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Abstract

In this paper, we present a new solution to laparo-
scopic manipulation based on force feedback control. This
method allows to both explicitely control the forces applied
to the patient through the trocar, and to precisely control
the position of the surgical instrument. It does not require
any geometrical model of the operative environment, nor
any fine robot base placement prior to the instrument in-
sertion. Different control strategies, involving different
kinds of sensory equipments are proposed. They are ex-
perimentally validated on a laboratory apparatus.

1 Introduction

In the past decade, laparoscopic surgery has been the
object of an important research activity in the robotics
community. In this application, the robot system has to
manipulate a surgical instrument introduced inside the
patient’s abdomen through an incision point, where a
trocar is placed. Usually, this trocar is kinematically
modelled as a 2 rotational DOF constraint. Thus, the
manipulation is formulated as a 4 DOF problem. Two
different kinds of robotic systems have been developed
and are now available for a clinical use.

The first strategy, used in the Intuitive Surgical da Vinci
system, exploits a 4 DOF robotic device, exhibiting a
fixed remote center of rotation placed at the trocar ”cen-
ter” [1, 2]. Such a system suffers from several limitations.
First, prior to the insertion of the instrument, the robot
base has to be finely placed so that the remote center of
rotation precisely fits with the trocar center. In the envi-
ronment of a surgical room, this may involve a fastidious
process. Note that this process may have to be run sev-
eral times in the same surgical operation. Indeed, in a
complex surgical procedure, several trocars are placed in
the patient abdomen, and the surgeon needs to use dif-
ferent entry points during the operation, which requires
the robot base to be moved. Finally, there is no way of
limiting the forces applied to the patient: in case of a dis-
placement of the trocar, due to a motion of the patient,
the forces applied to the trocar may increase without any
control.

The second strategy for laparoscopic manipulation, pro-

posed by Computer Motion Inc. in the Zeus system, con-
sists of using a 6 DOF device, only four of them being
actuated [3]. The two free degrees of freedom are placed
in the robot wrist, so that the instrument naturally ro-
tates around the trocar when the wrist center is moved
at a given location by the three first joints of the robot.
This allows to significantly simplify the robot placement
process prior to the operation. Indeed, the robot can
be placed independently from the trocar locations in the
patient abdomen. The robot can also access, from the
same base placement, several entry points. Furthermore,
a displacement of the trocar due to a possible motion
of the patient does not produce any forces on the tro-
car. However, this system may also suffer from practical
limitations, due to the fact that the 2 DOF rotational
constraint is only a rough approximation of the kinemat-
ics of the trocar-instrument link. For example, the robot
sometimes has to manipulate a thin instrument (e.g. 5
mm diameter) through a relatively larger trocar (e.g. 15
to 20 mm). Indeed, the choice of the trocar diameter
is global for the whole operation and corresponds to the
largest instrument that has to be used in the correspond-
ing entry point. Thus, backlash may appear between the
instrument and the trocar. Combined with the free DOF
of the robot, this may lead to uncontrolled motions of the
instrument, and a lack of precision for the surgeon that
complicates the manipulation.

This problem is crucial in a research that we are develop-
ping in cooperation with IRCAD (Institut de Recherche
sur le Cancer de I’Appareil Digestif - Prof. Jacques
Marescaux) [4, 5]. In this research, visual servoing is
used to control the motion of the instrument from the la-
paroscope image (see Figure 1). With such an automatic
control of the surgical gesture, in some configurations, the
backlash between the instrument and the trocar may lead
to a cyclic oscillation of the controller.

We propose in this paper a different approach to laparo-
scopic manipulation that overcomes the above mentioned
limitations. The manipulator possesses 6 actuated joints,
providing 6 operational degrees of freedom for the in-
strument. In order to cope with the trocar constraint, a
force sensor is placed at the end-effector of the robot. A
force controller is then used to explicitely control the lat-
eral forces applied to the trocar towards zero. Different



Figure 1: Live experiments of automatic vision based control
for laparoscopic surgery using the ComputerMo-
tion’s system

control strategies are proposed. Since there is no a priori
knowledge of the trocar location with respect to the base,
these strategies involve an adaptive estimation of the dis-
tance from the end-effector to the trocar center. The pa-
per is organized as follows. Section 2 details the kinematic
modelling of laparoscopic manipulation. Section 3 formu-
lates the basic force control loop that is implemented to
limit the forces applied to the patient, and shows exper-
imental results. Sections 4 and 5 propose two different
strategies to identify on-line the distance from the robot
to the trocar. They are both theoretically demonstrated
and experimentally validated on a laboratory apparatus.

2 Modelling
We consider a six degrees of freedom robot, equipped with
a force sensor, and handling a rigid laparoscopic instru-

ment, that is introduced in a patient’s abdomen through
a trocar. The kinematics of the laparoscopic manipula-
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Figure 2: Manipulation through a trocar

tion is depicted in Figure 2, where F; = {Oy, Xy, y¢, Z¢ } 18
the tool frame attached to the tip of the instrument, such
that the z; axis is colinear to the instrument penetration
axis ; Fs = {Os,Xs,ys, 25} is the F/T sensor frame, with
z colinear to z; ; P is the point of the instrument handler

that instantaneously coincides with the trocar ; [ is the
fixed distance between the origins of F; and F; and d is
the variable distance from P to the origin of F;. For the
sake of simplicity, without loss of generality, it is assumed
that the axes of F, are aligned with the axes of F;, that is
x; = Xg and y; = ys. The trocar is modelled as a planar
kinematic constraint, given by:

vgxt = vgyt =0 (1)

where v, denotes the velocity of point P, considering the
motion of the instrument relatively to the patient. In the
sequel, the patient is supposed to be fixed with respect to
the robot base. In order to parameter the instantaneous
velocity of the instrument with respect to the patient,
which is supposed to be fixed, we use the following 4
component operational space vector:

. ; T

w:(d Wy wy wz) (2)
where d = vTz, is the instrument penetration velocity
along z;, and w,, wy and w, are projections of the abso-
lute rotational velocity w over x;, y; and z; respectively.
Combining Equations (1) and (2), one gets:

(o )=(x)w ®

where the upper-left superscript ¢ indicates that the vec-
tor is expressed in the frame F;, 0244 is a 2-by-4 zero
matrix and Isx4 is the 4-by-4 identity matrix. Further-
more, the absolute velocity of the instrument at its tip
Oy is given by:

() = M (37) (@)

0 d 0
with ~ M(d) = Tsxa _Od 8 8 (5)
033 I3.3

Conventional robot kinematic modelling can be used to
provide the jacobian matrix J(¢) that maps the joint ve-

. .. . . . T
locity ¢ into the instrument tip velocity (tvgt twT)

tvg
( o ) ~ 3(¢)i (6)

We finally get the inverse kinematic model:

. -1 02x4 :

i=3 o) ((§ ) g
where it is assumed that the robot kinematics is non sin-
gular. Equation (7) shows that the knowledge of the
scalar parameter d is sufficient to provide a robot mo-
tion that satisfies the trocar constraint (1). However, in
practice, this parameter is not precisely known. Applying
equation (7) with an estimated depth d # d will provide a
lateral motion at the trocar center, thus generating forces.
To cope with this problem, force control can be used.



3 Force feedback control

3.1 Control design

Let f be the force applied by the instrument to the pa-
tient through the trocar. We assume here that the in-
teraction force at the instrument tip is negligible. Thus
the force f is directly sensed at the force sensor. The two
components of f along x; = x; and ys = y; are f,, and
f,, respectively. The aim of the force feedback loop is
to servo them towards zero. Considering a motion rate
control strategy, a simple proportional controller can be
used:

xr tv; = —kf, .
T ty,x —kf
Yi Vp Yy

tv* is the control input velocity of point P ex-

where "vp

pressed in F;. We can now use a hybrid position/force
control strategy, that is to control simultaneously the mo-
tion w along the four free degrees of freedom and the
forces £, and £, along the two constrained degrees of free-

dom. This is achieved by the following control law:

" =31 (q9)M(d) [(‘I’jjj) W=k <(I>ii2) (?)}

[k
= 37 (@)M(@) |k, (9)
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w

where ¢* is the joint velocity control input, d is the es-
timate of d and w* is the input velocity for the instru-
ment motion. Note that w* is usually directly set by the
surgeon through the teleoperation interface, but it can
also be controlled autonomously, from a vision feedback
loop, as in [5]. In the sequel, w* is supposed to be arbi-
trary. Also, we will assume, hereafter, that the velocity-
controlled robot has a large bandwidth as compared to
the external position/force control loop so that:

q~q (10)

It can be seen in Equation (9) that the distance d has
to be estimated in order to implement the control law.
Again, this distance is not precisely identified, which can
limit the practical efficiency of the force control feedback
loop.

3.2 Experimental results

Experiments where performed on a lab apparatus, con-
sisting of a 6 DOF robot, equipped with a force sensor,
and manipulating a rigid 0.3 m length surgical instrument
through a trocar placed at a surgical endoscopic training
device.

For these experiments, the velocity input w* is set to
(0,wy,wy;,0). The two rotational components are 0.05
Hz, 1.5 deg s~ ! square signals. The objective is to eval-
uate the influence on the estimation error d — d on the
closed loop force control performance. Figure 3 shows the
forces f, and f;, measured for different values of d and d.

In the first configuration, d=0.15m and d = 0.2 m. The
maximum forces obtained are |f;| ~ 2 N and |f,| ~ 2 N.
In the second configuration, d=0.3mandd=0.1 m, the
maximum forces are |f;| ~ 4 N and |f,| ~ 5 N. Finally, in
the third configuration, =0.02 m and d = 0.2, the maxi-
mum forces are |f,| ~ 5 N and |f,| ~ 4 N. Clearly, forces
increase with the estimation error on d. is due to the un-
known distance d in the control law. These forces are due
to the fact that a low gain & has to be used for the force
control, so as to guarantee a stable and robust behavior
of the force loop. Increasing k& would reduce the forces,
but may cause chattering in some configurations. Thus,
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Figure 3: Forces f, and f, for different values of d

it is desirable to provide a way of on-line estimating the
penetration depth d, in order to obtain a higher perfor-
mance of the force loop. Two strategies are developed in
Sections 4 and 5.

4 Depth estimation with force sensing only

4.1 Adaptive control design

In the first strategy, we consider that the force sensing
device only provides a measurement for f; and f,. We
then have to reconsider the ideal model given by con-
straint (1). A residual lateral displacement of point P is
introduced:

vTxt =@

» Vo Yi=p (11)

This lateral displacement generates a force. A simplified
model of the interaction between the robot and the pa-
tient at the incision point is used (like, e.g., in [6, 7]):

f, =g.2p £, =9.9p (12)

where ¢ is the stiffness constant of the patient’s abdom-
inal wall. Applying the control law (9), and combining



with equations (4), (5), (6), (10), (11) and (12), one gets
the following closed loop behavior:
f, = tvgxt =g —kf, + (E, d)w

{ tyT 7 (13)
f,=9'v,y:=g —kf, — (d — d)w

8% <%

These equations are linear with respect to the parame-
terization error (d — d).

Assuming that ¢ is known, we propose the following nor-
malized gradient algorithm to estimate d:

*

~ . . w.
d=d" — ki, + ghf,)——¥
1( +g )6_’_&};2_’_‘0;2
ko (F, + ghf,)———2 (14)

€+ w2 —i—w;z

where k1 > 0 is the gain of the gradient algorithm and
e > 0 is a normalization coefficient. The stability and
convergence properties of this estimation algorithm are
given in the following Lemma:

Lemma 1 : Stability and convergence properties of the
estimation algorithm (14)

1. The estimated parameter d and its derivative are
bounded, i.e., c/i\, de L.

2. Th gnal e = | 20 e € Ly L
. e error signal e = Wep € La )

~

3. The parameter estimation error, e, = (d — d), con-

verges, i.e., limy o €p = €poo.
W2 4 ¥2
xr

4. 1If W 1s persistently exciting, i.e.,

to+T *2 %2
0 wy” T w,

In >0 IT s.t. = —Sdt>n>0
Y

T Jy, e+ w2 +w
Vtg > 0 (15)

then, lim;_, e, = 0, exponentially.

The proof of this Lemma is given in the appendix. We
can see that the algorithm is stable and that the conver-
gence of the parameter error to zero is obtained if there
is enough excitation (i.e., rotational motions around axis
x; and y;). Note that, since a priori 0 < d < [, a projec-
tion is added to always keep the estimate d in the interval

[0,1], i.e., d=0ifdis 0 or | and its derivative is respec-
tively negative or positive.

In practice, the stiffness parameter may not be known.
In this case, noticing that Equation (13) is linear with
respect to the stiffness coefficient g, we propose the fol-
lowing gradient algorithm to estimate both parameters g
and d on-line:

d* — ki (£, + ghfo)w) + k1 (£, + Gk, )w}

—k1(fy + gkfy) kf, — k1 (f, + gkf,)Ef,  (16)

d

Q)-
|

where k1 > 0 is the gain of this gradient algorithm. The
stability and convergence properties of this estimation al-
gorithm are given in the following Lemma:

Lemma 2 : Stability and convergence properties of the
estimation algorithm (16)

1.d,G€ Loc and d, § € L.
2. If Q% is persistently exciting, then lim, ., e, = 0,
exponentially, where Q = QT > 0 and

( W +wi?)  gk(fowy — fyw?) )

gk(fow; — fywr)  k? (£2+1£7)

The proof of this Lemma is given in the appendix. We can
see that the parameter convergence to zero is obtained if
there are rotational motions around x; and y; as well as
translational motions along x; and yy;.

4.2 Experimental results

Experiments where conducted on the same lab apparatus,
with the same initial conditions. For these experiments,
the algorithm (14) has been used, with an a priori knowl-
edge on the interaction stiffness g. This parameter has
been roughly identified on the experimental setup. The
results are plotted in Figure 4. The convergence of d from
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Figure 4: Experimental results - adaptive estimation of d

its initial value dy to the real value d is experimentally
demonstrated. Together with the convergence of d, one
can see that the forces applied to the patient are limited
to a reasonable value. Although the measured force suf-
fers fom significant noise, the estimation is smooth. This
is due to the low bandwidth of the estimation dynamics
that rejects the high frequency noise in f and f, thanks
to the use of a low gain k1. As a price, the convergence is
slow. The next section proposes an alternative strategy
for a faster identification of d.



5 Robust identification of the distance d from
force and torque measurements

5.1 Depth estimation algorithm

In this section, we assume that the whole 6 component
interaction wrench can be measured by the force/torque
sensor. In this case, the distance, d, can be identified from
the measurements of the forces f;, f, and the torques v,,,

v,- Indeed, we have:
VYTV Ay, an
Jezrez b

However, equation (17) cannot be used directly to esti-
mate d. Indeed, when the force control algorithm brings
the force closed to zero, the estimation can become in-
accurate due to the noise and resolution of the sensor.
Therefore, we propose to use a weighted least-squares al-
gorithm with a sliding window and a dead-zone to ro-
bustly estimate m and d (cf. [8]).

To minimize the estimation error, let’s define the follow-
ing cost function with sliding window and forgetting fac-
tor:

m=I[l—d=

t

Teta)=[ XD () - @ROP dr (18)
max(t—T,to)

where A > 0 is a forgetting factor and 7" > 0 is the size

of the sliding window. Then, the least-squares estimate

m(t) that minimizes J(t,t) is equal to:

m(t> = R(tv tO)ilQ@vtO) (19)
with: .
R(t,ty) = / e DR ar (20)
max(t—T,to)

t
Qlt,to) = / DL (P (Mdr (21)
max(t—T,to)

In practice, the estimate is not reliable when £, or ~, is
closed to zero. Therefore, if f,.(t) or v,.(tf) decreases be-
low some threshold value f;, or 7,;, the computation of
the least-squares estimate is frozen, i.e., only the refer-
ence instrument velocity d* along the z, axis is taken into
account. The least-squares estimate is computed only if
the forces and torques are larger than the threshold val-
ues for a minimum length of time Ty, < T'. Consequently,
the robust estimation algorithm is defined as follows:

R l— R(t, tg) 'Qt, ty) if £:(¢) > finy v, (1) > Yen
d(t)= and t > tj, + Tp

d(Ty) + thk d*(t)dr  otherwise

(22)

where ¢, is the last time instant when f, and =, left the

dead-zone area, and T}, is the last time instant when f,. or

7, entered the dead-zone area. Furthermore, since 0 <

d < [, a saturation function is applied on the estimate, so
that it always stays in the interval [0, ].

5.2 Experimental results

Figure 5 presents the experimental result for the direct
estimation of d using the robust estimation algorithm.
The experimental results are obtained with maximum size
T = 0.5 sec of the sliding window and the minimum size
Ty = 0.25 sec. In order to compare these results with the
previous ones, the experimental conditions for dg and d
are reproduced. One can see that the convergence of the
estimation algorithm is faster, as it does not involve any
dynamics. The estimated signal d exhibits noise, that
does not significantly affect the force response, as com-
pared to Figure 4.
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Figure 5: Experimental results with direct estimation of d

6 Conclusion

In this paper, we have proposed to use a 6 DOF actuated
robot to hold surgical instruments for laparoscopic ma-
nipulation. Force feedback control strategies have been
proposed to solve the trocar kinematic constraint, involv-
ing the on-line estimation of the environment geometry.
They have been theoretically proven and experimentally
validated. The functional improvement of such a method
over existing systems has also been discussed in the in-
troduction.
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Appendix

Proof of Lemma 1 :

1. Let’s define the following Lyapunov-like function:

1
2 _
p*§(

d—d)?>0 (23)

V(t) = ze

N | =

Using (13) and (14), one gets:

*

. . w
V0 = (b ot
z Y

. w*
1(y+g y)€+w;2+w;2>

w*Q +w*2
= —/ﬁg (A 612, (24)

€+ w2 —l—w;f

Thus V(t) < 0 and V € Lo,. Therefore, dand d € L.
2. From equation (24), it follows that:

[ee) w;Q +w*2 1
[ ot da— s Vo) -V (2)
0 €twi®twy kig

[ w*2 4>
therefore, WGP S LQ.
z y

3. Since V> 0 and V < 0, it follows that V() is a
monotically decreasing function bounded below by zero.
Consequently, tlim V(t) = Vo and tlim ep(t) = epoo-

4. From equation (24):

. w*2+w*2
V(t) = -2k —r YV |Vt 26
0 1g<€+w;2+w;2 ) (20

Theref ing Th 9.5.1 in [9], if |/t
erefore, using Theorem 2.5.1 in [9], i Ty
persistently exciting, then lim; .., V(¢t) = 0 exponen-

tially, and lim; . e, = 0 exponentially.
Proof of Lemma 2 :
1. Let’s define the following Lyapunov-like function:

o = Mas o-s][3 2] 1]
= egﬁ >0 (27)
2
with A = { g (1) } Using (13) and (16), one gets:
V(t) = egAép = —klengp (28)
with:

( P +wp?)

gk(fow;, — f,wy) )
gk(fmw; - fyw;)

2(£2 4 £2
k2 (£2 4 £7)
From the Sylvester’s theorem, the quadratic function
V(t) is semi-definite negative, if and only if, the upper

left submatrices of Q have non-negative determinants.
Since,

Qu = ¢*w? —i—w;f) >0
det(Q) = g*(kf,w) + kfyw?)? >0
therefore, Q > 0, V(t) < 0 and V € Ly. It follows that

ep € Lo and, using equation (16), dand § € L.
2. From equations (13) and (16), we have:

ép = —k er (29)

with Q = QT > 0, therefore if Q% is persistently exciting,
ie.,

1 to+T
Eln>OEITs.t.T/ Qdt >l >0 Vig>0
to

using Theorem 2.5.1 in [9], then lim; . é, = 0, exponen-
tially.



