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Abstract

In this paper, the classical task of mobile target tracking using a
pan-and-tilt camera is considered. The authors use recent results in
motion-based visual servoing to deal with complex targets for which
shape and texture are unknown. The first method consists of design-
ing a control law directly from the estimated image motion. This
leads to the computation of the pan-and-tilt acceleration necessary
to reduce the tracking error. A second method, more efficient for
target tracking, consists of retrieving the target position in the im-
age from its estimated motion. This leads to classical image-based
visual servoing. For both methods, experimental results obtained at
video rate are presented and discussed.

KEY WORDS—visual servoing, 2D image motion, target
tracking, image stabilization

1. Introduction

Target tracking using a pan-and-tilt camera is one of the oldest
tasks that has been studied in the robotics and vision commu-
nities. The main applications were in the military domain
(Gilbert et al. 1980; Dzialo and Schalkoff 1986) or in the
design of active stereoscopic heads (Bajcsy 1988; Clark and
Ferrier 1989). Researchers dealing with the robotics aspect
were generally not interested in vision issues but in control
strategy. As a consequence, there was often a strong a priori
knowledge of the observed object to validate the control law.
Most of these works (Bensalah and Chaumette 1995; Corke
and Good 1993; Hashimoto et al. 1993; Papanikolopoulos,
Nelson, and Khosla 1995) use a quasi-binary image to easily
separate the target from the background. In Reid and Mur-
ray (1996), a corner detection algorithm yields the position
of a particular point of the target. However, this method is
not robust with respect to occlusions. A solution to avoid
these problems is to measure the motion in the image. In-
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deed, such a 2-D motion is independent of the scene content,
and targets with complex shape and texture can thus be con-
sidered. Now, several algorithms, such as the one presented
in Odobez and Bouthemy (1995), are able to perform the es-
timation of a model of motion in real time, meaning that it is
fast enough to be implemented in a robotic loop. This idea
has been used, for example, by Yamane, Shirai, and Miura
(1998) for person tracking. In fact, the task can be reduced to
the detection of the mobile target in front of the background
and to the computation of the pan-and-tilt motion to main-
tain the target in the image center. For the target detection,
methods presented in Bartholomeus, Kröse, and Noest (1993)
and Nordlund and Uhlin (1996) allow the tracking of a small
object or, at best, an object that covers a much smaller part of
the image than the background. A 2-D affine motion model is
computed between two successive images, and the second im-
age is compensated with the opposite motion. Thresholding
the difference between the reconstructed image and the origi-
nal one gives the position of the target. The method proposed
in Murray and Basu (1994) and Murray et al. (1995) is sim-
ilar, even if compensation is based on the measured motion
of the camera, which is obtained using the odometry of the
pan tilt head. Larger objects can be tracked, but this method
is sensitive to the calibration of the system to make the link
between the 3-D motion of the camera and the 2-D projected
motion. Finally, in Allen et al. (1993); Brown (1990); Mil-
ios, Jenkin, and Tsotsos (1993); and Murray et al. (1995), a
stereovision system is used to build a 3-D model of the target
motion. However, this approach implies once again having
good calibration of the system.

In this paper, we apply to target tracking the two ap-
proaches presented in Crétual and Chaumette (2001), which
both use an estimation of the target motion in the image. The
first approach consists of designing a control law such that
the measured motion field reaches a desired one. In that case,
tracking a moving target is equivalent to canceling its apparent
speed in the image. We will see that this method requires the
design of an acceleration-based control law. Furthermore, we
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will see that it is not able to completely remove the tracking
error. The second approach consists of recovering the target
position in the image by successively integrating its estimated
speed. In that case, classical image-based visual servoing can
be used, and the target tracking task can be translated as ob-
serving the coordinates of the target center of gravity at the
image center. As a result of the motion estimation algorithm
we used, we will see that this method is particularly efficient.
It is also robust with respect to calibration errors.

In Section 2, we briefly describe the simplified model of
image motion we used. It is adequate for the considered task
and allows one to obtain results at video rate. We also describe
how the initial target position is simply obtained. The two
approaches mentioned above are then presented and discussed
in Section 3 and 4, respectively. Experimental results obtained
on the pan-and-tilt camera depicted in Figure 1 are included
in these sections.

2. Image Processing for Target Tracking

2.1. Image Motion Model

The most classical image motion model used in computer
vision has a particular quadratic form with respect to the x

and y coordinates of a pixel (see Subbarao and Waxman 1986;
Crétual and Chaumette 2001):{

ẋ = c1 + a1x + a2y + q1x
2 + q2xy

ẏ = c2 + a3x + a4y + q1xy + q2y
2 . (1)

Indeed, this model perfectly represents the image motion field
when the camera observes a planar object subject to rigid 3-D

Fig. 1. Experimental cell.

motions. More precisely, we have
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Zp
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y c2 = − Ty
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x
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Tx
Zp
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Zp
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Tx
Zp
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−
y q2 = −γ2
Tz
Zp

+
x

, (2)

where Tx, Ty, Tz,
x,
y , and 
z respectively represent the
three translational and the three rotational components of the
kinematic screw between the camera frame and the object
frame, with Z = Zp + γ1X + γ2Y being the equation of
the object plane expressed in the camera frame. Of course,
other motion models may be used. The most usual ones are
the constant model (the restriction to terms ci) and the affine
model (the restriction to terms ci and ai).

Whatever the chosen model may be, its parameters are
computed using the robust multiresolution method presented
in Odobez and Bouthemy (1995) and briefly described in Cré-
tual and Chaumette (2001). We just note that it is robust with
respect to outliers. Furthermore, it is possible to restrict the
estimation on a particular part of the image. In our case, as
explained below, we will only consider the projection of the
target in the image.

In fact, there is a necessary compromise to find between the
accuracy provided by a model and the computation load, such
that the control rate is the closest possible to the video rate.
Indeed, the real motion in the image is generally complex,
and only an approximation can be obtained using a polyno-
mial model. Currently, only the parameters of the constant
model can be estimated at the video rate without any dedi-
cated image-processing board. Since the stability of a target-
tracking task is directly related to the control rate, we chose
to consider only this model.

From the form of c1 and c2 given in (2), we note that these
parameters contain all the information needed for the track-
ing task: translational motion Tz along the optical axis and
rotational motion 
z around the optical axis do not have any
influence on c1 and c2, but these motions cannot be com-
pensated by a pan-and-tilt camera. All other target motions
(Tx, Ty,
x , and 
y) will change the value of c1 or c2. The
control law will thus be able to react to these motions.

Moreover, since we are able to estimate the position of
the target in the image (see below), the speed of its center of
gravity is given by the approximation at the 0th order of the
image motion, that is, (c1, c2). No matter which polynomial
model of motion is considered, the parameters necessary to
realize the tracking are thus only c1 and c2.

2.2. Initial Detection of the Target

The detection of the target first has to be performed to initialize
the tracking. Since we do not exploit any a priori information
on the target, this detection step is achieved using the property
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that the target undergoes motion. With the camera remaining
static until a mobile object is detected, the object location
is simply determined by the intensity difference between two
successive images. In practice, because of noise in the images,
we use a local spatial average of image intensities. Then, by
considering a threshold difference between two successive
averaged images, we get a binary image separating moving
zones from static ones (see Fig. 2). The coordinates (x0, y0)

at the center of gravity of the detected mask are then easily
computed from the binary image.

At the first iteration of the tracking, the estimation of mo-
tion parameters c1 and c2 is performed in a rectangular win-
dow, including the mask, and centered at (x0, y0). In this
window, points outside the detected mask are considered out-
liers. Then, at each iteration, the mask and the window are
translated with estimated values c1 and c2, so that they corre-
spond to the current position of the target.

3. Target Tracking Using 2-D Motion Visual
Servoing

We first only consider the estimated terms c1 and c2 in the
control law. The set of visual features is thus s = (c1, c2)

T ,
with desired value s∗ = (0, 0)T so that the target remains
static in the image.

3.1. Control Law

From the interaction relation between image motion pa-
rameters and camera 3-D motions presented in Crétual and
Chaumette (2001), we obtain

ṡ =
(

ċ1
ċ2

)
= L

(

̇c,x


̇c,y

)
+ ∂s

∂t

=
(

0 −1
1 0

) (

̇c,x


̇c,y

)
+ ∂s

∂t
,

(3)

where 
̇c,x and 
̇c,y are the camera pan-and-tilt acceleration,

L is the interaction matrix related to s, and
∂s

∂t
represents the

variations of s due to the target’s own motion. This equation
can be easily obtained from (2).

We thus have the case where the visual features are linked
to the controlled camera degrees of freedom through a full-
rank invertible matrix. Specifying an exponential decay of s
with gain λ (ṡ = −λs) leads to the following control law:(


̇c,x


̇c,y

)
= −L−1

(
λ s + ∂̂s

∂t

)

=
(

0 −1
1 0

) (
λ s + ∂̂s

∂t

)
,

(4)

where
∂̂s

∂t
can be obtained from two successive values of s and

a measure of the camera pan-and-tilt acceleration (see Crétual
and Chaumette 2001 for more details):

∂̂s

∂t
(t) = s(t)− s(t − δt)

δt
+ L

( ̂̇
c,x(t)̂̇
c,y(t)

)
. (5)

Furthermore, a classical Kalman filter is used to smooth this
estimation.

For the reader interested in the link between the general
case presented in Crétual and Chaumette (2001) and the par-
ticular case of target tracking described in this paper, we can
note that the error vector e is equal to s, meaning combination
matrix C (such that e = C (s − s∗)) is equal to I2. Fur-
thermore, the interaction matrix L is constant and does not
depend on unknown parameters (L̂ = L). Finally, from the
stability condition exhibited in Crétual and Chaumette (2001)
(K = (CL)(CL̂)−1 > 0), the exponential decrease of ‖s‖ is
ensured at each iteration of the control law, sinceK is nothing
but I2.

3.2. Results

Images of size 256 × 256, acquired by a SunVideo board, are
processed on an UltraSparc station with a 250 MHz clock. The
complete processing rate is about 50 ms per iteration (20 Hz).
For the camera used for the experiments, a standard calibra-
tion procedure provided the coordinates of the principal point
(132, 130.5) and the size of a pixel (19.8 × 20.6 µm).

The experiment was carried out with a textured object from
which no geometric features could be easily computed (see
Fig. 2). The camera was about 1 m away from the object,
which appeared near the image center before it started moving.
The object was translating along a rail alternatively to the
right and to the left at a constant speed (25 cm/s), with a 4-
second pause between the two motion phases. Accelerations
and decelerations were performed with an absolute value of
40 cm/s2, meaning the constant-level speed was reached in
15 iterations. To separate the object from the background,
a motion detection step was first performed, as described in
Section 2.2.

Two curves related to this experiment are presented in Fig-
ure 3. First, the two visual features c1 and c2 are given in
Figure 3a. Then, the computed control law 
̇c,x and 
̇c,y

sent to the low-level pan tilt controller is given in Figure 3b.
Despite some oscillations, the system brings the error to zero
after each abrupt change in the object motion. The oscilla-
tions are not induced by noisy measurements of the visual
features but are a result of a noisy estimation of the object’s

own motion ∂̂s
∂t

. Indeed, they appear mainly during the accel-
eration steps, which are very short. Since the noise variance
on the state model of the Kalman filter cannot be too low to
allow the system to react, it is difficult to obtain more accurate
estimations during the abrupt changes of target motions.
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Fig. 2. Detection of the initial target position.
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Fig. 3. Target tracking using the motion parameters directly: (a) constant parameters c1 and c2 and (b) angular acceleration
(in deg/s2).

Nevertheless, to show the accuracy of the method, we
present in Figure 4 the two coordinates at the center of grav-
ity of the target in the image. These values are computed by
a simple integration of the speed, using as initialization the
center of gravity of the detection mask. They are obviously
unused in the presented control scheme.

We can note that a small deviation appears in the object
position (approximately 10 pixels after 800 iterations). This
deviation is due to the time needed, even if it is short, to bring
the constant parameters to zero. Using a control law directly
based on motion parameters, it is of course impossible to
completely remove this lag. Furthermore, it is also impossible
to reach a desired position of the target in the image. That
is why we propose, in the next section, using a control law
based on the estimated position of the target in the image.

To conclude this part, let us emphasize that even if the use
of motion parameters directly in the control loop does not
seem to be the most efficient method for target tracking, this
approach is sometimes the only one possible for more com-
plex robotics tasks, as demonstrated in Crétual and Chaumette
(2001).

4. Target Tracking by Integration of 2-D Motion

We now consider as input of the control law the estimated
position of the target position in the image. The visual features
are thus s = (x, y)T . They are simply obtained by successive
summations of the estimated velocities c1 and c2:

si(k) = si(0)+
k∑

i=1

ci δt, (6)

where si(0) = (x0, y0)
T is the initial position of the target

computed during the detection step (see Section 2.2), and δt
is the period of the control loop.

The aim of the tracking task is to control the pan-and-tilt
camera such that the image of the mobile target first is brought
to the image center (s∗ = (0, 0)T ) and then remains at this
position no matter what the target motions are. This task is
quite simple from the control point of view. Our contribu-
tion is more concerned with the complexity of the considered
targets.
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Fig. 4. Object center position.

4.1. Control Law

To design the control law, we use the relation between the
temporal variation of s and the controlled camera motion,
that is, 
c,x and 
c,y around the x and y axes. We get the
following from the classical equation between image point
velocity and 3-D kinematic screw (Espiau, Chaumette, and
Rives 1992; Hutchinson, Hager, and Corke 1996; Crétual and
Chaumette 2001):

ṡ = L

(

c,x


c,y

)
+ ∂s

∂t
with L =

[
xy −(1 + x2)

(1 + y2) −xy
]
.

(7)

We can see that the interaction matrix L only depends on
the estimated position of the target in the image. Assuming
this estimation is accurate, one can set L̂ = L. Therefore,
specifying as in the previous case an exponential decrease of
s leads to the following (Crétual and Chaumette 2001):(


c,x


c,y

)
= −λ L−1s − L−1 ∂̂s

∂t

= − λ

1 + x2 + y2

(
y

−x
)

− L−1 ∂̂s

∂t
.

(8)

In practice, the chosen gain λ is not constant but adaptive.
More precisely, this gain is set to a low value when the error
is great, to preserve the stability of the system. However, it is
increased to a high value when the error is weak to optimize
the time to convergence.

Furthermore, as explained in Chaumette and Santos

(1993), the estimation
∂̂s

∂t
of

∂s

∂t
can be obtained from (7):

∂̂s

∂t
= ̂̇s − L 
̂c. (9)

In our case, the measure ̂̇s of ṡ is directly supplied by the
image motion estimation algorithm (̂ṡ = (c1 c2)

T ), while 
̂c

is the measured camera rotational velocity.
We can note that if the target is motionless, a first-order

approximation gives

s(k)/(k−1) = sk−1 + ṡ δtk = sk−1 + L 
̂c δt. (10)

Thus, the estimation of the target’s own motion in the image
at iteration k can be written as(

∂̂s

∂t

)
(k)

= s(k) − s(k)/(k−1)

δt
. (11)

This value represents the discrepancy between the actual
measure of the visual feature and the predicted one. It is null
if the target is motionless and constant if the target velocity
is also constant. This means that the target motion and the
discrepancy have the same model.

Let us now return to the control point of view and consider
robustness issues. Two different sources for noise are possible
in our estimation scheme: it can be introduced either through
the extraction of the visual data or due to camera velocity
measurement errors.

According to several works investigating the field of fil-
tering for target tracking (Blackman 1986; Hunt and Sander-
son 1982; Corke and Good 1993; Allen et al. 1993), two
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common approaches are employed: the first consists of using
fixed tracking coefficients (α − β, α − β − γ trackers), and
the second, Kalman filtering, generates time-variable tracking
coefficients that are determined by a priori models of target
dynamics. While the first approach has computational advan-
tages, the second one seems much more appealing because of
the adaptability of its coefficients for tracking highly maneu-
vering targets. However, implementing a Kalman filter re-
quires first defining or estimating the state model evolution of
the parameters, with the simplest cases for motion parameters
being the constant speed and constant acceleration models.

When a target maneuvers (e.g., when abrupt changes in
its acceleration occur), a tracking filter should respond. Such
maneuvering may be detected by a rapid increase in the nor-
malized discrepancy. The recommended methods for dealing
with those situations are numerous (Bensalah and Chaumette
1995; Brown et al. 1989), and we have chosen, for robustness
issues, to consider model maneuvers as “colored noise.” That
is why we have chosen a constant acceleration state model
with colored noise, the equations of which are given by

(
∂s

∂t

)
(k+1)

=
(
∂s

∂t

)
(k)

+"t
˙(
∂s

∂t

)
(k)

+ ν(k)

ν(k+1) = ρ ν(k) + v1(k)(
∂̇s

∂t

)
(k+1)

=
(
∂̇s

∂t

)
(k)

+ v2(k)

,

(12)

where ρ is the degree of correlation between successive ac-
celerations and can range from 0 to 1 (0.3 in the experiments
described below), and v1 and v2 are the zero-mean Gaussian
white noise values on the chosen model. Furthermore, the
relation involved in the Kalman filter relating the observed
data to the chosen model is given by(

∂̂s

∂t

)
(k)

=
(
∂s

∂t

)
(k)

+ ω(k), (13)

where
∂̂s

∂t
is the estimated value given by (9), and ω is a zero-

mean Gaussian white noise on the observations.
Finally, let us note that the control law given by (8) is

insufficient to compensate for possible tracking errors due to
nonzero target accelerations. To overcome this problem, the
prediction of the target motion, provided by the Kalman filter,
is used; this leads to the following adaptive predictive control
law:(


c,x


c,y

)
= − λ

1 + x2 + y2

(
y

−x
)

− L−1
(
∂̂s

∂t

)
(k+1)/(k)

.

(14)

4.2. Sensitivity to Calibration Errors
In several articles (Murray and Basu 1994; Murray et al.
1995), detecting the object of interest in a tracking scheme is

based on the known motion of the camera. Indeed, it is well
known that if a rotating camera is observing a fixed scene, the
apparent motion field in the image is closed to a constant one.
More precisely, the four affine parameters ai that appear in
eq. (1) are equal to zero. Moreover, in such a case, there is
no influence of the target depth on its apparent motion. It is
thus possible to compensate the camera motion in the image
from the measure of the camera rotation. Therefore, under
the hypothesis that only one object is moving in the scene,
a simple difference between the compensated image and the
one acquired at the current iteration gives the position of the
object.

However, this approach necessitates a good calibration of
the system. First, the center of rotation must be the optical
center of the camera. If this is not the case, camera trans-
lational motions are also performed, and the depth of each
point of the scene appears in the 2-D motion equations. In
the best-case scenario, when the induced translation is known,
these depths remain unknown. Therefore, some perturbations
occur in the compensation, especially if there are some great
depth changes in the observed scene. Another point is that the
computation of the 2-D motion in the image from 3-D motion
necessitates precise knowledge of the intrinsic parameters of
the camera (size of pixel, position of the principal point, and
radial distortion). When inaccurate intrinsic parameters are
used, the image compensation cannot be performed correctly,
and it thus becomes impossible to separate the object of in-
terest from the background.

In our approach, the measured camera velocity is only used
in the control scheme to reduce the tracking errors (see eq. (9)).
If a wrong estimation of the camera velocity occurs due to
a coarse camera calibration, it will have an effect on the re-
sponse of the controller, but nothing more, since the measured
camera velocity is not used to determine the target position in
the image.

Furthermore, the motion parameters c1 and c2, used in
the control law to estimate the target position, are metric (ex-
pressed in m/s and rad/s). However, the image motion estima-
tion algorithm we use to compute these parameters provides
results expressed in pixels/s. Therefore, it is necessary to dis-
tinguish the former from the latter. The intrinsic parameters
of the camera, or at least a coarse estimation of these param-
eters, should then be used. Nevertheless, we will show that
our control scheme is not sensitive to calibration errors.

Indeed, if we denote with a p index the parameters of the
motion model expressed in pixels, we have the corresponding
relation with the metric ones (Crétual 1998):



c1
c2
a1
a2
a3
a4
q1
q2


= Mm2p



c1p
c2p
a1,p
a2p
a3,p
a4,p
q1,p
q2,p


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with Mm2p =

lx 0 lxdx lxdy 0 0 lxd
2
x lxdxdy

0 ly 0 0 lydx lydy lydxdy lyd
2
y

0 0 1 0 0 0 2dx dy
0 0 0 lx/ ly 0 0 0 dxlx/ ly
0 0 0 0 ly/ lx 0 dyly/ lx 0
0 0 0 0 0 1 dx 2dy
0 0 0 0 0 0 1/lx 0
0 0 0 0 0 0 0 1/ly


where (lx, ly) is the ratio between the camera focal length and
the size of a pixel, and (dx, dy) is the distance between the
principal point and the center of the estimation window. Since
the principal point is generally close to the image center, we
have in the neighborhood of convergence (x, y) ≈ (0, 0) and
(dx, dy) ≈ (0, 0). We thus obtain(

ẋ

ẏ

)
≈
(

c1
c2

)
≈
(

lx c1,p
ly c2,p

)
.

We can see that an error on the position of the principal point
has no effect. Furthermore, a wrong estimation of (lx, ly)
only provides a scale factor error. Since the control law has a
closed-loop structure, this does not perturb the convergence.
In the worst case, the convergence is simply obtained more
slowly. It can even be obtained more quickly, since the influ-
ence of such an error is more or less like having a scale factor
on the decreasing gain λ. We will demonstrate the effective
robustness of our method with respect to calibration errors in
the next section.

4.3. Results

4.3.1. Tracking a Rigid Object

The same object as in Section 3.2 is first considered. It again
translates at a constant speed along a rail alternatively to the
right and to the left, with a 4-second pause between the two
motion phases. First (until iteration 800), the object speed
is 8 cm/s, and then it is 30 cm/s. Once again, the camera is
about 1 m away from the object, but it does not appear near
the center of the image before it starts translating.

The measured position of the target in the image (s =
(x y)T ) is plotted in Figure 5. This experiment shows that
convergence is correctly obtained for an initial gap of about
40 pixels (the error is brought to zero in less than 40 iterations,
even if the object motion is initially on the opposite direction
of the image center). At each abrupt change in the target
motion (stop or start), there is an overrun due to the Kalman
filter reaction time (approximately 30 pixels for a 30 cm/s
speed of the object), but convergence is still obtained and
tracking errors are suppressed in few iterations.

In Figure 6, some images are displayed that were acquired
during this experiment (1 image in 10). Estimated target po-
sition is designated by a cross (+) and the image center by a

diamond (	). We notice that as soon as the object is brought
to the image center (which is already done in image 2), it re-
mains there even if the object stops and restarts. Therefore,
from the qualitative point of view, we can conclude that the
motion estimation is accurate.

Other experiments, described in Crétual (1998) and using
a simpler object from which it was easier to extract the true
position, have shown that the difference between the real and
the estimated positions was always less than half of a pixel.
In those experiments, the object had four markers. The 2-D
motion was computed from the displacement of these mark-
ers. Of course, the measured 2-D position of the markers was
not used in the control loop but was only used to estimate
the object center as the center of gravity of the four markers.
Moreover, it was also shown from the known object motion
at a given distance from the camera that the image motion
estimation algorithm gives more equivalent results than the
estimation provided by the computation of the four markers.
It was even better for slow motion. We can thus conclude that
the motion estimation algorithm is unbiased since no drift ap-
pears, even after a large number of iterations of the control
law.

Another important point to underline is the poor illumina-
tion quality (the object is very dark when it is on the right
side of the rail) and the fact that this illumination varies. This
independence to illumination conditions is due to the robust-
ness of the image motion estimator. We also notice that it
seems very difficult to extract the object from the background
using only geometric image processing. Finally, even if other
objects are moving behind the target from images 8 to 14 and
17 to 25, the tracking system remains stable. This can be
explained by the fact that the motion computation relies on
the initial mask, and then the estimation is performed only
on pixels belonging to the mask. Moreover, the estimation
algorithm is robust with respect to potential outliers.

4.3.2. Sensitivity

Several experiments have been done to prove the reliability
of our approach in case of weak calibration of the system.
The camera has been displaced by approximately 5 cm in two
different directions with respect to the pan-and-tilt cell (along
the y axis of the image plane and along the optical axis). This
means that pan-and-tilt rotations are not performed around
the optical center. This implies translational motions of the
camera (nearly 10% of the distance between the camera and
the target). Moreover, errors have been introduced in the in-
trinsic parameters of the camera. The principal point has been
considered to be the image center (128, 128), and a 10% error
has been added on the size of each pixel, increasing to 21.8
× 22.7 µm. All other conditions were the same as for the
previous experiment. Figure 7 displays the estimated target
position versus iteration number. We notice that the behavior
is very close to that observed in the previous experiment, with
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Fig. 5. Estimated target position (in pixel) versus iteration number.

a better calibrated system. The initial error is quickly brought
to zero, and the overrun after each change of the object mo-
tion is rapidly compensated. These overruns are not higher
in this case than previous ones. The only difference is that
small oscillations appear (always less than 2 pixels), but they
do not generate any divergence. They even decrease in the
permanent step.

4.4. Other Applications

The method presented above can be used in other applications.
Two of them have been developed with the same control law.

A pedestrian tracking task is presented in Crétual,
Chaumette, and Bouthemy (1998). The aim is the same as
the application presented above, even if a pedestrian is not
a planar rigid object. Let us point out that the estimation of
2-D motion parameters with the algorithm we used involves
discarding noncoherent local motions considered as outliers.
Therefore, motions related to deformations of nonrigid ob-
jects (such as a human being) do not greatly affect the esti-
mation of the dominant motion.

Figure 8a displays the mask obtained from the detection
step, in which moving zones appear in white. Figure 8b
presents an image acquired during the tracking. The white
rectangle represents the including rectangle of the detected
mask on which the estimation is performed.

Figure 9 contains 1 image in 10 of the sequence acquired
during the tracking. Motion of the person is first sideways and
not always facing the camera. Then, the pedestrian comes
back to the camera. In each image, the estimated position is

represented by a cross (+), and the image center by a diamond
(	). Despite the complexity of motion, the pedestrian always
appears at the image center. This demonstrates the robustness
of the motion estimation algorithm and of the control scheme.
Small tracking errors appear due to the reaction time of the
Kalman filter, but they are always less than 8 pixels. Finally,
from images 10 to 13, another person crosses the one being
tracked. Despite this perturbing supplementary motion, the
camera is still fixating at the selected person.

Finally, in Crétual and Chaumette (2000), we have used the
same algorithm for image stabilization of a camera mounted
on an underwater engine. In that case, the motion in the im-
age is mostly due to the undesirable motion of the engine,
resulting from underwater currents. Moreover, some pertur-
bations can occur in this image motion, due to local motion
in the 3D scene, such as fish’s motions or, as can be seen in
the sequence presented below, due to smoke and gas. Once
again, even if the quality of the images used is poor (they had
low spatio-temporal gradients), the results presented in Cré-
tual and Chaumette show that the drift in the image remains
very weak (less than half a pixel after 250 iterations). A typi-
cal image sequence acquired during the stabilization is given
in Figure 10, in which the considered scene is a rock from
which smoke and gas escape.

5. Conclusion
In this paper, we have presented an application of the two
methods presented in Crétual and Chaumette (2001) to per-
form visual tracking without any a priori knowledge of the
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Fig. 6. Tracking a textured object: 1 image in 10 of the acquired sequences (approximately 2 frames per second). + = the
estimated target position; 	 = the image center.
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Fig. 7. Estimated target position with a weakly calibrated system.

Fig. 8. (a) Detected mask. (b) Estimation window and estimated position of the pedestrian.

object appearance. Both are based on the use of image mo-
tion. The principle of the first method is to control the camera
motions so that the current image motion reaches a desired
value. In the second method, the position of the target is re-
trieved by successive summation, and classical image-based
visual servoing is then used.

These methods were applied to the tracking of real objects,
meaning that they were not designed to simplify any visual-
processing algorithm. In both cases, satisfying results were
obtained, even if the direct use of motion parameters as the
input of the control law is less powerful. It thus seems that
for visual tasks in which both approaches are applicable, it
is more interesting to adopt the second approach (integration

of motion). Indeed, the control loop of the second approach
can be seen as the combination of the control loop given by
the first approach and an integrator. It thus allows us to avoid
tracking errors. We can also emphasize that the image motion
estimation algorithm we used seems to be unbiased since no
drift appears in the experiments.

Improvements could be done on the practical level. In par-
ticular, the goal of the tracking experiments presented here
was to validate the two control strategies. It explains why
the initialization step was based on the strong hypothesis of a
single moving target. An image-processing algorithm dedi-
cated to the automatic selection of a target in case of multiple
detections should be developed for real survey applications.



888 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2001

Fig. 9. Tracking of a pedestrian: 1 image in 10 of the acquired sequence (approximately 2 frames per second). + = estimated
target position; 	 = the image center.
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Fig. 10. One image in 10 of a sequence acquired during submarine image stabilization.
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