulator directly in
the space of measurement of the sensor (in fact the image
plane of the camera). To achieve manipulator control, the val-
ues of the manipulator joints are estimated on-line and the
specified displacement is achieved using a 3D visual servoing
control law. The orientation of the camera is also controlled
by 2D visual servoing so that the effector always remains in
the camera field of view. Because of the camera motion, it is
appropriate to measure this motion (measured by odometry)
and to compute at each iteration of the control the position
to reach or the adequate velocity to follow. Experiments have
been carried out on a 6 dof robot and show the validity and
the efficiency of our approach.
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