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Through a New Estimation Scheme of Camera Displacement
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Abstract. Classical visual servoing techniques need a strong a priori knowledge of the shape and the dimensions of
the observed objects. In this paper, we present how the 2 1/2 D visual servoing scheme we have recently developed,
can be used with unknown objects characterized by a set of points. Our scheme is based on the estimation of the
camera displacement from two views, given by the current and desired images. Since vision-based robotics tasks
generally necessitate to be performed at video rate, we focus only on linear algorithms. Classical linear methods
are based on the computation of the essential matrix. In this paper, we propose a different method, based on the
estimation of the homography matrix related to a virtual plane attached to the object. We show that our method
provides a more stable estimation when the epipolar geometry degenerates. This is particularly important in visual
servoing to obtain a stable control law, especially near the convergence of the system. Finally, experimental results
confirm the improvement in the stability, robustness, and behaviour of our scheme with respect to classical methods.
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1. Introduction

Standard eye-in-hand visual servoing approaches, that
is position-based and image-based visual servoings,
need a strong a priori knowledge of the 3D model of
the observed object (Weiss et al., 1987; Hashimoto,
1993; Hutchinson et al., 1996). On one hand, in
position-based visual servoing, the features used as in-
puts of the control scheme are expressed in the 3D
Cartesian space (Wilson et al., 1996). To compute such
features, the pose of the object with respect to the cam-
era is estimated at each iteration of the control law.
Numerous methods exist to recover the pose of an ob-
ject (see Dementhon and Davis (1995) for example),
but they are all based on the knowledge of a perfect ge-
ometric 3D model of the object. On the other hand, in
image-based visual servoing, the visual features used
as inputs of the control scheme are directly expressed
in the 2D image space (Espiau et al., 1992). However,
the internal part of the control scheme relies on an es-
timation or an approximation of the interaction matrix
(also called image Jacobian). This matrix describes the
relationship between the motion of the visual features

in the image and the 3D motion of the camera mounted
on the end-effector of the robot. If translational motions
have to be controlled (which is generally the case), it
thus depends on the depth from the camera to each
considered geometrical feature. Once again, a pose es-
timation algorithm is generally used to estimate the
3D parameters involved in the interaction matrix. In
some cases (Espiau et al., 1992), a coarse approxima-
tion, corresponding to the value of the interaction ma-
trix computed at the desired robot position, is sufficient.
However, an a priori knowledge on the 3D shape and
dimensions of the observed object is still necessary to
determine the desired value of the same 3D parameters.
Another method in image-based visual servoing con-
sists in numerically estimating the coefficients of the
interaction matrix, without taking into account its ana-
lytical form (Hosoda and Asada, 1994; Jgersand et al.,
1997). Contrarily to the previous ones, this method does
not need any 3D a priori knowledge. However, it is un-
fortunately impossible to demonstrate and to ensure its
stability.

In this paper, we present how the 2 1/2 D visual
servoing scheme we have recently developed (Malis,
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1998; Malis et al., 1999), can be used with unmodeled
objects. As will be detailed later, this scheme does not
necessitate any 3D knowledge of the considered object,
which increases the versatility and the application area
of visual servoing. Furthermore, this scheme combines
the advantages of classical visual servoings techniques
and avoids their respective drawbacks. More precisely,
the first drawback in position-based visual servoing is
that none control is performed in the image, which im-
plies that the object may get out of the camera field
of view during the servoing (leading of course to its
failure), especially if the initial robot position is far
away from its desired one. The second drawback is that
strong hypotheses have to be stated in order to demon-
strate the stability of the system (Chaumette, 1998).
Image-based visual servoing also suffers from several
drawbacks (Chaumette, 1998): first, the interaction ma-
trix may become singular during the servoing, which
of course leads to an unstable behaviour. Second, lo-
cal minima may be reached, which means that the final
robot position does not correspond to the desired one.
If another control strategy is used to avoid potential
local minima, the motion in the image becomes unpre-
dictable, which means that it is impossible to ensure
that the object will always remain in the camera field
of view. Furthermore, the robot trajectory may not be
satisfactory because of the strong coupling in the coeffi-
cients of the interaction matrix. Finally, even if image-
based visual servoing is known to be very robust in
practice with respect to camera and robot calibration
errors (Espiau, 1993), it is in general impossible to ex-
hibit exploitable analytical stability conditions.

As already described in Malis et al. (1999) which was
devoted to the automatic control part of our scheme,
2 1/2 D visual servoing consists in combining visual
features obtained directly from the image, and esti-
mated 3D information. As will be recalled in Section 2,
we thus obtain a block-triangular interaction matrix that
provides interesting decoupling properties. As detailed
in Malis (1998), Malis et al. (1999), it is also possi-
ble to be sure that the convergence will be ensured and
that the object will remain in the camera field of view
whatever the initial robot position. Analytical condi-
tions to ensure the global stability of the system even
in the presence of calibration errors have also been
determined. In this paper, we focus on the estimation
of the 3D parameters involved in our control scheme.
If a 3D CAD model of the object is available, it is
of course possible to obtain these parameters using a
classical pose estimation algorithm. However, we will

see that all these parameters can be determined from
an Euclidean reconstruction up to a scalar factor. Such
a reconstruction can be obtained from two images of
an unknown object characterized by a set of points (as-
sumed to be matched) (Jerian and Jain, 1991; Faugeras,
1993). In our case, the first image is the desired one (ac-
quired at the desired robot position during an off-line
learning step), while the second image is the current
one (acquired at each iteration of the control law).

The same idea of using an unknown object in visual
servoing has been recently presented in Basri et al.
(1998). However, the control scheme described in that
paper corresponds to a classical position-based visual
servoing, which means that it is subject to the draw-
backs of this approach we have recalled above. Further-
more, the Euclidean reconstruction is obtained from the
essential matrix, and we will show in this paper that it
implies an unstable behaviour near the convergence of
the system.

The Euclidean reconstruction from two views is well
known to be the motion and structure from motion
problem. It is, by its own nature, non-linear. Therefore,
the classical approach to solve this problem is com-
posed of two steps: using first a linear algorithm to pro-
vide an initialisation to a non-linear algorithm (Jerian
and Jain, 1991). In this paper, we point out our attention
only on the first linear stage, since the time processing
of non linear algorithms are generally not compatible
with the rate of visual servoing schemes (that have to be
as close as possible to the video rate). Several methods
were proposed to linearly solve the motion and struc-
ture from motion problem. They are generally based
on the computation of the fundamental matrix (Luong
and Faugeras, 1996) if pixel image points coordinates
are used, or of the essential matrix (Longuet-Higgins,
1981; Hartley, 1997) if normalized image points co-
ordinates are used. However, the epipolar geometry
degenerates in some cases (for example if the mo-
tion is a pure rotation or if the considered object is
planar (Longuet-Higgins, 1984)). If such degenerate
configurations are not detected, the estimation of mo-
tion and structure will be completely unstable in their
neighbourhood, which will induce an unstable and thus
unsatisfactory behaviour of the control scheme. Unfor-
tunately, in visual servoing, the displacement that the
robot has to realize is of course unknown, and it may
be possible to encounter a degenerate case even for the
initial robot position. Moreover, a positioning task is
achieved when the two considered images of the ob-
ject are the same (image noise measurement excepted),



2 1/2 D Visual Servoing with Respect to Unknown Objects 81

which of course corresponds to a degenerate case for
the epipolar geometry. Dealing with these degenerate
configurations is thus particularly important in visual
servoing.

The motion and structure can also be estimated from
an homography matrix related to a virtual plane at-
tached the object (Faugeras and Lustman, 1988; Zhang
and Hanson, 1995). The homography matrix may be
estimated jointly to the epipole using, for example, the
“virtual parallax algorithm” (VP) (Boufama and Mohr,
1995). However, we will see that the epipole estima-
tion is unnecessary for the homography estimation. The
number of unknowns using the VP algorithm is thus not
minimal if we are only interested in the estimation of
the motion and structure (which is the case in our vi-
sual servoing problem). Furthermore, there are three
supplementary epipolar configurations where it is im-
possible to extract the homography matrix with the VP
algorithm.

For these reasons, we propose a new method, again
based on virtual parallax, for the direct estimation of the
homography matrix relative to a virtual plane. With an
adequate choice of the three points defining the virtual
plane, we will see that it provides more stable results
than the classical methods in the degenerate configura-
tions for the epipolar geometry, as soon as image noise
measurements are taken into account. Indeed, even if
the degenerate cases are common to any reconstruction
method, numerical stability of the estimation depends
of the chosen method, and we explain in this paper why
the one we propose gives satisfactory results. We have
however to note that the problem of features match-
ing has not been considered. Our method, in its cur-
rent form, is thus unable to take into account potential
outliers.

The use of planes and parallax for motion estima-
tion has also been studied in Irani et al. (1998) and
Criminisi et al. (1998), but using the hypothesis that
four coplanar points can be extracted in both images.
We will see that the method we propose does not
need any hypothesis. Furthermore, the issue of han-
dling degenerate situations has been recently addressed
in Torr et al. (1998), switching from epipole to ho-
mography estimation when degeneracies occur. How-
ever, in presence of noisy measurements, detecting
such degeneracies is very complex. Moreover, even
if the detection is perfectly realized, a discontinuity
of the estimation will be obtained at each change of
the used method if image noise and calibration errors
exist. Since we use the same estimation method in all

cases, our visual servoing scheme does not present such
discontinuities.

The paper is organised as follows. In Section 2, we
describe the 2 1/2 D visual servoing scheme and show
which information provided by an Euclidean recon-
struction is needed to design it. In Section 3, we review
the classical linear methods to compute the fundamen-
tal matrix and then to extract the motion from the cam-
era intrinsic parameters and the essential matrix. In Sec-
tion 4, we propose an algorithm for the estimation of a
collineation relative to a virtual plane attached to an un-
known three-dimensional object characterized by a set
of points. Knowing the camera internal parameters, the
displacement of the camera can be extracted from the
corresponding homography matrix. In Section 5, we
compare our approach with the classical algorithms,
especially in the particular case when the epipolar ge-
ometry is close to be degenerate. Finally, experimental
results obtained using an eye-in-hand system are pre-
sented in Section 6.

2. The 2 1/2 D Visual Servoing

One of the typical applications of visual servoing con-
sists in positioning an eye-in-hand system relative to an
object, for a grasping task for instance. Generally, the
positioning task is divided into two steps. In a first off-
line learning step (see Fig. 1), the camera is moved to its
desired position with respect to the object (which corre-
sponds to camera poseF∗). The corresponding image
is acquired and the extracted visual features are stored.
In the second on-line step, after the camera and/or the
object have been moved, the camera motion is con-
trolled so that the current visual features (correspond-
ing to camera poseF) reach their desired position in
the image. In other words, the rotation matrixR and
the translationt betweenF andF∗ have to reach the
identity matrix and 0 respectively.

Figure 1. Visual servoing with an eye-in-hand system. (a) Final
position; (b) Initial position.
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The 2D 1/2 visual servoing scheme consists in com-
bining 2D image features and 3D information. More
precisely, the feature vector used as input of the con-
trol law is selected as:

s= [x, y, z, θuT ]T (1)

where:

• x andy are the normalized metric coordinates of an
image point, computed from the coordinates of this
point measured in pixels and an estimation (generally
coarse) of the camera intrinsic parameters;
• z= log Z, Z being the depth of the considered point;
• θ andu are respectively the angle and axis of rotation

extracted fromR.

The task functione, that has to be regulated to
0 (Samson et al., 1991), is directly obtained from the
error(s− s∗), wheres∗ is the desired value fors. More
precisely,e is given by:

e= [x − x∗, y− y∗, logρ, θuT ]T (2)

where the first two components ofe are directly com-
puted from the current and desired images, and the last
four components ofeare composed of 3D information
that have to be estimated,ρ being defined as the ratio
Z/Z∗ between the current and desired depths of the
selected point.

It is shown in Malis (1998), Malis et al. (1999) that
the corresponding interaction matrix, defined such that
ė = Lv wherev is the camera velocity screw, is an
upper block-triangular matrix given by:

L =
[

1
Z Lv Lvω

03 Lω

]
(3)

where:

Lv =

−1 0 x

0 −1 y

0 0 −1



Lvω =
 xy −(1+ x2) y

(1+ y2) −xy −x
−y x 0



and:

Lω = I3− θ
2

[u]× +
(

1− sinc(θ)

sinc2
(
θ
2

)) [u]2
× (4)

with sinc(θ) = sin(θ)/θ , [u]× being the antisymmetric
matrix associated tou.

The determinant ofLω is

det(Lω) = 1

sinc2(θ/2)
(5)

and it is thus singular only forθ = 2kπ, ∀k∈Z∗ (i.e.
out of the possible workspace). We have also the fol-
lowing nice property:

L−1
ω θ u = θ u (6)

We can note thatL is singular only in degenerate cases
(such asZ = 0 and 1/Z = 0). Finally, if the object
is known to be motionless and if a simple exponential
decrease of each component ofe is specified, we obtain
the following control law:

v = −λ L−1 e (7)

whereλ tunes the convergence rate. More precisely, we
have:

v = −λ
[

Z L−1
v −Z L−1

v L vω
0 I3

] 
x − x∗

y− y∗

logρ

θu

 (8)

If the CAD model of the object is known, a classical
pose estimation algorithm can be used, and all the val-
ues involved in (8) are available at each iteration. Oth-
erwise, if we deal with an unknown object, we can use
an Euclidean reconstruction between the current and
desired views, as we are going to see in the following
sections. In that case,ρ= Z/Z∗ anduθ can be com-
puted, and the only unknown parameter is the depthZ.
However,Z can be writtenZ= ρZ∗ and the only un-
known parameter of our control scheme becomes the
constant scalar valueZ∗. Furthermore, this value has
not to be precisely determined (by hand in the exper-
iments) since, as demonstrated in Malis et al. (1999),
it has a small influence on the stability of the system.
In practice, an approximate value is chosen during the
off-line learning stage.
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Finally, if we consider possible calibration and mea-
surement errors, the control law is given by:

v = −λ L̂
−1

ê (9)

whereê is the measured value ofe andL̂
−1

is an ap-
proximation ofL−1:

L̂
−1 =

[
Ẑ∗ρ̂ L̂

−1
v −Ẑ∗ρ̂ L̂

−1
v L̂ vω

0 I3

]
(10)

Let us emphasise thatL̂
−1

is an upper triangular square
matrix without any singularity in the whole task space.
The stability and convergence of the control law can
thus be obtained for any initial camera position such
that the considered object is in the camera field of view.
Furthermore, such a decoupled system provides a sat-
isfactory camera trajectory in the Cartesian space. In-
deed, the rotational control loop is decoupled from the
translational one (see Fig. 2), and the chosen reference
point is controlled by the translational camera d.o.f.
such that its trajectory is a straight line in the state
space, and thus in the image. If a correct calibration
is available, this point will thus always remain in the
camera field of view whatever the initial camera posi-
tion. Of course, this property does not ensure that all
the object will remain visible. In practice, it is possible
to change the point during servoing, and we can select
as reference point the nearest the bounds of the image
plane. However, this solution leads to a discontinuity
in the translational components of the camera velocity
at each change of point. Another strategy is to select
the reference point as the nearest of the center of grav-
ity of the object in the image. This would increase the
probability that the object remains in the camera field
of view, but without any complete assurance. In Malis
et al. (1999), an adaptive control law is proposed to
deal with this problem.

Figure 2. Block diagram of the 2 1/2 D visual servoing.

Furthermore, it is well known that the local asymp-
totic stability of the closed-loop system is ensured if
all the eigenvalues ofLL̂

−1
are positive. Similarly,

the global asymptotic stability is ensured (which im-
plies the decreasing of‖e‖ at each iteration) if the
sufficient conditionLL̂

−1
> 0 is satisfied. Determin-

ing analytical and practical conditions for the stability
of image-based and position-based visual servoings is
in general impossible (or under very strong hypothe-
ses (Chaumette, 1998)). On the other hand, thanks to
the nice form ofL andL̂

−1
, it is possible to determine,

when an Euclidean reconstruction is performed, the
necessary and sufficient conditions for local asymptotic
stability, and sufficient conditions for global asymp-
totic stability in the presence of camera calibration er-
rors (see Malis (1998), Malis et al. (1999) for more de-
tails). For example, it is possible to determine bounds
on Ẑ∗ in function of calibration errors such that the
global stability of the system is ensured whatever the
initial camera position.

We now describe how the 3D parameters involved in
our control law can be estimated from a set of matched
points in the current and desired images.

3. Camera Displacement from the
Essential Matrix

In this section, we review the classical approach to re-
cover the displacement of a camera from two views of
an unknown object. In our case, the first image corre-
sponds to the desired one (acquired during the off-line
learning step), and the second image to the current one
(acquired at each iteration of the control law). The de-
sired position of the camera optical centre is denoted
C∗, while its current position is denotedC (see Fig. 3).
The perspective projection of a pointP ∈ P3 in the
first image is denotedp∗ (with homogeneous coordi-
natesp∗ = [ u∗ v∗ 1]T ). Similarly, the projection ofP
in the second image is denotedp (with homogeneous
coordinatesp = [ u v 1]T ). p and p∗ are measured in
pixels and are assumed to be matched.

3.1. The Epipolar Geometry

It is well known that the plane defined by the three
pointsC, C∗ andP intersects the image planes in two
epipolar lines. The first one is defined by(p∗, e∗), and
the second one, denotedl, is defined by(p, e), where
e∗ ande are the epipoles (i.e., the projection ofC and
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Figure 3. Epipolar geometry.

C∗ in the image planes). Using projective coordinates,
the epipolar linel can be written:

l = p ∧G∞p∗ (11)

whereG∞ is the collineation relative to the plane at
infinity (Faugeras, 1993). Since the epipolee lies on
line l, we havelTe= 0, which can be written, using
Eq. (11), as:

pTFp∗ = 0 (12)

whereF = [e]×G∞ is the fundamental matrix ([e]× is
the crossproduct matrix associated to vectore). In the
general case,F is rank 2, which implies a non-linear
constraint on the nine entries ofF (Luong and Faugeras,
1996).

3.2. Fundamental Matrix Estimation

We now review two linear algorithms to estimate the
fundamental matrix. We remind that we only con-
sider linear algorithms because of time processing con-
straints imposed by visual servoing.

3.2.1. The Eight Points Algorithm. The classical ap-
proach to compute the epipolar geometry is the eight
points algorithm (Longuet-Higgins, 1981; Hartley,
1997). Since Eq. (12) is true for each pair of points
(p j , p∗j ), it is possible to obtain a linear system ifn
pairs are available:

C f f = 0 (13)

where:

f = [ f11 f12 f13 f21 f22 f23 f31 f32 f33 f ]T

are the 9 unknown entries ofF andC f is a (n × 9)
measurement matrix. System (13) is homogeneous and,
sinceF is defined up to a scale factor, a minimum of
8 pairs of points are necessary to solve (13). In pres-
ence of noise, the linearized estimation problem can be
written:

minimumf‖C f f‖
subject to ‖f‖ = 1

(14)

The solution of this problem is obtained by perform-
ing the Singular Values Decomposition (SVD) of the
measurement matrixC f =USVT . The solutionf of the
system is the column ofV corresponding to the mini-
mal singular value ofS (0 in absence of noise).

Let us remark that, if the epipole is undefined in the
image (for example if the motion is a pure rotation
or if the object is planar (Longuet-Higgins, 1984)), the
fundamental matrix is also undefined, which implies an
unstable estimation near this particular case. We will
see in Section 4 that the method we propose is able to
adequately deal with this problem.

Furthermore, we can note that this method does not
take into account the rank 2 constraint on the funda-
mental matrix. This constraint is generally introduced
a posteriori using a non-linear algorithm (Deriche et al.,
1994; Luong and Faugeras, 1996). Since the aim of this
paper is to focus on linear algorithms, the non-linear
criteria are not detailed here.

3.2.2. The Virtual Parallax Algorithm. To simplify
the computation of matrixF, Boufama and Mohr
(1995) perform a change of projective coordinates us-
ing 4 matched points in each image. These points are
chosen such that not any three of them are collinear
in the images. LetM and M ∗ be the matrices of
change of coordinates, of dimension(3× 3), respec-
tively calculated as a function ofp1, p2, p3, p4 and
p∗1, p

∗
2, p
∗
3, p
∗
4. The image points̃p j = [ ũ j ṽ j w̃ j ]T and

p̃∗j = [ ũ∗j ṽ
∗
j w̃
∗
j ]T in the new coordinate system are

given by p̃ j = M−1p j and p̃∗j = M ∗−1p∗j . Choosing
[ p̃1 p̃2 p̃3 ] = [ p̃∗1 p̃∗2 p̃∗3 ] = I3 for the first three points,
the collineation matrixG̃, related to the planeπ de-
fined by these three points, is diagonal when expressed
in the new coordinate system:

G̃ = M−1GM ∗ = diag(g̃u, g̃v, g̃w) (15)
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Then, the fundamental matrix can be written in the new
coordinate system as̃F = [ẽ]×G̃ where ẽ = M−1e
is the epipole in the new coordinate system. Using
Eq. (12), we obtain:

p̃T [ẽ]×G̃ p̃∗ = 0 (16)

which is polynomial of degree two in four unknowns
(i.e., two unknowns for the epipole and two unknowns
for the diagonal collineation matrix since they are
defined up to a scale factor). After few develop-
ments, Eq. (16) can be written as (Boufama and Mohr,
1995):

C f̃ f̃ = 0 (17)

where f̃ = [ ẽx g̃w ẽx g̃v ẽyg̃u ẽyg̃w ẽzg̃v ẽzg̃u ]T . This
new equation is linear homogeneous in 6 unknowns.
Then at least five points not belonging toπ are needed
to solve linearly the problem. Ifm (m ≥ 5) points
are available, the matrixC f̃ is of dimension (m× 6),
and the system can be solved by performing the SVD
of C f̃ = USVT . Once again, the solutioñf is the
column of V corresponding to the minimal singular
value ofS (0 in absence of noise). After the vectorf̃
is obtained, the original unknowns can easily be deter-
mined.

As in the previous case, this method is inadequate
when the epipole is undefined in the image. Further-
more, there are three supplementary singular cases
where the collineation matrix̃G cannot be estimated.
Indeed, ifẽ= [ 1 0 0]T , only g̃2/g̃3 is known; if ẽ=
[ 0 1 0]T , only g̃1/g̃3 is known; and, ifẽ= [ 0 0 1]T ,
only g̃1/g̃2 is known. If these particular cases can be
detected, another algorithm can be used. However, in
presence of noise, the detection of such particular cases
is quite difficult and, if the detection fails, the results
will not be accurate since zero values estimation is very
sensitive to numerical errors.

The main advantage of the virtual parallax algorithm
with respect to the eight points algorithm is that, even
degenerating in the above singular cases, it can pro-
vide the collineation matrix, which is always defined
contrarily to the fundamental matrix. However, in this
algorithm, the collineation matrix estimation depends
on the epipole estimation, and the number of unknowns
is not minimal. For these reasons, we propose in Sec-
tion 4 a method that determines directly the collineation
matrix without estimating the epipole.

3.3. The Essential Matrix

The fundamental matrixF is estimated using pixel im-
age coordinates. FromF, the essential matrixE can be
computed as follows:

E = ATFA (18)

A being a non-singular(3× 3) matrix containing the
intrinsic parameters of the camera:

A =


f ku − f ku cot(θ) u0

0
f kv

sin(θ)
v0

0 0 1

 (19)

whereu0 andv0 are the coordinates of the principal
point (in pixels), f is the focal length (in meters),ku

etkv are the magnifications respectively in theEu andEv
direction (in pixels/meters), andθ is the angle between
these axes.

Matrix E must satisfy the Huang-Faugeras con-
straints (Huang and Faugeras, 1989):σ1= σ2 and
σ3= 0 (whereσ1, σ2 and σ3 are the singular values
of E). Indeed,E can be also written as the product of a
skew-symmetric matrix and a rotation matrix:

E = [t]×R (20)

where rotation matrixR and translationt represent the
camera displacement betweenF andF∗. The Huang-
Faugeras constraints can be imposed a posteriori by
using the algorithm of Tsai and Huang (1984) to es-
timate the motion parameters. This method has been
proved to be optimal by Hartley (1992). FromE, the
rotation matrixR and the direction of translationt/‖t‖
can thus be directly calculated. All the values involved
in our visual servoing scheme (exceptZ∗ of course)
are thus available: axisu and angleθ directly fromR,
while ρ is given by‖[t]×Rm∗‖

‖[t]×m‖ .
If the camera is coarsely calibrated (which is gener-

ally the case in visual servoing), it is clear that, even if
F is perfectly estimated,E will be biased, which will
induce errors on the estimation of the motion parame-
ters. The closed-loop control used in visual servoing is
generally able to overcome such problems. In fact, as
already explained, the main problem encountered with
the above methods occurs when the epipolar geome-
try is undefined, which is unfortunately the case when
the camera comes near its desired position. Near con-
vergence, unstable estimations will cause an unstable
control law, which leads of course to an unsatisfactory
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behaviour. In the following section, we propose a dif-
ferent method to estimate the parameters involved in
our visual servoing scheme. We will see in Section 5
that it provides more stable results near convergence,
and is thus more adequate in visual servoing.

4. Camera Displacement from the
Homography Matrix

We now propose a linear algorithm to directly estimate
the homography matrix relative to a virtual plane at-
tached to the object.

4.1. The Virtual Parallax

Let us consider three 3D pointsPi of the object (i =
1, 2, 3). We will see at the beginning of the next sub-
section how these points have to be chosen in practice.
We here only consider that they are not collinear in
both images, and thus define a virtual plane, denoted
π (see Fig. 4). It is well known that each image point
with projective coordinatespi in F , is related to the
corresponding image point with projective coordinates
p∗i in F∗, by a collineationG such that (Faugeras and
Lustman, 1988):

pi ∝ Gp∗i {i = 1, 2, 3} (21)

whereG is a homogeneous full rank (3× 3) matrix.
Let us remark thatG is defined up to a scalar factor,
therefore one of the entries ofG can be set to 1 without

Figure 4. Virtual parallax.

loss of generality. Equation (21) is valid for all points
lying onπ . Therefore, if the considered object is known
to be planar and if more than three points are available,
the 8 unknown entries ofG can be estimated by solving
a simple linear homogeneous system obtained from
pi ∧Gp∗i = 0.

Now, let us suppose that the structure of the object is
not planar. If a pointPj does not belong toπ , the line
(C∗Pj ) and planeπ intersect in a virtual 3D pointP

′
j

(see Fig. 4).P
′
j andPj project on the same pointp∗j in

the first image and on two different points (p j and the
virtual pointp

′
j = Gp∗j ) in the second image (parallax

effect). The equation of the epipolar linel j can be now
written as follow:

l j = p j ∧Gp∗j (22)

4.2. Collineation Estimation

Our approach, similar to the one proposed in Couapel
and Bainian (1995), is based on the constraint that all
the epipolar lines meet in the epipole. Hence, for each
set of three epipolar lines (22), we have:

| l j lk ll | = 0 (23)

which means:

∣∣p j ∧Gp∗j pk ∧Gp∗k pl ∧Gp∗l
∣∣ = 0 (24)

However, Eq. (24) is non-linear with respect to the
entries of the collineation matrix. In order to sim-
plify the computation ofG, a change of projec-
tive coordinates is performed. In contrast with Bo-
ufama (1995) and Couapel (1995), the change of co-
ordinates matricesM and M ∗ are constructed using
only the three reference points chosen to define
π . The transformation matrices are given byM =
[ p1 p2 p3 ] and M ∗ = [ p∗1 p∗2 p∗3 ]. Choosing again
[ p̃1 p̃2 p̃3 ]= [ p̃∗1 p̃∗2 p̃∗3 ]= I3, the collineation matrix
G̃ in the new coordinates system is diagonal:G̃ =
M−1GM ∗ = diag(g̃u, g̃v, g̃w). It is clear that the choice
of the three reference points is important in our method.
In order to obtain an accurate and robust estimation,
this choice is done automatically by selecting the three
points which maximize the surface of the correspond-
ing triangle in both images. Furthermore, we can note
that the change of coordinates normalizes the data,
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which is very important to obtain an accurate estima-
tion in the projective domain (Hartley, 1997).

Equation (24) can be written in the new coordinate
system as:

∣∣ p̃ j ∧ G̃p̃∗j p̃k ∧ G̃p̃∗k p̃l ∧ G̃p̃∗l
∣∣ = 0 (25)

This equation based on virtual parallax is homoge-
neous and polynomial of degree three. Contrarily to
Eq. (16) used in the virtual parallax algorithm, Eq. (25)
does not depend on the epipole and contains only
three unknowns. This is particularly important since
the three singular cases of the virtual parallax method
(ẽ= [ 1 0 0]T , etc.) are not degenerate in our method.
Furthermore, since the estimation of the epipole is un-
necessary in our visual servoing scheme, we have no
interest in introducing its components as supplemen-
tary unknowns. In other words, we benefit by the well
known numerical analysis property that a more robust
solution with respect to noise is obtained when the num-
ber of unknowns is minimal.

After computation, (25) can be written under the
form:

Cg̃x = 0 (26)

where the entries of the measurement matrixCg̃ are
given in Appendix, and:

xT = [ g̃2
ug̃v g̃2

v g̃u g̃2
ug̃w g̃2

v g̃w g̃2
w g̃u g̃2

w g̃v g̃ug̃v g̃w
]

There aren!/(6(n − 3)!) possibilities to choose three
different epipolar lines in a set ofn epipolar lines
(one line for each point in the image). We thus obtain
m= n!/(6(n−3)!) equations and seven unknowns. At
least eight points (three reference points and five sup-
plementary points) are thus needed to solve the prob-
lem, exactly as in the previous algorithms. Once again,
the problem can be solved by performing the SVD of
Cg̃ = USVT and by selecting as solution the column
of V corresponding to the minimal singular value (0 in
absence of noise). However,Cg̃ is of dimension (m×7)
with mÀ 7. In practice, we prefer to obtain the same
solution from the SVD ofCT

g̃ Cg̃ = VSTSVT , which is
of dimension(7×7). Memory space and time process-
ing are thus minimized. Finally, the original unknowns
can be computed by solving the following linear ho-

mogeneous system:

−x̄2 x̄1 0
x̄5 0 −x̄3

−x̄7 x̄3 0
x̄7 0 −x̄1

−x̄4 x̄7 0
x̄4 0 −x̄2

x̄6 0 −x̄7

0 −x̄6 x̄3



 g̃u

g̃v
g̃w

 = 0 (27)

Contrarily to the algorithms described in the previ-
ous section, the collineation matrix can be better esti-
mated because the dimension of the problem is reduced
and the epipole estimation is avoided. Furthermore, our
method does not seem to introduce any new degenerate
case. We explain now why this method provides indeed
more accurate results when the epipolar geometry de-
generates (in Sections 5 and 6 are given the experiments
which confirm the following theoretical results).

The epipolar geometry degenerates when the pro-
jections of corresponding points are related by a
collineation. This happens when all 3D points lie on
a plane or when the camera performs a pure rotation.
In this case, the columns of the determinant in Eq. (24)
become null. However, they are not null for anyg̃u, g̃v,
g̃w since the collineation matrix is always defined and
unique. Indeed,̃gu, g̃v andg̃w have to verify Eq. (26),
that is:

c1g̃2
ug̃v + c2g̃2

v g̃u + c3g̃2
ug̃w + c4g̃2

v g̃w

+ c5g̃2
w g̃u + c6g̃2

w g̃v + c7g̃ug̃v g̃w = 0 (28)

If the matched points are related by a collineation, we
have:  ũ

ṽ

w̃

 =
 ḡu 0 0

0 ḡv 0
0 0 ḡw

 ũ∗

ṽ∗

w̃∗

 (29)

We show in Appendix that the coefficients of Eq. (28)
become in that case:

c1 = α

ḡ2
uḡv

, c2 = − α

ḡ2
v ḡu

, c3 = − α

ḡ2
uḡw

,

c4 = α

ḡ2
v ḡw

, c5 = α

ḡ2
w ḡu

, c6 = − α

ḡ2
w ḡv

,

c7 = 0
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whereα 6= 0 except if the three considered points are
collinear. Setting̃gw = ḡw = 1 without loss of gener-
ality, Eq. (28) can be factorized as follows:

α(g̃u − ḡu)(g̃v − ḡv)(g̃uḡv − g̃v ḡu) = 0 (30)

We thus obtain three different sets of solutions:

{g̃u = ḡu, ∀g̃v},
{g̃v = ḡv, ∀g̃u},{

g̃u = ḡug̃v
ḡv∀g̃v

} (31)

It is worth noting that all these solutions meet in a
single solution, that is the expected one:g̃u = ḡu, g̃v =
ḡv. In absence of noise, we could easily detect that a
degenerate case occurs (in that case, the rank ofCg̃ is 1),
and obtain the exact solution asg̃u = ḡu = −c4/c2 =
c5/c3 andg̃v = ḡv = −c3/c1 = c6/c4. In the presence
of noise, even if we consider that it is impossible to
detect that we are in a degenerate case, the nice property
that all sets of solutions have a unique common solution
ensures that the solution obtained from (26) will be near
this common solution, that is the real one. Of course,
the error between the obtained result and the real value
is directly related to the level of noise.

On the other hand, estimating the epipolar geome-
try through the fundamental matrix in the degenerate
cases leads to very unstable results. Consider for ex-
ample the case of a planar object. In that case, any
point in the image can be chosen as epipole. Then, an
infinity of vectors f are solutions of system (13). In
presence of noise, if it is impossible to detect that a
degenerate case occurs, any solution may be chosen as
the good solution, which implies that the estimation of
the motion parameters is generally completely wrong.
On the other hand, as explained above, there exists only
one collineation matrix, and its estimation is possible
through systems (26) and (27).

Consider now the case of a pure rotation. The solu-
tion of system (13) should bef= 0. However, the funda-
mental matrix is estimated by imposing the constraint
‖f‖=1 sincef is computed as a column of an orthonor-
mal matrix. It is thus impossible to obtain an estimation
near the right solution, that is‖f‖ = 0. On the contrary,
the solutions of system (26) and (27) always satisfy the
constraints‖x‖=1 and‖h̃‖ = 1 respectively. These
constraints, imposed when performing the SVD of the
measurement matrix, are ensured even in the degen-
erate cases. Then, the estimation of the camera dis-

placement around these singular configurations will be
more accurate when performed from the collineation
matrix than from the fundamental matrix. As already
stated, this is particularly important in visual servoing,
since a positioning task is achieved when the camera
displacement is null, which corresponds to a null pure
rotation.

4.3. The Homography Matrix

The corresponding matrix ofG in the calibrated domain
is the homography matrixH. The transformation be-
tween the pixel coordinatesp = [ u v 1]T and the nor-
malized coordinatesm= [ x y 1]T of an image point
is known to bep = Am whereA is given in (19). The
homography matrix can be written as a function of the
calibration parameters and of the collineation matrix
as follows:

H = A−1GA (32)

Furthermore, the homography matrix can be written as
a function of the camera displacement (Faugeras and
Lustman, 1988):

H = R+ t
d∗

n∗T (33)

wheren∗ is the normal to the virtual planeπ expressed
in F∗, andd∗ is the distance fromC∗ toπ (see Fig. 5).
From the estimated homography matrix,R, td∗ = t/d∗,
andn∗ can thus be directly calculated without any ad-
ditional estimation. To compute these parameters, one
of the algorithms proposed in Faugeras and Lustman
(1988) or Zhang and Hanson (1995) can be used. Un-
fortunately, in the most general case, we have two dif-
ferent solutions. If the object is known to be planar,
the indetermination can be eliminated if an additional
information is available (for example from the normal
vector to the virtual planeπ ). Otherwise, the indetermi-
nation is eliminated by considering another reference
plane and by choosing the common solution between
the two pairs (Faugeras and Lustman, 1988). In visual
servoing, this has to be done only once, at the first itera-
tion of the control law, since the solution the nearest of
the previous one can be chosen for the next iterations.

Finally, the ratioρ involved in our control scheme
can be directly computed fromR, td∗ , andn∗. Indeed,
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Figure 5. Motion and structure parameters.

we have:
ρ = nTm

n∗Tm∗
r if m ∈ π

ρ = ‖ [td∗ ]× Rm∗‖
‖ [td∗ ]×m‖ if m /∈ π

(34)

where the ratior between distancesd andd∗ (see Fig. 5)
is given by:

r = d

d∗
= det(H) = 1+ n∗TRtd∗ (35)

If the camera is not perfectly calibrated andÂ is used
instead ofA, it is again possible to express the parame-
ters involved in our control scheme. More precisely, if
we consider that the homography at infinity can be es-
timated, and restrict the computation to the case where
the pointm used in the control scheme belongs toπ ,
we obtain:

θ̂ = θ, û = δAu
‖δAu‖ and ρ̂ = ρ (36)

whereδA = Â−1A describes the (unknown) error on
the intrinsic parameters. It must be emphasized that ro-
tation angleθ and ratioρ are computed without error.
Our control scheme is thus particularly robust with re-
spect to calibration errors. As already explained in Sec-
tion 2, thanks to the simple above relations, we have

been able in Malis (1998), Malis et al. (1999) to de-
termine analytical conditions to ensure the local and
global asymptotic stability of our system in presence
of calibration errors.

5. Simulations Results

In this section, we compare the accuracy of our method
to standard ones. The simulated objects are composed
of a cloud of 16 points, and, for each experiment, sev-
eral objects are randomly built. The camera displace-
ment is also randomly chosen, and, for each camera
displacement, several random additive noise on image
coordinates (with 1 pixel standard deviation) was gen-
erated. As already explained, the three points automat-
ically selected to define the reference planeπ are such
that they maximize the surface of the corresponding
triangles in both images. The mean, the standard devi-
ation and the maximum of the absolute value of the fol-
lowing errors was then computed (where the hat refers
to the estimated value):

• Rotational error: The distance between the two ro-
tationsR andR̂, which is the shortest length of the
geodesic starting atR and ending at̂R. The shortest
length of this geodesic is the rotation angleθr of the
matrixRR̂−1.
• Translational error: The angleθt between the nor-

malized vectorst/‖t‖ andt̂/‖t̂‖.

As already said, we focused in this paper on linear
estimations since they are the only ones able to give
results at video rate. Since time processing is not crit-
ical in simulation, we consider also in this section the
results obtained with the non-linear method described
in Deriche et al. (1994), Zhang (1998). The results of
the different methods are plotted in the figures respec-
tively with:

• a triangle for the eight point algorithm using normal-
ized data (EL) (see Section 3.2.1).
• a square for the motion estimation using the virtual

parallax algorithm (VP) (see Section 3.2.2).
• a circle for the linear homography matrix estimation

algorithm (HL) (see Section 4.2).
• a diamond for the non-linear algorithm (NL) de-

scribed in Deriche et al. (1994), Zhang (1998) and
initialized with the EL algorithm results.
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The EL and NL algorithms have been tested using the
Fmatrix software developed by Zhang.1

5.1. Accuracy with Planar Objects

As already explained, our visual servoing scheme does
not necessitate any a priori information about the 3D
model of the considered object. In man-made environ-
ment, it is very common to find planar or nearly planar
surfaces. It is thus important that the algorithm estimat-
ing the camera displacement provides accurate results
when the considered object is planar, even if it corre-
sponds to a degenerate case of the epipolar geometry.

We thus consider here objects composed of 16 copla-
nar points randomly chosen in a square of 30×30 cm2.
In Fig. 6 are given the mean of the error, its standard
deviation and the maximal error computed over 40000
samples varying randomly the camera displacement
and the structure of the points in the square. More pre-
cisely, 40 planar objects and 100 camera displacements

Figure 6. Planar object: rotation and translation error versus num-
ber of points.

have been considered, and for each of these configura-
tions, 10 experiments adding random image noise have
been realized. As for the camera orientation, it varies
randomly from a nominal position in front of the plane
with a maximal displacement of±60◦. The translation
of the camera is chosen such that the points remains in
the camera field of view. The initial distance from the
plane is 50 cm.

As expected, considering a planar object is un-
favourable for the algorithms EL and NL based on the
fundamental matrix estimation. Important mean errors
(18◦ and 40◦ for the rotational and translational er-
rors) are obtained using these algorithms whatever the
number of points. Results using our HL algorithm are
satisfactory (the mean error is 6◦ for the rotation and
15◦ for the translation) since the most accurate and sta-
ble. Finally, the VP method gives intermediary results
since, even if the displacement is computed from the
homography, the homography is estimated jointly with
the epipole, which introduces important perturbations.

5.2. Accuracy at the Final Position

We now consider the case of a small camera displace-
ment. In visual servoing, since this displacement is a
priori unknown, it may thus be small, even for the initial
camera position. This is typically the case for robot sta-
bilization and target tracking tasks. Furthermore, what-
ever the initial camera position, it is obvious that, at
convergence of the visual servoing scheme, the dis-
placement has to be as small as possible. To preserve
the stability of the control law, it is thus extremely im-
portant that the algorithm used to estimate the camera
displacement provides an accurate and stable result in
the case whereR = I andt = 0, even if the epipolar
geometry is degenerate (since the epipole is undefined
in the image).

For the simulation, we setR = I , t = 0 and use 100
objects composed of 16 points randomly chosen in a
cube of 30× 30× 30 cm3. The results obtained for
10000 tests (100 tests with different noise for each ob-
ject) are shown in Fig. 7. As expected, the HL algorithm
produces more accurate results than the VP algorithm,
since the homography is not estimated jointly to the
epipole. As expected also, the EL and NL algorithms
are less accurate than the HL and VP algorithms, espe-
cially when the number of considered points is small.
These results confirm that, in the singular cases, the
use of an homography matrix is preferable to obtain
the motion parameters.
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Figure 7. Rotation error versus number of points when the camera
is at its final position.

5.3. Accuracy with a Rotating Camera

In this simulation, we consider a stationary camera that
performs a pure rotation of 10◦ around a random axis
(10000 tests corresponding to 20 objects and 50 differ-
ent axes of rotation have been done). As can be seen
in Fig. 8, we obtain very similar results to the previ-
ous simulation and the HL algorithm produces again
the bests results in this degenerate case of the epipolar
geometry.

Figure 8. Pure rotation of the camera: error versus number of
points.

5.4. Accuracy with Random Camera Displacement

Figure 9 shows the results obtained with random
generic displacements (once again, 10000 samples
have been done to deal with 20 objects and 50 dis-
placements). In that case, the NL algorithm produces,
as expected, the best results, but we can note that those
obtained using the HL algorithm are satisfactory in re-
gard to those obtained using the EL method (since they
are very close). Finally, the VP algorithm gives the
worst results, since the joint estimation of the epipole
and of the homography matrix induces perturbations
on the camera motion estimation.

We can remark that, for all methods, the errors are
most important in this experiment than in the previous
ones. This is due to the fact that the random camera
displacement may imply that the object is very small
in the image, which of course induces less accurate
results.

To conclude, we recall that the choice of the three
reference points is important in our HL method (as al-
ready explained, they are selected to maximize the area
of the corresponding triangles in both images). The
quality of the results when these points are matched

Figure 9. Generic displacement: results vs number of points.
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with large imprecision can be very bad. However, in
all the presented simulation results, the variance of the
noise on all points was of 1 pixel, which means that the
algorithm is accurate even in presence of noisy images.
Finally, as it will be explained below, dealing with out-
liers (mismatched points) was not in the scope of this
paper.

6. Experimental Results

6.1. Camera Displacement Estimation Using
a Real Scene

We now consider a real scene and a calibrated eye-in-
hand system. In the reported experiment, the camera
displacement has been set to:t = [ 14 6−18]T cm and
r = [ 2.1 −3.1 −0.7]T dg. The points (matched using
the Image Matching software,1 developed by Zhang)
in both images2 were numbered from 1 to 28 (see
Fig. 10(a) and (b)).

The first 3 points were chosen by hand as reference
points for the change of projective coordinates. The er-
rorsθr andθt versus number of points are depicted in
Fig. 10(c) and (d) respectively. On the whole, the NL
algorithm gives better results than the EL algorithm
(surprisingly except for 13 points). According to the

Figure 10. Real scene: results versus number of points. (a) First
image; (b) Second image; (c) Rotational error (dg); (d) Direction of
translation error (dg).

simulation results, the HL algorithm produces more
accurate results than the EL algorithm. Finally, it is
quite surprising that the HL method gives more accu-
rate results than the NL method. This is due to the fact
that the camera displacement is not important in regard
of the dimension of the scene, which means that the
considered example is not far from a degenerate case
of the epipolar geometry.

6.2. 2 1/2 D Visual Servoing Results

The HL method has been integrated in the visual ser-
voing scheme described in Section 2 and tested on a
seven d.o.f. industrial robot Mitsubishi PA10 (at EDF
DER Chatou) and a six d.o.f. Cartesian robot Afma (at
IRISA). As far as camera calibration is concerned, we
have used the pixel and focal lengths given by the con-
structor in order to compute the image coordinatesu
andv from their measured values (in pixels) in the im-
age. The center of the image has been used for the prin-
cipal point. The object was a black board with twelve
white marks on three parallel planes (see Fig. 11). The
extracted visual features are the image coordinates of
the center of gravity of each mark. With such simple
images, the control loop can easily be carried out at
video rate.

For large camera displacements, such as the ones
considered in the experiments, point matching between
initial and reference images is a difficult computer vi-
sion problem. This problem has not been considered
here because of the simplicity of the considered ob-
ject. Furthermore, this matching has to be done only
once, just before the beginning of the visual servo-
ing, where real time issue is not needed. Finally, in the
robotics applications we are working on, this matching
process can be solved thanks to the help of a human
operator.

In the following experiments, the NL method has not
been tested since it is not able to provide results at video
rate. The EL method has also not been implemented.
From the simulation results described in the previous
section, very unstable results can be expected when
the epipole is undefined, which unfortunately occurs
when the camera reaches its desired position. For this
reason, only the VP and HL methods were tested. Fi-
nally, in order to prove the validity of the homography
estimation, even in non optimal conditions, the three
reference points were not taken spread in the image
(see Fig. 11(a) where a square has been superimposed
around each reference point).
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Figure 11. Rotational camera displacement: results versus iteration
number. (a) Desired image; (b) Initial image; (c) VP: control law;
(d) HL: control law; (e) VP: rotation (dg); (f) HL: rotation (dg);
(g) VP: transl. (cm); (h) HL: transl. (cm).

6.2.1. Pure Rotation. The results of the 2 1/2 D vi-
sual servoing, obtained when the camera displacement
were a pure rotation of−30 dg around thez axis, are
given in Fig. 11. The HL and VP algorithms produce
good results even if the epipole is undefined all along
the experiment. However, it can be observed that the ro-
tation (Fig. 11(f)) and the scaled translation (Fig. 11(h))
estimated using the HL algorithm are less noisy than the
ones estimated using the VP algorithm (see Fig. 11(e)
and (g)). This implies a more stable control law (see

Fig. 11(c) and (d)), and demonstrates the interest of our
method with respect to classical ones.

6.2.2. Pure Translation. In this second experiment,
the camera displacement was a pure translation such
that the epipole coincides with a reference point in the
image (e= p1). The obtained results are displayed on
Fig. 12. As can be seen on the plots, from iteration 0
to 5, the VP algorithm is very unstable since it is near
its singularity, while the HL algorithm is always more

Figure 12. Translational camera displacement results versus iter-
ation number. (a) Desired image; (b) Initial image; (c) VP: control
law; (d) HL: control law; (e) VP: rotation (dg); (f) HL: rotation (dg);
(g) VP: transl. (cm); (h) HL: transl. (cm).
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accurate and stable. Once again, we can note that the
estimation of the parameters involved in our control
scheme of course reflects on the computed control law,
which is thus more stable and satisfactory using the HL
method.

6.2.3. Generic Camera Displacement.In this last
experiment (see Fig. 13), a generic camera displace-
ment is performed:t= [−1.3 55.2 4.1]T cm andr =
[ 36.2 −17.2 48.4]T dg. Once again and according to
the simulation results, the HL algorithm produces more
stable results than the VP algorithm (see the output con-
trol law in Fig. 13(d) and (c) respectively).

From the initial to final camera poses, the es-
timated rotational displacement using the HL al-
gorithm is r = [ 34.8 −14.9 48.3]T dg. Similarly,
the estimated direction of translation ist/‖t‖ =
[−0.04 0.99 0.04]T (while the real direction of transla-
tion wast/‖t‖ = [−0.02 0.99 0.07]T ). The algorithm is
thus accurate (maximal rotational error is around 2◦, as
well as the angle error on the direction of translation)
despite the coarse calibration which has been used.

We finally present on Fig. 14 the results obtained us-
ing the HL algorithm when the three reference points
are taken spread in the image (see Fig. 14(a)). The im-
ages corresponding to the desired and initial camera
position are given in Fig. 14(a) and (b) respectively.
The points trajectory in the image recorded during the
experiment are plotted on Fig. 14(e). We can note that
all points remain in the camera field of view (which is
not the case using classical position-based and image-
based approaches (Malis et al., 1999)). Furthermore,

Figure 13. Generic camera displacement results versus iteration
number. (a) Desired image; (b) Initial image; (c) VP: control law;
(d) HL: control law.

Figure 14. Another experiment with large displacement. (a) De-
sired image; (b) Initial image; (c) Velocity of rotation (dg/s); (d) Ve-
locity of translation (cm/s); (e) Image trajectories.

the trajectory of the point selected as input of the con-
trol scheme is easily identified since it looks like a
straight line in the image. Our scheme is thus particu-
larly robust with respect to modelling errors since it is
not disturbed by the use of a coarse camera calibration
and a coarse approximation ofZ∗ (in the experiment,
Z∗ has been set to 50 cm while its real value is equal to
60 cm). Finally, we can note on Fig. 14(c) and (d) the
improvement on the stability of the control law brought
by an adequate choice of the 3 reference points used to
define the virtual planeπ .

Numerous other experiments are detailed in Malis
(1998), Malis et al. (1999). We refer an interested reader
to these references where it is shown that the conver-
gence domain of the 2 1/2 D visual servoing is larger
than for the classical position-based and image-based
schemes. Important camera and hand-eye calibration
errors are also considered.

6.2.4. Experiment on a Planar Object.We now
present the results obtained using a planar object (see



2 1/2 D Visual Servoing with Respect to Unknown Objects 95

Figure 15. Results obtained using a planar object. (a) Desired im-
age; (b) Initial image; (c) Rotational velocity (dg/s); (d) Translational
velocity (cm/s); (e) Image trajectories.

Fig. 15 where the 12 points now lies on a plane). We
recall that our method, as the others, is theoretically
unefficient to deal with this case where the epipolar ge-
ometry is degenerate. However, as already explained,
as soon as noise exists in the image measurements, our
method is able to provide satisfactory results. This is
demonstrated on Fig. 15(c) and (d) where the compo-
nents of the computed control law are depicted. We
can note that, even if the level of noise is very low (ap-
proximatively 0.1 pixels with so simple images), the
estimation of the parameters involved in our control
scheme is as stable as for a non planar object, since it is
difficult to find any difference in the level of noise of the
control law between this experiment and the previous
one.

7. Conclusion

The visual servoing scheme presented in this paper has
many advantages over the standard methods. The most
important one is that our scheme does not need any

3D model of the observed object. 2 1/2 visual servoing
presents also very interesting decoupling and stability
properties, and it is particularly robust with respect to
modelling errors. The control scheme is designed from
an Euclidean reconstruction which can be obtained ei-
ther from the essential matrix or from an homogra-
phy matrix. However, we have shown and confirmed
by simulation and experimental results that recovering
the camera displacement from the homography matrix
gives more stable results when the camera comes near
its desired position. Future work will be devoted to the
application of 2 1/2 D visual servoing on real images,
where image processing and features matching have to
be considered carefully.

Appendix

The j -row of the measurement matrixCh̃ (see (26)) can
be written in function of the image points coordinates
as follows:

c1 = wiw j vku∗k(u
∗
j v
∗
i − u∗i v

∗
j )

+wiwkv j u
∗
j (u
∗
i v
∗
k − u∗kv

∗
i )

+w jwkvi u
∗
i (u
∗
kv
∗
j − u∗j v

∗
k)

c2 = wiw j ukv
∗
k(u
∗
i v
∗
j − u∗j v

∗
i )

+wiwku j v
∗
j (u
∗
kv
∗
i − u∗i v

∗
k)

+w jwkui v
∗
i (u
∗
j v
∗
k − u∗kv

∗
j )

c3 = vi vkw j u
∗
j (u
∗
i w
∗
k − u∗kw

∗
i )

+ vi v jwku∗k(u
∗
jw
∗
i − u∗i w

∗
j )

+ v j vkwi u
∗
i (u
∗
kw
∗
j − u∗jw

∗
k)

c4 = ui ukw j v
∗
j (v
∗
i w
∗
k − v∗kw∗i )

+ ui u jwkv
∗
k(v
∗
jw
∗
i − v∗i w∗j )

+ u j ukwi v
∗
i (v
∗
kw
∗
j − v∗jw∗k)

c5 = v j vkuiw
∗
i (u
∗
jw
∗
k − u∗kw

∗
j )

+ vi vku jw
∗
j (u
∗
kw
∗
i − u∗i w

∗
k)

+ vi v j ukw
∗
k(u
∗
i w
∗
j − u∗jw

∗
i )

c6 = u j ukviw
∗
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∗
jw
∗
k − v∗kw∗j )

+ ui ukv jw
∗
j (v
∗
kw
∗
i − v∗i w∗k)

+ ui u j vkw
∗
k(v
∗
i w
∗
j − v∗jw∗i )

c7 = ui vkw j (u
∗
kv
∗
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∗
i − u∗j v

∗
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∗
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+ ukviw j (u
∗
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∗
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∗
i − u∗i v
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∗
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∗
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∗
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∗
j − u∗j v
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∗
i )

+ u j viwk(u
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∗
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∗
j − u∗kv

∗
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∗
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+ ukv jwi (u
∗
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∗
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∗
k − u∗i v

∗
kw
∗
j )

+ u j vkwi (u
∗
i v
∗
jw
∗
k − u∗kv

∗
i w
∗
j )
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Let us now suppose that two points are related by
a collineation (which is the case for a planar object or
when the camera displacement is a pure rotation). In
that case, we have:

 u

v

w

 =
 ḡu 0 0

0 ḡv 0

0 0 ḡw


 u∗

v∗

w∗

 (37)

We thus haveu∗ = u/ḡu, v∗ = v/ḡv,w∗ =w/ḡw, from
which we can deduce:.

c1 = (wiw j vkuk(u j vi − ui v j )

+wiwkv j u j (ui vk − ukvi )

+w jwkvi ui (ukv j − u j vk))/
(
ḡ2

uḡv
)

c2 = (wiw j ukvk(ui v j − u j vi )

+wiwku j v j (ukvi − ui vk)

+w jwkui vi (u j vk − ukv j ))/
(
ḡ2
v ḡu

)
c3 = (vi vkw j u j (uiwk − ukwi )

+ vi v jwkuk(u jwi − uiw j )

+ v j vkwi ui (ukw j − u jwk))/
(
ḡ2

uḡw
)

c4 = (ui ukw j v j (viwk − vkwi )

+ ui u jwkvk(v jwi − viw j )

+ u j ukwi vi (vkw j − v jwk))/
(
ḡ2
v ḡw

)
c5 = (v j vkuiwi (u jwk − ukw j )

+ vi vku jw j (ukwi − uiwk)

+ vi v j ukwk(uiw j − u jwi ))/
(
ḡ2
w ḡu

)
c6 = (u j ukviwi (v jwk − vkw j )

+ ui ukv jw j (vkwi − viwk)

+ ui u j vkwk(viw j − v jwi ))/
(
ḡ2
w ḡv

)
c7 = (ui vkw j (ukv jwi − u j viwk)

+ ukviw j (u j vkwi − ui v jwk)

+ ui v jwk(ukviw j − u j vkwi )

+ u j viwk(ui vkw j − ukv jwi )

+ ukv jwi (u j viwk − ui vkw j )

+ u j vkwi (ui v jwk − ukviw j ))/(ḡuḡv ḡw)

Posingc′1 = c1(ḡ2
uḡv), c′2 = c2(ḡ2

v ḡv), c′3 = c3(ḡ2
uḡw),

c′4 = c4(ḡ2
v ḡw), c′5 = c5(ḡ2

w ḡu), c′6 = c6(ḡ2
w ḡv) and

c′7 = c7(ḡuḡv ḡw), and expanding the equations, we

obtain after some tedious computations:

c′1 = α, c′2 = −α, c′3 = −α,
c′4 = α, c′5 = α, c′6 = −α,
c′7 = 0

where:

α = u j ukvi vkwiw j − ui ukv j vkwiw j

+ ui u j v j vkwiwk − u j ukvi v jwiwk

+ ui ukvi v jw jwk − ui u j vi vkw jwk

We can note thatα 6= 0, except when the three points
involved in (26) are collinear.

Acknowledgments

This work was supported by INRIA and the national
French Company of Electricity Power: EDF. We are
grateful to the team manager and the researchers of
the Teleoperation/Robotics group, at DER Chatou, for
their participation and help. We are also particularly
grateful to Radu Horaud and Gabriella Csurka for their
interest in this work, comments and discussions which
have allowed us to improve the quality of this paper.

Notes

1. Available on http://www.inria.fr/robotvis/personnel/zzhang/
zzhang-eng.html

2. Provided by the Inria Syntim project (http://www-syntim.inria.
fr/syntim/analyse/paires-eng.html)

References

Basri, R., Rivlin, E., and Shimshoni, I. 1998. Visual homing: Surfing
on the epipoles. InIEEE Int. Conf. on Computer Vision, Bombay,
India, pp. 863–869.

Boufama, B. and Mohr, R. 1995. Epipole and fundamental matrix
estimation using the virtual parallax property. InIEEE Int. Conf.
on Computer Vision, Cambridge, USA, pp. 1030–1036.

Chaumette, F. 1998. Potential problems of stability and convergence
in image-based and position-based visual servoing. InThe Conflu-
ence of Vision and Control, D. Kriegman, G. Hager, and A. Morse,
(Eds.). Springer Verlag, pp. 66–78. LNCIS Series, Vol. 237.

Couapel, B. and Bainian, K. 1995. Stereo vision with the use of a
virtual plane in the space.Chinese Journal of Electronics, 4(2):32–
39.

Criminisi, A., Reid, I., and Zisserman, A. 1998. Duality, rigidity and
planar parallax. InEuropean Conf. on Computer Vision. Freiburg,
Germany, Vol. 2, pp. 846–861.



2 1/2 D Visual Servoing with Respect to Unknown Objects 97

Dementhon, D. and Davis, L.S. 1995. Model-based object pose in 25
lines of code.Int. Journal of Computer Vision, 15(1/2):123–141.

Deriche, R., Zhang, Z., Luong, Q.-T., and Faugeras, O. 1994. Robust
recovery of the epipolar geometry for an uncalibrated stereo rig.
In European Conf. on Computer Vision, Stockholm, Sweden.

Espiau, B. 1993. Effect of camera calibration errors on visual servo-
ing in robotics. In3rd Int. Symp. on Experimental Robotics, Kyoto,
Japan.

Espiau, B., Chaumette, F., and Rives, P. 1992. A new approach to
visual servoing in robotics.IEEE Trans. on Robotics and Automa-
tion, 8(3):313–326.

Faugeras, O. 1993.Three-dimensionnal computer vision: A geomet-
ric viewpoint. MIT Press, Cambridge, Massachusetts.

Faugeras, O. and Lustman, F. 1988. Motion and structure from mo-
tion in a piecewise planar environment.Int. Journal of Pattern
Recognition and Artificial Intelligence, 2(3):485–508.

Hartley, R.I. 1992. Estimation of relative camera positions for un-
calibrated cameras. InEuropean Conf. on Computer Vision, Santa
Margherita Ligure, Italy, pp. 579–587.

Hartley, R.I. 1997. In defense of the eight-point algorithm.IEEE
Trans. on Pattern Analysis and Machine Intelligence, 19(6):580–
593.

Hashimoto, K. 1993.Visual Servoing: Real Time Control of Robot
Manipulators Based on Visual Sensory Feedback. World Scientific
Press: Singapore. World Scientific Series in Robotics and Auto-
mated Systems, Vol. 7.

Hosoda, K. and Asada, M. 1994. Versatile visual servoing without
knowledge of true jacobian. InIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Munchen, Germany.

Huang, T.S. and Faugeras, O. 1989. Some properties of the E matrix
in two-view motion estimation.IEEE Trans. on Pattern Analysis
and Machine Intelligence, 11(12):1310–1312.

Hutchinson, S., Hager, G.D., and Corke, P.I. 1996. A tutorial on
visual servo control.IEEE Trans. on Robotics and Automation,
12(5):651–670.

Irani, M., Anadan, P., and Weinshall, D. 1998. From reference frames
to reference planes: multi-view parallax geometry and applica-
tions. InEuropean Conf. on Computer Vision, Freiburg, Germany,
Vol. 2, pp. 829–845.

Jgersand, M., Fuentes, O., and Nelson, R. 1997. Experimental eval-
uation of uncalibrated visual servoing for precision manipulation.

In IEEE Int. Conf. on Robotics and Automation, Albuquerque,
New Mexico, Vol. 3, pp. 2874–2880.

Jerian, C.P. and Jain, R. 1991. Structure from motion—A critical
analysis of methods.IEEE Trans. on Systems, Man, and Cyber-
netics, 21(3):572–588.

Longuet-Higgins, H.C. 1981. A computer algorithm for reconstruct-
ing a scene from two projections.Nature, 293:133–135.

Longuet-Higgins, H.C. 1984. The reconstruction of a scene from
two projections: configurations that defeat the 8-point algo-
rithm. In1st Conf. on Artificial Intelligence Applications, Denver,
pp. 395–397.

Luong, Q.-T. and Faugeras, O. 1996. The fundamental matrix:
Theory, algorithms, and stability analysis.Int. Journal of Com-
puter Vision, 17(1):43–75.

Malis, E. 1998. Contributions `a la modélisation età la commande en
asservissement visuel. PhD Thesis, Universit´e de Rennes I, IRISA.

Malis, E., Chaumette, F., and Boudet, S. 1999. 2 1/2 D Visual Ser-
voing IEEE Trans. on Robotics and Automation, 15(2):234–246.

Samson, C., Le Borgne, M., and Espiau, B. 1991.Robot Control:
the Task Function Approach, Clarendon Press, Oxford, England.
Oxford Engineering Science Series, Vol. 22.

Torr, P., Fitzgibbon, A.W., and Zisserman, A. 1998. Maintaining
multiple motion model hypotheses over many views to recover
matching and structure. InIEEE Int. Conf. on Computer Vision,
Bombay, India, pp. 485–491.

Tsai, R.Y. and Huang, T.S. 1984. Uniqueness and estimation of three-
dimensional motion parameters of rigid objects with curved sur-
faces.IEEE Trans. on Pattern Analysis and Machine Intelligence,
6(1):13–27.

Weiss, L.E., Sanderson, A.C., and Neuman, C.P. 1987. Dynamic
sensor-based control of robots with visual feedback.IEEE Journal
of Robotics and Automation, 3(5):404–417.

Wilson, W.J., Hulls, C.C.W., and Bell, G.S. 1996. Relative end-
effector control using cartesian position-based visual servoing.
IEEE Trans. on Robotics and Automation, 12(5):684–696.

Zhang, Z. and Hanson, A.R. 1995. Scaled euclidean 3D reconstruc-
tion based on externally uncalibrated cameras. InIEEE Symp. on
Computer Vision, Coral Gables, Florida.

Zhang, Z. 1998. Determining the Epipolar Geometry and its
Uncertainty—A Review. Int. Journal of Computer Vision,
27(2):161–195.


