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Abstract

A simple and efficient control algorithm that combines several sen-
sors in order to realize the positioning task of a robot end effector is
presented in this paper. The multiple-sensor control was designed as
a part of the task function approach. A particular choice of the task
function allows the researcher to simplify the design of the control
law and the stability analysis. This global controller is based on the
weighted sum of individual task functions. The approach was applied
to the control with vision and force sensors. In spite of its simplicity,
this approach provides satisfactory experimental results. Improve-
ments in the positioning of cumbersome objects were obtained using
cameras observing different parts of a scene. Moreover, peg-in-hole
insertion experiments involving large initial errors were performed
using a seven-axis robot manipulator without any computation of
the peg trajectory by combining vision and force sensors.

KEY WORDS—multisensor, force, vision, control, robotics

1. Introduction

Most applications of advanced robotics need robot manipula-
tors with the ability to work in environments with unknown
location and geometry. Thus, external sensory information
has to be integrated in the manipulator control. Over the past
decades, force/torque sensors, proximity sensors, and video
cameras have been used to control manipulators in unknown
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environments. Early in robot control development, force-
sensing capabilities were considered to be a crucial issue,
since the robot often interacts with its environment. Much
research has been conducted to study stability properties and
bandwidth limitation and to emphasize the role of dynamics in
force control (Eppinger and Seering 1989; Khatib 1987; Raib-
ert and Craig 1981; Lawrence 1988). Vision-based control
has recently received a growing interest as the computational
power of commercially available computers has become com-
patible with real-time visual feedback (Espiau, Chaumette,
and Rives 1992; Hutchinson, Hager, and Corke 1996; Wil-
son, Hulls, and Bell 1996). For both vision and force control,
initial drawbacks have been overcome and a number of tech-
niques are now available. They should be selected depending
on the nature of the task, the robot and sensor design, and the
low-level controller hardware. At a more general level, the
task function approach was proposed in Samson, Le Borgne,
and Espiau (1991) as a general framework for sensor-based
control of robots.

Combining several sensory data is also an important issue
that has been studied considering two fundamentally different
approaches. In the first approach, the different sensors com-
plementarily measure the same physical phenomena. Thus, a
sensory data fusion strategy is used to extract pertinent infor-
mation from the multiple sensory data. The second control
approach consists of selecting, among the available sensory
signals, a set of pertinent data, which is then servoed. The two
approaches are referred to as sensory data fusion and sensory
data selection.
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A typical example of sensory data fusion is stereo vision.
With this approach, two images provided by two distinct cam-
eras are used to extract complete Euclidean information about
the observed scene. The fused data can then be used as a
measure in a feedback loop, such as in Allen et al. (1993),
where a stereo pair was used to reconstruct the position of a
moving object at video rate (one image every 0.004 seconds)
and to control the robot’s end effector, in order to track and
select the object. Such a three-dimensional visual servoing
technique was proposed in Cipolla and Hollinghurst (1997),
where a five-degree-of-freedom robot was controlled using a
fixed external stereo head. Data fusion can also be performed
in projective space without explicitly reconstructing the po-
sition of observed objects. For example, in Hager (1997) a
stereo system simultaneously tracked the robot end effector
and visual features used to define goal positions. Thus, the
error was defined as a function of features directly observed
from both cameras, and the robot could be positioned with an
accuracy that was independent of errors in hand-eye calibra-
tion. Another method, based on the estimation of a (4 × 4)
projective homography matrix that relates two sets of points of
the projective space, was proposed in Ruf and Horaud (1999).
This method is similar to the previous methods, but the robot
is controlled without performing any Euclidean reconstruc-
tion. Sensory data fusion can be achieved directly by means
of control, as in Maru et al. (1993), where two-dimensional
visual servoing was performed using a stereo head while up-
dating the task Jacobian from the information provided by the
two cameras. Disparate sensory data fusion can also be used
in robot control. For example, in Agapakis (1990) a proxim-
ity sensor was used in combination with a camera for depth
reconstruction purposes.

Sensory data selection is used when the different data do
not provide information of the same quality. In this case, one
can use environment models to select the appropriate sensor
and to switch control between sensors. A typical example
of this approach was developed in Nelson and Khosla (1996)
and Nelson, Morrow, and Khosla (1996) using the resolvabil-
ity concept, which provides a measure of the ability of a sensor
to resolve motion. The authors considered an application in-
volving a combination of force and vision. The resolvability
of the two sensors was evaluated on-line, and the controller
automatically switched between force and vision control dur-
ing a contact task. A similar idea was developed in Hosoda,
Igarashi, and Asada (1996) by applying classical hybrid posi-
tion/force control. The force was servoed along the direction
that was mechanically constrained by the environment (e.g.,
the normal direction of a contact plane) while the image was
used to servo the robot’s motion along the remaining free
directions. The sensory signal selection was operated in ad-
vance.

Our approach to multisensory robot control is drastically
different from these two methodologies (Morel, Malis, and
Boudet 1998; Malis, Chaumette, and Boudet 2000). It does

not pertain to sensory data fusion, since we assume that
the sensors may observe different physical phenomena from
which the extraction of unique information does not make
sense. Nor does it pertain to sensory data selection, since
we consider potential situations for which it is not possible
to select a set of data that would be more pertinent than oth-
ers. Consequently, the proposed approach addresses a very
large spectrum of potential applications for which the sensory
equipment may be disparate and complex. As an improve-
ment over previous approaches, there is no need to provide a
model of the environment that would be required to design a
switching or fusion strategy.

Consider an example task in nuclear maintenance opera-
tions consisting of placing the nozzle dam in steam generators
(see Fig. 1). The object is a disk of roughly 1 m diameter that
must overlap a hole where it fits precisely. Because in typi-
cal maintenance scenarios the exact location of the hole with
respect to the robot is not known precisely, vision feedback
is necessary for an automatic operation. Due to the large size
of the object, a single camera observing only one side of the
scene is not appropriate, since it could produce a “lever ef-
fect.” A small positioning error of the camera could produce
a larger error on the other side of the cover. The use of more
cameras allows one to observe different parts of the scene.
The cameras can be placed on the robot around the cover to
observe the edges of the hole, as illustrated in Figure 1. In
this case, the fields of view of the cameras do not necessarily
overlap, in contrast to conventional stereo vision. Further-
more, in the final phase of the task, calibration errors in the
vision system may cause small displacements from the nom-
inal insertion trajectory. This would involve large forces. A
wrist force/torque sensor can then be used in conjunction with
the cameras to perform the placement task while minimizing

Fig. 1. Cover positioning in a steam generator.
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interaction forces. It must be noted that combining force
and vision has rarely been considered, and to our knowledge
only a few references are available in the literature (Hosoda,
Igarashi, and Asada 1996; Nelson and Khosla 1996; Nelson,
Morrow, and Khosla 1996; Morel, Malis, and Boudet 1998).

The main contribution of our work is the definition of a
global task function as the weighted sum of individual task
functions (one for each sensor). Such a hierarchical struc-
ture leads to an increased modularity. A task function for
each subsystem is designed, and the sensor combination is
performed at a higher level.

The paper is organized as follows. In the next section, a
general formulation of the disparate multisensor control prob-
lem is provided based on the task function concept (Samson,
Le Borgne, and Espiau 1991). The general control law and
the stability analysis of the controller are described in Sec-
tion 3. In Section 4, we detail the design of the force and vi-
sion control subsystems. Finally, experiments are presented
in Section 5.

2. Modeling

In this section, we describe the general model used to con-
trol the robot motion from disparate sensory feedback. The
robot is supposed to be controlled by a six-dimensional vec-
tor vr representing the end effector velocity whose compo-
nents are supposed to be expressed in the end effector frame.
It is equipped with N sensors, each rigidly attached to the
end effector. Each sensor Si (i = 1 · · ·N ) provides an ni-
dimensional vector signal si . For simplicity, it is assumed
that ni ≥ 6. However, this hypothesis is not restrictive, and
our work can be easily extended to the general case. An in-
teraction matrix Li {i = 1, 2, .., N} is attached to each sensor
such that (Espiau, Chaumette, and Rives 1992)

ṡi = Livi , (1)

where vi is the absolute velocity of the sensor Si expressed
in a frame Fi attached to the sensor, where m is the number
of degrees of freedom of the manipulator (generally m =
6). Furthermore, we introduce the transformation matrix Wi

linking the sensor velocity and the end effector velocity:

vi = Wivr . (2)

Because the sensor is fixed with respect to the end effector, the
matrix Wi is constant and depends on the geometric transform
between the end effector frame and the sensor frame. Using
the two previous equations, we get ṡi = LiWivr , where LiWi

is called the Jacobian matrix of the ith sensor.
Let s = [

sT1 sT2 · · · sTN
]T

be the n-dimensional vector

(where n = ∑N
i=1 ni) containing all the signals provided by

the N sensors. The relationship between the time derivative
of the global sensor signal vector and the end effector velocity
vr is

ṡ =


L1 0 . . . 0
0 L2 . . . 0
...

...
. . .

...

0 0 . . . LN




W1
W2
...

WN

 vr = LWvr . (3)

Now, let s∗ be the desired value of the sensor signal vector s.
We use a task function of the form e = C (s − s∗) (Espiau,
Chaumette, and Rives 1992), where C is a full-rank constant
matrix of dimensions (6×n), which allows one to take into
account the information redundancy. The matrix C being
constant, the time derivative of the task function is

ė = Cṡ = CLWvr . (4)

A major concern in designing a task function–based controller
is to select a suitable constant matrix C while ensuring that
the matrix CLW has full rank. Usually, C is designed as
a function of the matrices L and W, which both depend on
unknown parameters. Thus, estimated matrices L̂ and Ŵ
will be used. Different choices of C are possible. Mainly,
two solutions involving a constant matrix C are used in the
literature:

• C = (L̂∗Ŵ)+ is the pseudoinverse of the Jacobian ma-
trix calculated at the desired position L̂∗ = L(s∗, g∗)
(where g are unknown geometric parameters). This
choice ensures a better decoupling of the control law
near the convergence.

• C = (L̂∗Ŵ)T is the transpose of the Jacobian matrix
calculated at the desired position. This choice does not
need the inversion of the interaction matrix, but it does
not realize the decoupling of the control law near the
convergence.

In this paper, we propose to use the block pseudoinverse of
the Jacobian matrix:

C = (L̂∗Ŵ)� = [
κ1Ŵ−1

1 L̂∗+
1 . . . κNŴ−1

N L̂∗+
N

]
, (5)

where L̂∗+
i is the pseudoinverse of L̂∗

i , Ŵ−1
i is the inverse of

Ŵi , and κi is a positive weighting factor such that
∑N

i=1 κi =
1. The choice of C made in eq. (5) presents intermediate
characteristics with respect to the choices described above (in
the items).

The usefulness of this new combination matrix for dis-
parate multiple sensory feedback will be shown when comput-
ing the control law and analyzing the stability of the system.
However, it can already be noted that it has some interesting
characteristics. Indeed, if we consider for each sensor a task
function ei = Ci

(
si − s∗

i

)
, where Ci = Ŵ−1

i L̂∗+
i , then the

task function of the entire system is a weighted sum of the
task functions relative to each sensor:

e = C
(
s − s∗) =

N∑
i=1

κiei =
N∑
i=1

κiCi
(
si − s∗

i

)
. (6)
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Such a choice of the matrix C leads to an increased modularity.
An individual task function is designed for each subsystem,
and the sensor combination is performed at a higher level.
The design of the multisensor combination simply consists of
selecting the positive weights κi (i = 1 · · ·N ). This choice
is both task and sensor dependent. The weights κi can be set
according to the relative precision of the sensors or, more gen-
erally, to balance the velocity contribution of each sensor. If a
sensor Si plays an important safety role (e.g., a force sensor),
the corresponding weight κi will be large. A dynamical set-
ting of κi can also be implemented. For example, if a sensor
Si fails during a task, then the weight κi will be set to zero.

3. Control Law and Stability Analysis

If a simple proportional control law is set to work (e.g., by
imposing the exponential decreasing of the task function ė =
−λe, where λ is a positive scalar), then the ideally decoupling
control law is

vr = −λ(CLW)−1e. (7)

A more realistic control law is the following:

vr = −λ(CL̂Ŵ)−1̂e. (8)

In general, for use in the control law, we choose the interaction
matrix calculated at the desired position: L̂ = L̂∗(s∗, ĝ∗).
Consequently, choosing C = (L̂∗Ŵ)� defined by equation
(5), we obtain

(CL̂∗Ŵ)−1 =
(

N∑
i=1

κiŴ
−1
i L̂∗+

i L̂∗
i Ŵi

)+
=

N∑
i=1

κiIm = Im,

(9)

and the control law is

vr = −λ̂e. (10)

Similar results can be obtained with different choices of L̂, as
will be seen in the case of the force subsystem. Considering
eq. (6), this control law is equivalent to a weighted sum of the
control laws of each subsystem vri = −λ̂ei :

vr = −λ

N∑
i=1

κîei =
N∑
i=1

κivri . (11)

The general structure of the controller is shown in Figure 2.
To obtain the closed-loop system equation, the estimated task
function must be expressed as a function of the real task func-
tion and of the calibration errors of the system. In the general
case, when the task function is built directly from sensor data,
it is simply ê = e if the measurement noise is neglected. When
the task function is built using parameters reconstructed from

the sensor data, a further modeling step should be performed,
as will be seen in the next section. If ê = e, the closed-loop
system with the control law (10) is given by

ė = −λ(CLW)(CL̂∗Ŵ)−1e = −λ(L̂∗Ŵ)�(LW)e. (12)

A sufficient condition for the stability of the system is

(L̂∗Ŵ)�LW > 0. (13)

It is clear now why it is interesting to choose C as a block
pseudoinverse. Indeed, using eq. (5), the condition (13) can
also be written as

(L̂∗Ŵ)�LW =
N∑
i=1

κiŴ
−1
i L̂∗+

i LiWi > 0, (14)

and this condition is verified if (remember that κi > 0)

Ŵ−1
i L̂∗+

i LiWi > 0 ∀i = {1, 2, 3, ..., N}. (15)

Thus, the whole system will be stable if each subsystem is
stable, since the sum of positive matrices is a positive matrix.
The stability analysis can thus be reduced to the study of the
stability of each subsystem separately. Even if the system
is not unstable (i.e., ‖̂e‖ is bounded and cannot grow indefi-
nitely), it could happen that ê = 0 but êi = 0∀i. In this case,
the control output will be v̂ = 0, which corresponds to a local
minimum. However, that situation can easily be detected, and
one can choose a new set of gains κi such that ê = 0.

4. Subsystem Design

In this section, we discuss the design of each separate sub-
system. The force and vision control subsystems described
in this section can be combined in the general control scheme
described earlier.

4.1. Vision Subsystem

Vision-based control can be achieved using three different
methods. In a three-dimensional visual servoing system,
the error to be controlled corresponds to the camera’s pose,
that is, its position and orientation (Wilson, Hulls, and Bell
1996). The pose relative to the target is estimated from image
features, which requires the precise knowledge of the tar-
get geometry. Conversely, two-dimensional visual servoing
exploits an error directly computed from the image features
relative to their desired values (Espiau, Chaumette, and Rives
1992). Finally, in the two-and-a-half-dimensional visual ser-
voing approach, the error to be controlled is computed in part
in the Cartesian space and in part directly in the image (Malis,
Chaumette, and Boudet 1999; Morel et al. 1999). Any of the
three methods can be used in our framework. However, the
three-dimensional servoing approach is not considered in this
paper.
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Fig. 2. General structure of the controller with N sensors.

4.1.1. Two-Dimensional Visual Servoing

In the implemented image-based controller, the considered
image features are the image coordinates ofp points observed
on the target s = [

x1 y1 ... xp yp
]T . The task func-

tion is e = C(s− s∗). Thus, the Jacobian matrix of the sensor
signal is

∂s
∂r

= L(z, s)W. (16)

The interaction matrix L depends on the distance z between
the points of the target and the camera. When an object is
in the field of view of at least two cameras (stereo configu-
ration), the distance can be estimated. Otherwise, it can be
approximated for each camera, exactly as for mono-camera
visual servoing (Espiau, Chaumette, and Rives 1992), when
the desired features in the images s∗ are stored. The optimal
choice for the combination matrix is C = Ŵ−1L̂+( ẑ ∗, ŝ ∗).
The vision system is stable if

Ŵ−1L̂+( ẑ ∗, ŝ ∗)L(z, s)W > 0. (17)

Unfortunately, the stability domain of the two-dimensional
visual servoing is not analytically known to this date, and
the analysis has to be stopped. However, a two-dimensional

mono-camera visual servoing system is known to be robust
with regard to calibration errors (Espiau 1993). The same
robustness can thus be expected from a multicamera system
using a two-dimensional visual servoing technique.

4.1.2. Two-and-a-Half-Dimensional Visual Servoing

In the case of two-and-a-half-dimensional visual servoing, the
task function is reconstructed from the sensor signal (Malis,
Chaumette, and Boudet 1999). The Jacobian matrix is an
upper block-triangular matrix that is nonsingular in the whole
workspace:

∂s
∂r

= L(d∗, s)W. (18)

The only unknown parameter is the distance d∗ between the
camera and the target, but it does not have a great influence
on the stability of the system. In that case, we have êi = Eiei ,
where Ei depends on the camera’s internal parameters and is
given in Malis, Chaumette, and Boudet (1999). The estimated
task function is thus given by

ê =
N∑
i=1

κiEiei . (19)
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Consequently, ê cannot be easily written as a function of e
under the form ê = E e. However, we can proceed in the
following way. The task function can be written as

e = [
κ1I6 κ2I6 . . . κN I6

]
e

′ = Ke
′
, (20)

where e
′

is the 6N -dimensional vector containing the task
functions of each subsystem. This vector can be computed as

e
′ = K+e + (I6N − K+K)φ, (21)

where (I6N − K+K)φ is an arbitrary vector belonging to the
null space of K. Because of the simple form of K, its pseu-
doinverse is K+ = (

∑N
i=1 κ

2
i )

−1KT . Plugging eqs. (21) and
(20) in eq. (19), the estimated task function is

ê = 1∑N
i=1 κ

2
i

N∑
i=1

κ2
i Ei e + be = E e + be, (22)

where be, which can be considered as an additional “bias” on
the task function, is given by

be =
N∑
i=1

κiEiφi − 1∑N
i=1 κ

2
i

N∑
i=1

κ2
i Ei

(
N∑
i=1

κiφi

)
. (23)

This bias can be neglected. Indeed, this hypothesis is jus-
tified because, owing to the simple form of matrix Ei (block
diagonal) and with an appropriate choice of ei for the rotation
(eωi = ÂA−1uθ , where A is the matrix of the camera param-
eters, Â is its approximation, and uθ is the rotation vector),
Ei ≈ I6 and be ≈ 0. Let us note that at the convergence,
Ei = I6 and be = 0 and the system is always locally stable
(Malis 1998). Furthermore, because of the simple form of
matrices Li and Wi (block triangular), the stability analysis
of the multicamera two-and-a-half-dimensional visual servo-
ing is thus reduced to the stability analysis of each subsystem.
Because each subsystem is stable under the conditions given
in Malis, Chaumette, and Boudet (1999), the whole system is
also stable, at least under the same conditions.

4.2. Force Subsystem

To design the force subsystem, it is straightforward to choose
s = τττ , where τττ is the interaction wrench. The task function
is again e = C(s − s∗). Then, the interaction matrix is

∂s
∂r

= ∂τττ

∂r
, (24)

where r is the actual end effector pose. The interaction ma-
trix depends on both the geometry of the constraint and the
contact mechanics. Thus, a general stability condition cannot
be derived for any task. We provide an example considering
a contact point configuration. Thus, only linear forces τ are
considered in the example instead of the complete wrench

τττ . In this case, the desired damping is a constant spherical
matrix, B = bI3. If we assume elastic deformations and no
friction, we obtain (Espiau, Merlet, and Samson 1990)

∂τ

∂r
= knnT , (25)

where n is the unitary vector normal to the contact surface and
k is the scalar stiffness. Choosing C = B−1 and the control
law ṙ = −λe, the system will be stable if

B−1 ∂τττ

∂r
> 0. (26)

Because the desired damping is a constant spherical matrix,
B−1 = 1

b
I3, we finally obtain

B−1 ∂τττ

∂r
= k

b
nnT , (27)

which is positive for any positive value of b and k. As already
mentioned, this example takes into account only linear forces.
Similarly, one can consider the general case with the complete
wrench τττ .

It is interesting to note that we finally obtain what is re-
ferred to in the force control literature as a position-based
impedance controller (Heinrichs, Sepehri, and Thornton-
Trump 1996; Caccavale et al. 1999), with a desired impedance
corresponding to a pure damper.

5. Experimental Results

The experimental setup used in this work is as follows. The
robot is a seven-axis redundant electric Mitsubishi PA-10 ma-
nipulator (at the Direction des Etudes et Recherches at Elec-
tricité de France). The joint redundancy of the robot is solved
by minimizing joint velocities in the inverse kinematics proce-
dure using a conventional pseudoinverse algorithm q̇ = J+vr .
In addition, a second-order differential model is used to solve
the inverse kinematics in singular joint configurations (Malis,
Morin, and Boudet 1996). We used Panasonic cameras and
an Assurance Technologies Inc. six-axis force/ torque sensor
mounted at the end effector. Low-level joint position control
is achieved via the Mitsubishi controller, which communi-
cates with a VERSAmodule Eurocard bus controller through
an Arcnet communication link. Two CPU boards supporting
VxWorks realize the position-based impedance control. An
additive specific EDIXIA vision-dedicated board generates
the reference velocity.

To perform a task, it is assumed that an off-line learning
phase was performed prior to the maintenance operation. The
off-line learning phase provides the final desired sensory sig-
nal value, which consists of the images viewed by the different
cameras at the final location. If the end effector positioning
requires an operating force to be applied, the desired force
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signal can be taught to the system during the same learning
phase. Finally, the task consists of servoing the different sen-
sory signals toward their final desired value, assuming that
sufficient information is available at the initial stage of the
task, that is, at least one camera can see its tracked target. We
describe experiments in which two cameras are coupled and
experiments in which a camera and a force sensor are coupled.

5.1. Coupling Two Cameras

A system simulating the positioning of the cover using only
vision was tested. To demonstrate the practicability of the
task, only two cameras were used. The cameras are placed at
the extremity of a 50-cm aluminum bar mounted on the manip-
ulator robot as in Figure 3. Two planar targets with six points
each were used. A simple hardware architecture was used in
order to reduce the cost of the system. The two cameras are
connected to two different entries of the same EDIXIA video
board, and the acquisition of the two images is sequential.
The rate of such a system is two times as slow as the rate of a
parallel system (i.e., 80 ms, with a delay between the acqui-
sition of the two images of about 40 ms). Consequently, the
velocity of the robot end effector during the servoing cannot
be too high. Indeed, the delay between the acquisitions of
the images is not taken into account in the control law. The
convergence speed of the task was set to λ = 0.1 for all the
experiments. Depending on the stability domain that can be
obtained from the control law, two types of algorithms can be
considered. When the convergence domain of each subsystem
is not large (as for the two-dimensional visual servoing), the
following general algorithm is proposed (using N cameras):

1. Test how many cameras have converged (a camera has
converged if the error on visual features is lower than
εi : ‖si − s∗

i ‖ < εi). If all the cameras have converged,
the goal is reached. Go to 2.

2. Select all the converged cameras plus the camera near-
est to convergence (the camera nearest to convergence
is the one minimizing ‖sj − s∗

j‖ under the constraint
that ‖sj − s∗

j‖ > εj ). Go to 3.

3. Perform visual servoing using the selected cameras.
After their convergence, go to 1.

This iterative algorithm adds a new camera at each step.
If the stability domain is very large (as for two-and-a-half-
dimensional visual servoing), a more satisfactory algorithm
can be considered:

1. Test how many cameras have converged. If all have
converged, the goal is reached. Go to 2.

2. Select all the converged cameras plus those that have
the target in their field of view (and are in the stability
domain). Go to 3.

Fig. 3. Positioning a cumbersome object.

3. Perform visual servoing using the selected cameras.
After their convergence, go to 1.

If the cameras are well distributed around the object, then
these two algorithms converge at least inN steps. This implies
the following:

• A converged camera has also converged at the end of
each step. This does not mean that the camera stays
at convergence during the servoing. Indeed, only the
whole task function decreases.

• Ifp (withp < N ) cameras have converged, there exists
at least one other “active” camera, that is, with the target
in its field of view and in the stability domain.

5.1.1. Precision Comparison between Mono-Camera and
Multicamera Visual Servoing

In these experiments, we used image-based visual servoing.
As a result of the use of a teaching-by-showing technique,
the system is robust with regard to the calibration errors. The
system is first shown the target views. The image features
are automatically extracted and stored. The robot and object
are then moved, and the system automatically identifies the
target and controls the robot end effector. The visual servoing
is stopped when the maximal error on the coordinates of the
image points is 1 pixel. Four experiments were carried out
corresponding to four different camera displacements. The
first displacement was a pure translation. The second and the
third were mainly rotations around the −→x and the −→y axes,
respectively. Finally, the fourth displacement was a large
rotation around the −→x and −→y axes and a large translation.
First, the visual servoing is carried out using only one of the
two cameras (κ1 = 0 and κ2 = 1). Then, starting from
the same initial position, the servoing is performed using the
two cameras with the control law (10) (κ1 = 0.5 and κ2 =
0.5). In all the experiments, the positioning accuracy (i.e., the
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Table 1. Positioning Accuracy

Position 1 2 3 4

Translation 1.7 mm, 31 % 2.0 mm, 56 % 1.9 mm, 46 % 2.0 mm, 48 %
Rotation 0.3 degrees, 36 % 0.4 degrees, 58 % 0.3 degrees, 27 % 0.4 degrees, 44 %

NOTE: The absolute number is the positioning error obtained using one camera. The percentage is the improvement of the
positioning using two cameras.

error between the reached position and the desired position)
is improved considerably with the use of multicamera visual
servoing, as is shown in Table 1 (typically from 2 mm to
0.9 mm). These results demonstrate the feasibility of using
several cameras to position a cumbersome object.

5.1.2. Comparison of Two-Dimensional and Two-and-a-Half-
Dimensional Visual Servoing

Even though multicamera visual servoing can be used with
any scheme (two-dimensional, two-and-a-half-dimensional,
and three-dimensional), we compare only the two-
dimensional and two-and-a-half-dimensional methods. The
results are illustrated in Figure 4 and Figure 5, respectively.
Each figure is divided into two columns, one for each camera.
In each column, we provide the error on the coordinates of the
points versus the number of iterations and their trajectory in
the image (diamond and circle marks correspond to the initial
and final positions, respectively). In the last row, we provide
the control law (i.e., the velocity of the robot end effector)
versus the number of iterations. Even with the imprecise cal-
ibration used, the error on the coordinates goes to zero and the
control law is stable. Indeed, the camera’s intrinsic param-
eters and the transformation matrices between each camera
and end effector frame were only roughly known.

As a result of the use of a simple proportional control law,
the speed of convergence is relatively slow at the end of the
servoing. It can be easily improved by increasing gain λ as
soon as the error becomes small. Obviously, increasing λ too
much will lead to an oscillatory behavior. In our case, λ is cho-
sen small, since the rate of the vision system is 80 ms and the
velocity of the end effector must be limited. For both schemes,
the trajectories of the points in the images are the same (even
if the control law is different), since the displacement was not
very large. Experiments with larger displacements were also
realized, but only one target was initially in the image. In
this case, we first perform the visual servoing using only one
camera. Once the two targets are in the images, we perform
multicamera visual servoing.

5.2. Coupling Vision and Force Sensors

The illustrative task of coupling vision and force sensors is
part of an actual nuclear power plant valve maintenance op-
eration. To be able to use the different tools involved in this
task (see Fig. 6a), a female interface is mounted on each tool,

which matches the end effector–mounted electro-pneumatic
male tool changer.

The clearance is less than a 10th of a millimeter, and the
tool location is unknown. A detailed view of the tool changer
mounted on the robot’s end effector is provided in Figure 6b.
A system to realize the insertion of a tool changer (which is
a task equivalent to the insertion of the cover) using vision
and force sensors was tested. Associated with our controller,
a simple programming methodology was developed. It uses
two steps:

• The task is run “manually”—that is, only the force sub-
system control is running (κ1 = 1 and κ2 = 0)—and
the reference trajectory is provided by a device in the
place of the vision servo controller.

• Once the desired final position is reached and the force
feedback loop is stabilized to zero (τ ∗ = s∗ = 0), the
desired image features are computed and stored.

To be able to reach this position through combined visual
and force control, one simply sets the desired image features
to their memorized value while the desired force is set to
zero. Thus, programming a task as complex as tool changer
insertion is extremely simple.

To illustrate the experimental behavior of our approach, we
compare two tool changer insertion attempts. The first is done
with pure visual servoing (κ1 = 0 and κ2 = 1), whereas the
second uses combined force and vision control (κ1 = 0.5 and
κ2 = 0.5). The rate of the vision control is 80 ms, whereas
the rate of the force control is 10 ms. Thus, the speed of the
end effector is limited by the slow video rate. Improving the
vision system will improve the performances of the combined
control.

For the experiments shown in this paper, the target
impedance is limited to pure damping B over the six wrench
components (i.e., the components of force and torque exerted
by the end effector on objects). The desired wrench is s∗ = 0.
Note that the force subsystem controller is equivalent to an
accommodation control (Whitney 1977). As anticipated in
Section 3, friction can significantly affect system behavior.
Consider, for example, that reaching the target requires one
to move the end effector parallel to the contact surface. With-
out friction, the vision system guides the end effector to the
final position while slipping over the surface. However, in
the presence of friction, the controller would fail. Close to
the final position, the tangential velocity commanded by the
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Fig. 4. Two-dimensional visual servoing results. (a) Left coordinate errors (pixels vs. iteration number). (b) Right coordinate
errors (pixels vs. iteration number). (c) Left points trajectory (pixels). (d) Right points trajectory (pixels). (e) Translation
velocity (cm/s vs. iteration number). (f) Rotation velocity (rad/s vs. iteration number).
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Fig. 5. Two-and-a-half-dimensional visual servoing results. (a) Left coordinate errors (pixels vs. iteration number). (b) Right
coordinate errors (pixels vs. iteration number). (c) Left points trajectory (pixels). (d) Right points trajectory (pixels). (e)
Translation velocity (cm/s vs. iteration number). (f) Rotation velocity (rad/s vs. iteration number).



374 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2001

(a) (b)
Fig. 6. Experimental setup. (a) General view of the task. (b) Detailed view of the task.

vision-based controller decreases. At some point, because of
the friction component, it will become smaller than the oppo-
site tangential velocity generated through the force feedback.
With a pure damping impedance, the following condition must
be respected to prevent the system from blocking:

|vvision| > |vf orce| = B|τττ |. (28)

It is clear that with a proportional visual control law, friction
generates static positioning error. A proportional integral con-
troller can be used, but combining the integral correction with
vision feedback and friction nonlinearities might lead to in-
stability. Furthermore, limit cycles would appear. Rather, a
dead zone in the force feedback loop can be used. If the force
(in any direction) is smaller than a predetermined limit value,
then the velocity commanded by the force loop is zero. This
strategy appears to be efficient in practice.

5.2.1. Pure Visual Servoing

In both experiments, the initial position is reached with vision-
based control and places the tool changer exactly in front of
the female interface. The insertion motion is then a pure
translation along the insertion axis, which corresponds to the
easiest configuration. In a perfect world, the contact force
would remain null. However, the vision-based control does
not generate a straight-line trajectory. In fact, the trajectory
is generated to minimize the image feature error, not the end
effector position error. All the geometric modeling errors in
both the robot and the sensory system contribute to amplify
the deviation from the ideal straight-line trajectory. Thus,

contact forces appear. Figure 7 shows the result for pure
vision–based insertion. Owing to the integral effect of the
visual control combined with the rigidity of the parts to be
mated, forces and torques increase rapidly. At t = 13 sec-
onds, as the end effector almost reaches the final position,
the electro-pneumatic tool changer is actuated. The sudden
change in contact forces is due mainly to the tool changer’s
clamping. Once the tool is grasped, the vision system detects
final convergence and the robot stops. We note that the forces
involved during the task are large. In fact, they exceed the
maximum value recommended by the robot constructor.

It should be noted that the control law used for visual ser-
voing is based only on the robot kinematics. To make our
approach work properly at higher speeds (which are, how-
ever, bounded by image acquisition at video rate), it would
be necessary to design the vision-based control law by taking
into account the dynamics of the manipulator. However, in
our experiments the inertial forces are not sufficiently large to
be noticeable considering the very slow speeds due to vision
control.

5.2.2. Combined Force and Vision Control

The second experiment combines force and vision control.
When the same experiment is performed with combined ac-
tive compliance, forces and torques remain small. In Figure
8a, the forces are reduced by a factor 9 (note the change in
the coordinate scale). The effects of the tool changer clamp-
ing are considerably reduced. Similar improvements can be
observed in torque behavior. In Figure 8b, the torques are
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Fig. 7. (a) Force and (b) torque evolution during peg-in-hole insertion with pure visual servo control (Z = insertion axis, X
and Y perpendicular plane).
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Fig. 9. Peg trajectory reconstructed from experimental data.

initially reduced by a factor 2. At t = 13 seconds, the tool
changer is actuated and a sudden step appears on the plot. In
contrast to the previous experiment, the force control allows
us to decrease the torque by a factor of 9. This experimen-
tal result shows that the force feedback can compensate for
the forces undesirably generated by two-dimensional visual
feedback. Additional extensive experiments indicated that the
force and vision combination is not limited to the limitation
of undesirable forces. In Figure 9, the insertion experiment
was realized with a very large initial positioning error in both
position and orientation. It is clear that because the hole lo-
cation is completely unknown, force control alone is not ca-
pable of performing this task. Figure 9 shows that our control
scheme is capable of performing low-clearance peg-in-hole
tasks with significant initial errors in all six degrees of free-
dom and without any knowledge of the hole location or the
constraint geometry. No trajectory computation or complex
insertion strategy is required, since the only input is the final
desired image feature vector and the desired force.

6. Conclusions

The control approach proposed in this paper was designed to
take into account several sensors to drive the end effector of
a manipulator arm. The particular choice of the task function
simplifies the design of the control law and the stability anal-
ysis. The stability analysis of the whole system is ensured by
the stability of each subsystem. There are obvious advantages
in combining sensor feedback in the control of a robot ma-
nipulator. With regard to vision sensors, previous work was
based on stereo-camera configurations. Our paper extends the
visual control to several cameras observing different objects
or different parts of the same object. The experimental results

obtained using two in-hand cameras show that it is possible
to improve the positioning accuracy with respect to the use
of a single camera. With regard to vision and force sensors,
previous work was based on hybrid position/force control,
which does not entirely exploit the usefulness of sensor dual-
ity. In this paper, we combined vision and force control within
the impedance control approach. The implemented control
scheme involved a pure damping position-based impedance
control and an external image-based visual controller. It is
simple and practical, since the impedance controller and the
vision-based controller can be designed separately, as shown
by stability analysis.
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