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Abstract 
This paper introduces a 2 - 0  visual servoing technique for 
the station keepiirg of an unmanned underwater vehicle 
(UUV) with respect to planar targets on the sea bed. The 
underwater vehicle is subject to sea current disturbances 
which make it drift from its desired position. Feature points 
from unmarked objects are extracted and tracked with a 
sparse feature tracker developed in-house [I]. The scene 
depth is estimated from a planar homography. To validate 
our approach, we emulate the dynamics of the surge and 
the sway degrees-qf-freedom (d.o$) of an UUV model with 
a planar Cartesian robot in our water test tank. Successful 
station keeping experiments obtained with a range of sea 
current disturbances are presented. 

1 Introduction 
So far, in the underwater robotics field few attempts have 
been made to use vision sensors for control [2, 3, 4, 5, 61. 
However, vision shows some interesting features compared 
to classical positioning sensors to perform station keeping 
tasks. For example, magnetic compasses suffer from a slow 
update rate and cannot be used in the vicinity of man-made 
metallic structures. More importantly, with the exception 
of depth sensors which are both accurate and fast, on-board 
translational motion sensors (for surge and sway) are inte- 
grating sensors (i.e. accelerometers, Doppler velocity logs) 
hence subject to drift, and therefore unsuitable for station 
keeping. A standard camera, however, is not subject to mag- 
netic influences, and has an update rate of 25 Hz. It can 
also be used as a local absolute positioning sensor: indeed, 
comparing a current image to the first one yields a position 
measurement whose drift can be controlled. 

Despite its short range (typically 3-10 metres) and the 
need for heavy computing power, visual control (also called 
visual servoing) allows very diverse tasks such as for exam- 
ple station keeping [2,4] or pipe-following [3] to be carried 

out. Indeed, in [3], Rives and Borelly used the task func- 
tion approach [7] to perform pipe-following with the Ifre- 
mer Vortex ROV in their swimming pool. Marks et al. [2] 
used a stereo camera and Laplacian of Gaussian filtering 
with dedicated hardware to solve the station keeping prob- 
lem. Negahdaripour et al. [4] recovered 3-D motion from 
an optical flow based approach. 

In a previous paper [6], we tackled the station keeping 
problem with a modification of the 2 1/2 D visual servoing 
method from Malis and Chaumette [8]. We proved in simu- 
lation its adequacy to underwater vehicle station keeping for 
its 6 d.0.f. of which 4 were controllable. We also showed 
preliminary experimental results on a planar Cartesian robot 
emulating the dynamics of the horizontal d.0.f. of an under- 
water ROV (ANGUS 003). The hydrodynamic and propul- 
sion forces of this vehicle were experimentally identified 
with a planar motion mechanism in a towing tank of the 
Admiralty Marine Technology Establishment, where small- 
scaled models of ships and submarines are normally tested 
[SI. In this paper, we set ourselves to control an underwater 
vehicle in a horizontal plane; the complexity of our previous 
approach was therefore not necessary. Indeed, restricted to 
two degrees of freedom, this approach is equivalent to a 2-D 
visual servoing technique with depth estimation from planar 
homographies. We applied the proposed 2-D visual servo- 
ing technique to the aforementioned Cartesian robot in our 
water tank, emulating the dynamic behaviour of the surge 
and sway axis of ANGUS 003. Successful station keeping 
experiments were carried under various sea current distur- 
bances. 

The contributions of this paper lie (1) in the application of 
visual servoing to underwater vehicle station keeping, and 
(2) in the use of unmarked natural targets. The latter was 
made possible by the use of a sparse feature tracker devel- 
oped in-house [I]. 

2 Theory 
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2.1 Underwater vehicle dynamic model 

ANGUS 003 is a work-class ROV previously built and char- 
acterised in-house. Although no longer used for experi- 
ments, a 6 d.o.f nonlinear dynamic model has been iden- 
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tified in a test tank with a planar motion mechanism [9]. 
For the purpose of this paper, we (concerned ourselves with 
the dynamics of its surge and sway axis. Let the body-fixed 
vehicle’s velocity vector be defined as v = [U,  U]’, and the 
Earth-fixed velocity vector as = [k ,  y]’. We assume that 
the vehicle’s heading angle $J can remain constant and close 
to zero (using an independent control loop for example [6]) .  
In addition, since ANGUS was designed to be stable in roll 
(e) and pitch (q!~), these angles remain also very small. As 
a result, the 2 x 2 Jacobian matrix relating the body-fixed 
velocity vector U to the Earth-fixed velocity vector f i  can be 
assumed to be the 2 x 2 identity matrix. In the following, 
we will therefore no longer make the distinction between 
Earth-fixed position and velocity, and body-fixed ones. The 
motion equations for the ROV can thus be written as: 

where M,, (i = I, 2) are the mass matrix coefficients, the 
B,, (i = 1,2), Du and D ,  the hydrodynamic drag coef- 
ficients, U, and w, are the velocity of the sea current ex- 
pressed in the body-fixed frame. The normalised control 
input of the two back thrusters is /3 E [-ll 11, y E [-1,1] 
is the normalised control input of the sway thrusters, and a , 
(i = 1,2,3)  are the thrusters’ efficiency coefficients. Note 
that the back thrusters are less effisient when operated in re- 
verse. The numerical values of the parameters are gathered 
in Table 1. 

To assess the dynamic performances of the proposed vi- 
sual servoing technique, we compared it to a “ground truth” 
PID controller assuming perfect position and velocity mea- 
surements at the same sampling rate as the visual servoing 
experiments, i.e. T, = 200 ms. We have also included 
the time delay of one sampling period caused by the visual 
processing. The PID control law is: 

where K, = diag(l.0,4.0), K d = diag(0.4,0.4), and 
K, = diag(0.0110.02). 

Since surge and sway are decoupled, we tuned the param- 
eters of each axis independently. We tried to obtain a time 
response similar to a second orde1 system critically damped. 
In Figure 1, one can note the slow dynamic response of 
the ROV subject to a sea current velocity step input distur- 
bance of (ucl v,) = (-0.2, -0.5) m/s. The settling times, 
corresponding to a positioning error of less than one cen- 
timeter, of the surge and sway axis are t surge = 80 s and 
tsway = 95 s. Figure 2 shows the corresponding thrusters’ 

Robot Dosillon 

c 

-03u 1 
- 
E - 0 4 -  

2-05. 

-06- 

- 0 7 -  

-0 8 - 

U 
0 20 40 60 80 100 120 140 160 180 2M) 

-0 9 

Time [s] 

Figure 1: Positioning error of the 2 d.0.f. model of 
ANGUS subject to a sea current disturbance (u,,u,) = 
(-0.2, -0.5) m/s with a PID controller. 
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Figure 2: Thrusters values of the 2 d.0.f. model of 
ANGUS subject to a sea current disturbance (uC,v,) = 
(-0.2, -0.5) m/s with a PID controller. 
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values. These numbers will serve as a comparison basis for 
the visual servoing experiments. 

In the following sections, we present an image-based vi- 
sual servoing approach to solve the station keeping prob- 
lem. It is a simple 2-D visual servoing scheme [IO] us- 
ing the centrc of gravity of the set of extracted features 
in the images as the visual feature. Since the camera is 
rigidly mounted onto the robot, the frame transformation 
between the robot frame and the camera frame is therefore 
constant. To simplify the expression of the following equa- 
tions, we assumed that the camera reference frame and the 
robot frame coincided. In other words, controlling the robot 
is equivalent to controlling the camera whose motion dy- 
namics are those of an underwater vehicle. 

Table 1 : Dynamic model parameters values 

2.2 Depth estimation with a homography 
Two views of a plane II, taken from a single projective cam- 
era are related by a projective homography ([ll]). A ho- 
mography can be represented by a 3 x 3 matrix defined up 
to a scale factor. Given four correspondent points belong- 
ing to Il (provided that no three of them are collinear), it is 
possible to estimate the homography H by solving a linear 
system. For more than four points, a least-squares solution 
can be computed. An interesting property of the homog- 
raphy matrix is that it can be decomposed into a rotation 
matrix R and the product of the translation vector t /d* be- 
tween the two views and the vector normal to the plane n* 
(see eq. 2). d* is the distance from the camera to the plane 
in the desired position, 

(2) 
t n*T 
d* H = R + -  

From the matrix R, we can compute the rotation angle 0 
and its vector U. In our case, the normal to the target plane 
being parallel to the optical axis of the camera, the ratio of 
the Z-coordinates of a 3-D point expressed in the current 
frame (2) and in the desired frame ( Z * )  is T = Z/Z* = 
det(H) (for a more general description, see [SI). Therefore, 
the estimated depth of a 3-D point is given by: 

Z = Z* det (H) .  (3 )  
The estimated depth given by eq. (3) will be used in the 

design of the visual control law of the following section. 

2.3 2-D visual servoing 

A visual servoing positioning task can be expressed as the 
regulation to zero of a task function e(s , t ) ,  where s is a 
visual feature (in our case, points in the image), and t is the 
time [7]. If T, is the camera velocity screw (6-vector), and 
L(s, t )  is an appropriate matrix, called interaction matrix, 
then the camera velocity screw is related to the task function 
e by: 

e = L T ,  (4) 

In the case of 2-D visual servoing, if we consider a fea- 
ture point si = [ x i ,  yiIT expressed in the image (Zi being 
the depth of the corresponding 3-D point projected on the 
image point si), L is made up by stacking the following 
lines (two lines for each feature point): 

An exponential decrease of the task function is obtained 
by imposing e = -A e (where X is a positive scalar) so that 
the corresponding control law would be 

T, = -XL-le (6) 

Now, since we want to constrain the two translational 
d.0.f. of the camera parallel to the image plane, the in- 
formation of one feature point is enough. For robustness 
purposes, we selected the centre of gravity [zg, ygIT of the 
set of extracted features. In that case, the interaction matrix 
has the simple form: 

= [ - y g  " 1  (7) 

If we note sf = [x:,$IT the position of the centre of 
gravity of the features set in the initial (desired) position, 
and sg = [xgr yslT the current one, we can define e as 
e = sg - s: so that when e is zero, the camera is in its 
desired position. A proportional control law which regu- 
lates the camera at its desired position reads as eq. (6). To 
be able to reject constant sea current disturbances, since the 
closed loop system is of type 0, we needed an integration 
term in the control law. We chose to implement a vectorial 
PID controller to obtain a better stability than a simple PI 
controller. The proposed control law is then: 
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where K, , K d ,  and K i  are 2 diagonal matrices with the 
proportional, derivative and integration control gains of the 
PID, and 2, is the depth of the centre of gravity in the cur- 
rent image, estimated from eq. ( 3 )  (see section 2.2). 

3 Results 

3.1 Experimental setup 

To experimentally validate our method, we used a planar 
Cartesian robot in our 4 m  x 3rn  x 2 m  test tank. This 
robot was servoed by a DMC-1360 motion control card 
from Galil Motion Control Inc. hosted on a VME crate. 
The VME crate was composed of a Unix Host (Motorola 
MVME- 167 board) and three real -time target boards (Mo- 
torola MVME-162-22) running Motorola PSOS real-time 
operating system. We used one of these MVME-162-22 
boards to drive the motion control card and ran the dynamic 
model of ANGUS. 

An underwater black and white camera was rigidly 
mounted on the Cartesian robot. The camera was point- 
ing downward about one metre from the bottom of the tank, 
imaging a surface of about one metre squared. Its analogue 
signal was digitised by a Brook’Iiee Bt254 frame grabber 
hosted on a AD164R parallel processing board from Alpha 
Data Ltd. The latter was itself hosted by a Linux PC corn- 
municating via TCP/IP to the M’JME-162-22 board. The 
visual servoing algorithms (feature extraction and tracking 
included) ran on the AD164R; the new thrusters values were 
sent via TCP/IP to the real-time target board. With this 
setup, the servoing ran at 5 Hz. 

3.2 Visual station keeping experiments 

Each station keeping experiments followed the same proce- 
dure. The robot was initially immobile, and the desired set 
of features was extracted from the first image taken from 
the initial position. We then applied a constant sea current 
disturbance (step input) of velocity (uc, uc). As the robot 
started drifting away from its desired position, the set of 
features was tracked in the current image. The depth was 
then estimated from the homography between the initial set 
of features and the current set of features as described in 
section 2.2. Similarly, the task function e was calculated 
with the centre of gravity of the ciirrent feature set. If a k a -  
ture was lost during tracking, its corresponding feature in 
the initial set was removed. As long as at least four features 
remained tracked, the servoing cc,uld continue (four points, 
of which no three are collinear, are needed for the estima- 
tion of the homography). 

For the whole set of experiments, the control gains 
of the PID remained constant with the following values: 
K, = diag(l.0,4.0), K d  = a!iag(2.0,2.0), and Ki = 

rliag(0.01,0.01). The estimated distance to the target Z* 
was roughly measured and set to 1.1 m. 

The final positioning errors of the robot are collected in 
table 2. In each case, the station keeping was successfully 
performed to within a good positioning accuracy (the max- 
imum error observed was of a few centimeters). 

(-0.4, -0.1) 
(-0.5, -0.1) 
(-0.1, -0.2) -2.95 
(-0.2. -0.2) -5.65 +0.30 
(-0.3, -0.2) 1 4 . 7 0  1 -1.25 
(-0.4, -0.2) I -4.90 1 -2.25 
(-0.5; -0.zj j -33.65 I -14.55 

Table 2: Final positioning errors of the robot subject to a 
range of sea current disturbances. 

Figure 3 shows the positioning error of thc robot dur- 
ing a station keeping experimcnt with sea currcnt velocity 
(uc,  we) = (-0.5, -0.2) m/s. Thc robot succcssfully sta- 
bilizes itsclf within 1 cm accuracy with a settling time of 
130 s in surge and 290 s for sway. These times are greater 
than for the ideal controller of section 2.1. This is due to 
the added dynamics of the Cartesian robot onto ANGUS’, 
which is more pronounced at low speeds. However, the tra- 
jectory followed by the robot is similar to those obtained 
with our ideal controller. 

The thrusters’ values time history is shown in figure 4. 
Here again, we note a behaviour similar to the one of the 
ideal controller. Noise on the thrusters values is caused 
by mechanical vibrations of the robot metallic frame, as 
well as noise on the feature tracking caused by illumination 
changes. 

Lastly, a snapshot of the initial underwater image of this 
experiment, as well as the final image are shown in figure 5. 
The trajectory of the tracked features are the white tracks. 
For display purposes, the images have a coarser resolution 
than the original one (which was 512 x 512 with 8 bits), 
and the aspect ratio is not respected. 

4 Discussion 

These results demonstrate clearly that visual station keeping 
can be performed successfully using our approach. These 
tests showed that the servoing is successful for a range of 
sea currents magnitudes and directions ( U ,  = -0.5m/s 
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Figure 3: Visual station keeping experiment with sea cur- 
rent (U,, U,) = (-0.5, -0.1) m/s: Cartesianrobotposition. 
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Figure 4: Visual station keeping experiment with sea cur- 
rent (U,, U,) = (-0.5, -0.1) m/s : thrusters applied to the 
robot model. 

Figure 5:  Desired image (left), and final image with pixel 
tracks (right) obtained with the visual station keeping ex- 
periment: sea current (U,, U,) = (-0.5, -0.1) m/s. 

and U, = -0 .2m/s  being the maximum admissible val- 
ues). 

The limitations in sea current velocity magnitude are due 
to several factors. One is the limited thrusters’ power avail- 
able for ANGUS which sets a maximum sea current veloc- 
ity that the robot can counteract. The slow dynamics of the 
vehicle are also an issue. Indeed, too strong a sea current 
will cause the robot to drift so far away that no feature from 
the desired set would remain in the image. A solution to that 
problem would be to re-extract features during the servoing. 
However, in that case, the robot would drift unless the initial 
features are maintained in memory and recognised by data 
association. 

A more serious limitation in our implementation is the 
200 ms time delay incurred by the slow TCP/IP commu- 
nication and the feature tracker running time (150 ms on 
512 x 512 images) which decrease the control stability mar- 
gins. Tests in simulation without time delay clearly demon- 
strated this downside effect. 

Lastly, some of the performances limitations are caused 
by the feature tracking. The feature tracker relies on the as- 
sumption of small pixel motions in the image. Sampling the 
video signal at 5 Hz clearly reduces the working conditions. 
We carried out some tests to assess quantitatively the max- 
imum admissible pixel displacement between two frames 
and it proved to be 5 pixels. However, 512 x 512 pixels 
images represents an important amount of data for track- 
ing purposes, and explain the relatively slow tracking rate. 
Image sub-sampling would certainly increase the tracking 
speed to the cost of a reduced positioning accuracy. Abrupt 
changes of motion direction and changes in lighting, may 
also cause the tracker to lose features . Further experi- 
ments will be needed to assess quantitatively the effect of 
illumination changes on the tracking behaviour. However, 
we found that, with sufficient and constant illumination (4 
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lux), tracked features were successfully positioned with a 
repeatability of 0.5 pixels standard deviation. 

5 Conclusion and Future work 
This work showed the validity of 2-D visual servoing for 
underwater vehicle station keeping. This approach was ro- 
bust to various sea current disturbances and allows good 
positioning precisions. The use of a linear PID controller 
permitted slow, hut very stable hover capabilities. Besides, 
we were able to perform these experiments on a number of 
unmarked planar targets without m y  changes in the feature 
tracking parameters, which demonstrated the robustness of 
the visual processing part. 

Future work will concentrate on transferring this visual 
servoing algorithm on one of our small ROVs, namely 
RAUVER built in-house. In addition, more characterisa- 
tion will be done under various conditions of visibility and 
lighting since these are major issues underwater. Nonlin- 
ear controllers, making use of the vehicle’s dynamics would 
also improve the disturbance rejection, and will be looked 
into. 
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