
ViSP: A Software Environment

for Eye-in-Hand Visual Servoing

Éric Marchand

IRISA - INRIA Rennes

Campus de Beaulieu, F-35042 Rennes Cedex

Email: Eric.Marchand@irisa.fr

Abstract

In this paper, we describe a modular software that al-
lows fast development of eye-in-hand image-based visual
servoing applications (ViSP states for “Visual Servoing
Platform”). Visual servoing consists in specifying a task
as the regulation in the image of a set of visual features.
Various issues have thus to considered in the design of such
application: among these issues we find the control of cam-
era motions and the tracking of visual features. Our envi-
ronment features a wide class of control skills as well as a
library of real-time tracking processes. Some applications
that used this modular architecture on a six dof cartesian
robot are finally presented.

1 Overview

Visual servoing is a very important research area in
vision-based robotics (see [4] for an extensive review). De-
spite all the research in this field, it seems that there are no
software environment that allows fast prototyping of visual
servoing tasks. The main reason is certainly that it usually
requires specific hardware (the robot and, most of the time,
dedicated image processing boards). The consequence is
that the resulting applications are not portable and can be
merely adapted to other environment. Today’s software
design allows to propose elementary components that can
be combined to build portable high-level applications. Fur-
thermore, the increasing speed of micro-processors allows
the development of real-time image processing algorithms
on a simple workstation.

Chaumette, Rives and Espiau [3] proposed to constitute
a “library of canonical vision-based tasks” for eye-in-hand
visual servoing that contents the most classical linkages
that are used in practice. Toyama and Hager [9] describe
what such a system should be in the case of stereo vi-
sual servoing. The proposed system is specified using the
same philosophy as the XVision system [7]. This system
(called Servomatic) would have been independent from
the robot and the tracking algorithms. Following these
ways, ViSP, the software environment we present in this
paper features all these capabilities: independence with
respect to the hardware, simplicity, extendibility, porta-
bility. Moreover, ViSP features a large library of elemen-

tary positioning tasks wrt. various basic control features
(points, lines, circles, spheres, cylinders, etc.) that can be
combined together, and an image processing library that
allows the tracking of visual cues (dot, segment, ellipse,
spline, etc.). This modular platform has been developed
in C++ on Unix Workstations.

The remainder of this paper presents the background
dealing with the eye-in-hand visual servoing and the track-
ing algorithms. Software design is then presented in the
light of a simple example. Experimental results carried out
on a six dof cartesian robots are finally presented.

2 Image Based Visual Servoing

The image-based visual servoing consists in specifying a
task as the regulation in the image of a set of visual fea-
tures [6][8]. Embedding visual servoing in the task func-
tion approach allows us to take advantage of general results
helpful for the analysis and the synthesis of efficient closed
loop control schemes. These control issues are now well
known, we just give a rapid overview of the visual servoing
process.

2.1 Control issues

Let us denote P the current value of the set of selected
visual features1 used in the visual servoing task and mea-
sured from the image at each iteration of the control law.
To ensure the convergence of P to its desired value Pd,
we need to know the interaction matrix (also called image
Jacobian) LT

P defined by the classical equation [6]:

Ṗ = L
T
P(P, p)Tc (1)

where Ṗ is the time variation of P due to the camera mo-
tion Tc. The parameters p involved in LT

P(P,p) represent
the depth information between the considered objects and
the camera frame.

A vision-based task e is defined by:

e = W
+
C(P− Pd) + (I− W

+
W)gT

s (2)

1In the reminder of this paper, we will call these features
“control features” by opposition to the features tracked in the
image sequence (the “visual cues”) from which the control fea-
tures are extracted.

3224



where C, called combination matrix, has to be chosen such
that CLT

P(P, p) is full rank about the desired trajectory

qr(t). It can be defined as C = WLT+

P (P, p) (L+ denotes
the pseudo inverse of L). In that case, we set W as a full
rank matrix such that Ker W = Ker LT

P. If the vision-
based task does not constrain all the n robot degrees of
freedom, a secondary task gs can also be performed. gs is
the gradient of a cost function hs to be minimized (gs =
∂hs

∂r̄
). This cost function is minimized under the constraint

that P = Pd. The two projection operators W+ and
I − W+W guarantee that the camera motion due to the
secondary task is compatible with the regulation of P to
Pd.

In order to make e exponentially decrease and then be-
have like a first order decoupled system, we get:

Tc = −λe− W
+

d∂e1

∂t
− (I− W

+
W)

∂gT
s

∂t
(3)

where:

• Tc is the camera velocity;

• λ is the proportional coefficient involved in the expo-
nential convergence of e;

•
d∂e1

∂t
(with e1 = C(P−Pd)) represents an estimation

of a possible autonomous target motion.

2.2 A library of visual servoing skills

One of the difficulty in visual servoing is to derived
the interaction matrix LT corresponding to the selected
control features. A systematic method has been proposed
to derived analytically the interaction matrix of a set of
control features defined upon geometrical primitives [6][3].
Any kind of visual information can be considered within
the same visual servoing task (coordinates of points, line
orientation, surface (or more generally inertial moments),
distance, etc.)

Knowing these interaction matrices, the construction
of elementary visual servoing tasks is straightforward. As
explained in [3] a large library of elementary skills can be
proposed. The current version of ViSP allows to define
X-to-X feature-based tasks with X = {point, line, sphere,
cylinder, circle, etc.}. Using these elementary positioning
skills more complex tasks can be considered by stacking
the elementary matrices. For example if we want to build
a positioning task wrt. to a segment, defined by two points
P1 and P2, the resulting interaction matrix will be defined
by:

L
T
P =

»
LT

P1

LT
P2

–

where LT
Pi

is defined, if Pi = (X, Y ) and z is its depth, by:

L
T
Pi

=

„

−1/z 0 X/z XY −(1 + X2) Y
0 −1/z Y/z 1 + Y 2

−XY −X

«

This way, more feature-based tasks can be simply added
to the library.

An other important feature is the capability to intro-
duce a secondary task. This secondary task can be a solu-
tion to the impossibility to plan the camera trajectory by
introducing some constraints in its motion. We proposed
a large library of secondary tasks from trajectory track-
ing to occlusions avoidance and joint limits/singularities
avoidance.

Tracking capabilities have also been integrated. When
the target is moving, an estimation of the autonomous tar-
get motion is required in order to avoid tracking errors.

3 Tracking Visual Cues

Parallel to the development of the platform with respect
to control part of visual servoing, we have to develop al-
gorithms dealing with tracking issues. The visual servoing
formalism allows to use more complex features or combina-
tion of features. ViSP allows to consider, besides the usual
“dots”, visual cues such as lines, ellipses, or more complex
curves. Information available in the description of these
shapes are then used to describe the control features.

We have developed fast real-time tracking processes.
Few systems features real-time capabilities on a simple
workstation. The XVision system [7] is a good example of
such systems, however, it does not features all the tracking
capabilities we wanted2. In our case, we decided to use the
ME (moving edges) algorithm [2] adapted to the tracking
of parametric curves. It is a local approach that allows to
match moving contours. Previous works have been done to
use this algorithm to track line segments [1] on a dedicated
IP board.

3.1 General Algorithm
One of the advantages of the method is that it does

not require any edge extraction, furthermore it can be im-
plemented with convolution efficiency and can therefore
ensure a real-time computation [2]. As we want an algo-
rithm that is fast, reliable, robust to partial occlusions and
to false matches, we decided to track only a list Lt of pix-
els along the considered edge and then to determine, by a
robust least square approach, the equation of the support
primitive that fits these data.

We will not described the initialization process in de-
tails, let us just say that we are able to initialize the pixels
list Lt. Then, for each pixel we estimate the direction of
the tangent to the edge bθ. The process consists in search-
ing for the correspondent P t+1

i in image It+1 of each pixel
P t

i ∈ Lt. We determine a 1D search area Q
j
i , j ∈ [−J, J ]

in the direction of the normal to the contour δ. For each
pixel P t

i of the list Lt, and for each position Q
j
i lying in

the direction δ we compute the matching criterion corre-
sponding to a log-likelihood ratio ζj . This is nothing but
the absolute sum of the convolution values computed at Pi

and Q
j
i using a pre-determined mask Mθ function of the

orientation of the contour. New position P t+1
i is given by:

Q
j∗

i = arg max
j∈[−J,J]

ζ
j with ζ

j =| I(Pi)∗Mθ +I(Qj
i )∗Mθ |

2Even if, in many way, it is far more complete that the system
we propose.



providing that the value ζj∗ is greater than a threshold λ.
Then pixel P t+1

i given by Q
j∗

i is stored in Lt+1. A new
list of pixels is obtained.

Finally, given the list Lt+1 the new parameters of the
feature are computed using a least squares technique.

3.2 Tracking Visual cues

Line segments. The simplest case we consider is the line
segment [1]. The representation considered for the line are
the polar coordinates (ρ, θ):

x cos θ + y sin θ − ρ = 0

This case is very simple as the direction θ is directly given
by the parameters of the features. The choice of the con-
volution mask is then straightforward. A points insertion
processes either in the middle of the segment, to deal with
partial occlusions or miss-tracking, and at the extremities
of the segment to deal with sliding movements has been
introduced in the tracking method.
Ellipses. Dealing with the ellipse many representation
can be defined, we chose to use the coefficients Ki that are
obtained from the polynomial equation of an ellipse:

K0x
2 + K1y

2 + 2K2xy + 2K3x + 2K4y + K5 = 0

The ellipse correspond to the case K2
2 < K0K1. The pa-

rameters Ki can be estimated from the pixels of the list
Lt using a least square method. From the parameters Ki

we can derived other representations as the parameteriza-
tion (Xc, Yx, µ11, µ02, µ20) based on the normalized inertial
moments.
Splines. A spline is defined by a parametric equation:

Q(t) =

n−1X

j=−d

αjBj(t), t ∈ [0, 1]

where the αj are the control knots of the spline, d is the
degree of the spline (d = 3 for a cubic spline) and Bj

spline basis function. Since the number p of tracked point
is usually greater than the number of desired control knots
n, a least square method is used.

Discussion. The proposed tracking approach algo-
rithms based on the ME algorithm allows a real-time track-
ing of geometric features in an image sequence. It is robust
with respect to partial occlusions and shadows. However,
as a local algorithm, its robustness cannot be ensure in
complex scenes with highly textured environment.

4 Software environment

As already stated, while developing this software, our
goal was to allow a portable (independent from the hard-
ware), fast and reliable prototyping of visual servoing ap-
plications. The first part of this section presents the in-
ternal architecture of the system and how it has been im-
plemented. Describing the full implementation of the soft-
ware is out of reach in this paper, therefore, we will focus

on the notion of extendibility and portability. The second
part describes how to use the available libraries from a
end-user point of view. Let us note that all the functional-
ities described in this section have been implemented and
are fully operational.

4.1 An overview of the ViSP architecture

To fulfill the extendibility and portability requirements
we divided the platform into three different parts (the
tracking parts, a library of control features, and the con-
troller itself) and we widely use C++ capabilities (tem-
plates, derivation, inheritance, virtual classes, etc.).

As can be seen on the network of Figure 1, each li-
brary of the ViSP environment is indeed extensible. In
the controller library, the CServoAfma class is derived
from a CServo virtual class and is specific to our six dof
Afma robot. It redefines some pure virtual methods de-
fined in CServo such as robot motion orders (i.e., the
CServoAfma::UpdateCameraVelocity specific to a given
robot) and inherits all the methods and attributes of
CServo (i.e., generic control issues). Adding a new robot
is then straightforward. In the same way some specific
frame grabber classes (here CSunvideo or CEdixia, that
are our frame grabbers) can be derived from a generic
CFrameGrabber class. This two examples also show that
the platform is independent from the hardware and then
portable.

The extendibility can be mainly seen in the control fea-
tures library. Each specific control feature is derived from
a virtual class CBaseFeatures. This class mainly defines a
few variables (e.g., a vector that describes the parameters
P and p) and a set of virtual members functions that are
features dependent (e.g., the way to compute the image
Jacobian L or the virtual function that allows the track-
ing of the feature in the images). It is important to note
that all the relations between the controller library and
the features library is done through this class. The virtual
functions define in CBaseFeatures can be directly used by
the controlled even if they are not yet defined. The con-
sequence is that the controller library never know the na-
ture of the manipulated features. Another consequence is
therefore that it is absolutely not necessary to modify the
controller library when adding a new feature. On the other
hand, when adding a new feature in the control features
library, the programmer must define the number of visual
information, the way to compute the image Jacobian, etc.
This is done at a lower level (e.g., CPoint, CLine, . . . ).
Some member functions of these derived classes remain
virtual. Indeed a control feature can be defined by many
visual cues, member functions like Track(...) cannot be
defined at this level. Therefore, a few classes derive from
the feature classes in order to supply the users with many
tracking capabilities. For example a point can be define as
a simple dot (CPointDots in Figure 1) or as the intersec-
tion of two lines (CPointTwoLines). In any case, using the
inheritance mechanism the controller knows which func-
tion it has to use. In conclusion, adding new capabilities
within the control features library can therefore be done



inheritanceuse the object CImageTracking library
Controller Library

CLineSegmentCCylinder CSphere CServoRobot2CServoSimuCSpline CFrameGrabberCSunvideo CEdixiaCLineTwoPointsCStraightLines CEllipseCLineCPointTwoLinesCPointDot CDotsCPoint CBaseFeatures CServo
Other

CServoAfmaControl features library
Figure 1: ViSP structure of classes

at two levels: adding a new control feature (e.g., a circle
in Figure 1) or adding a new way to link this feature to
the visual cues (for example, defines a point as the center
of an ellipse).

4.2 ViSP from a end-user point of view

Our other claim was that ViSP is simple to use. We
will therefore describe the software environment, from the
end-user point of view, in the light of two simple examples
implemented using ViSP. The first example is a position-
ing task wrt. a line.

0 main() {
1 CImage I ;

2 I.InitAcqImage(Sunvideo()) ;
3 I.AcqImage() ;

4
5 CLineSegment line ; // or CLineTwoDots line ;
7 line.InitTracking(I) ;

8
9 CLine Ld(0,PI/2) ; // Init here the desired visual

10 // features Ld (centered/horizontal)
1
2 CServoAfma task ;

3 task.AddLink(line,Ld) ;
4 task.InitInteractionMatrix() ;

5
6 while(...) {

7 CColVector Tc(6) ;
8
9 I.AcqImage() ;

20 task.GetCurrent(I) ;
1 Tc = -0.2 * task.TaskFunction() ; // Tc = -l L^+(s-sd)

2 task.UpdateCameraVelocity(CAMERA,Tc) ;
3 }
4 }

Line 2 defines the image acquisition protocol
(here through the sunvideo frame grabber). The
CImage::AcqImage() function puts the bitmap in the
computer memory where the tracking process will be
done. A control feature, a line, is defined (5-6) as a
segment (CLineSegment). This means that the visual cue

is a line segment. Line 9 defines the desired position of the
visual feature in the image. The controlled CServoAfma

derived from the CServo virtual class is defined line 12.
Line 13 defines a link between the current position (line)
of the visual feature in the image and the desired position
(Ld) while line 14 creates the corresponding interaction
matrix (here a 2 × 6 matrix). Note that more complex
tasks can be defined by “stacking” other links using the
CServo::AddLink method. It is straightforward to write
the loop itself. It features the image acquisition (19)
and the current visual features extraction or tracking
(20). Finally the vision based task e is computed using
the CServo::TaskFunction() method and the new robot
velocity orders Tc = −λe (22).

The task may be more complex. Let us consider, a
curves following task (see the experimental results in the
next section). This problem can be divided in two sub-
tasks. The primary task consists in servoing on the tan-
gent to the curve (i.e., maintain this tangent horizontal
and centered in the image). The positioning skill used in
this experiment is therefore a line-to-line link. Indeed, im-
age features used here are P = (ρ, θ) where ρ and θ are
the parameters of a line that is nothing but the tangent to
the curve (2 dof are then controlled). The secondary task
is a trajectory tracking at a given velocity in the X direc-
tion and is defined by a cost function hs = X − X0 − Vxt.
Image processing consists here in tracking a spline in the
image sequence and to compute the equation of the tan-
gent to the curve from which we can control the camera
motion. From a control point of view, this task is similar
to the previous one. However, in our software environ-
ment there are no direct relations between the tangent to
a curve (that is, here, the visual cue) and a line (that is
the control feature). As explained in the previous exam-
ple, ViSP usually allows to avoid an explicit access to the



trackers, but the number of relations visual cues/control
features is virtually infinite. Therefore a direct access to
the trackers is sometimes necessary. The spline tracker,
here, is defined in line 1 whereas the visual feature (a
straight line) is associated to this tracker in line 4. Then
in the control loop, the spline is tracked in each frame (the
CSpline::Track(CImage &I) method in line 10) and the
new control feature is computed (line 11) and introduced
in the controller (the CServo::NewCurrent(...) method
in line 12). This visual servoing task also features the use
of a secondary task. Vector g is the gradient of hs, g = Vx

and is combined with the primary task using the projec-
tion operation I−W+W (line 14). These simple examples
allow us to show the importance of the three libraries: the
trackers library (define by variable in line 1), the control
features library (line 3), and the controller library (line 6)
and how they interact with each other.

main() {

CImage I ;
1 CSpline S(CUBICSPLINE) ;

2 S.InitTracking(I) ;

3 CLine L ;

4 L = S.Tangent(0,0) ;
5 CLine Ld(0,PI/2) ;

6 CServo task ;

7 task.AddLink(L,Ld) ;
8 task.InitInteractionMatrix() ;

while(...) {
CColVector Tc(6), g(6)

9 I.AcqImage() ;
10 S.Track(I) ; // Track the spline (visual cue)
11 L = S.Tangent(0,0) ; // compute the tangent

12 task.NewCurrent(L) ; // define the new control feature

13 g[0] = Vx ; // secondary task
14 Tc = -0.2* (task.TaskFunction() + task.I_WpW*g);

15 task.UpdateCameraLocation(CAMERA,Tc) ;
}

}

5 Some Applications

Table 1 sums up the different elementary positioning
tasks that have been implemented using ViSP. Most of
these results are now classic and will not be described here.
We just propose results for less classic experiments, i.e.
positioning wrt. to a sphere and curves following. Other
applications implemented with ViSP are structure from
controlled motion (point, sphere), joint limits and singu-
larities avoidance, occlusions avoidance, . . .

The application presented in this section has been im-
plemented at IRISA on a six dof cartesian robot. Image
processing (described in Section 3) and control law (Sec-
tion 2) are performed on a Sun Ultra Sparc 1 (170 Mhz).
The frame grabber was a Sunvideo board. Tests performed
on the Sun show that a line can be tracked in 3.6 ms
(with 40 pixels in the list Lt and a maximum displace-
ment J = ±10) whereas an ellipse is tracked in 6.5 ms. A
spline with 40 pixels in Lt and 15 control knots is tracked
in less than 10 ms.

Curves following task. The principle of this exper-
iment has been described in the previous paragraph. Let
us just add that the goal was to follow a long pipe (2 me-
ters long) that features three 90o corners. Figure 3 show
three images acquired during this task in the first corner
(note the tracked spline and the tangent in the image).
Figure 2a depicts the translational velocities. The bottom
curves is the due to the secondary task. In order to avoid
high rotational velocity in high curvature area, the veloc-
ity Vx has been defined as Vx = Vmax exp(−α(θ − θ∗)2).
This explain the noise in this plot and the three “

T
” that

can be observed (due to the three corners). Figures 2b
and c depict the errors θ − θd and ρ − ρd observed for the
selected visual features. The important error in θ while
crossing the high curvature area are due to the fact that
the curvature is not predicted. This problem is very simi-
lar to the tracking errors that can be observed in a target
tracking task. Figure 2d depicts the XY camera trajectory
that reflects the shape of the pipe.

Figure 3: Pipe following task: 3 images acquired dur-
ing the task and tracked curve (red) and tangent to
the curve (green)

Let us note that a similar problem has already been
addressed in [5]. But even if the tracking was done using
snakes, the visual features used in the control were points.

Positioning wrt. a sphere. In this second experi-
ment, we want to servo on a sphere (a ping-pong ball). The
task is to observe the sphere as a centered circle in the im-
age with a given radius and then to move the camera at a
constant distance from the sphere center. The projection
of a sphere in the image plane is an ellipse. Image process-
ing consists in tracking this ellipse (here on a non-uniform
environment). We chose as visual features the inertial mo-
ments of this ellipse (i.e., Xc, Yx, µ11, µ02, µ20). Since the
real radius of the ping-pong ball is known (19 mm), the
secondary motion (along the ~X axis) does not introduce
any perturbations in the primary task Each iteration is
performed in 40 ms.

6 Conclusion and future work

ViSP is a fully functional modular architecture that
allows fast development of visual servoing applications.
It is mainly composed of three C-callable libraries: two
dedicated to control issues (one of control processes and
one of canonical vision-based tasks that contains the
most classical linkage [3]) and one dedicated to real-time
tracking (based on the Moving edges algorithm). This



Visual Cues

objects Control features (see [6] for details) dots lines ellipse B-Spline
point point P = (X, Y ) × ×

line line P = (ρ, θ) × × (tangent)
circle ellipse P = (Xc, Yc, µ11, µ20, µ02) ×

sphere ellipse P = (Xc, Yc, µ11, µ20, µ02) ×

cylinder lines P = (ρ1, θ1, ρ2, θ2) ×

square points Pi = (Xi, Yi), i = 1..4 × ×

lines Pi = (ρi, θi), i = 1..4 ×

quadrilateral moments/orientations P = (Xc, Yc, µ00, α1, α2, α3) ×

Table 1: Elementary positioning tasks using ViSP: tracked cues and control features.

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0 500 1000 1500 2000 2500 3000 3500

’Tx’
’Ty’
’Tz’

a -0.1

0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000 2500 3000 3500

’err.0’

b -0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 500 1000 1500 2000 2500 3000 3500

’err.1’

c -1200

-1000

-800

-600

-400

-200

0

200

-200 0 200 400 600 800 1000 1200

’XY’

d

Figure 2: Pipe following task: (a) Translational camera velocity (b) Error θ − θd and (c) ρ − ρd (d) XY camera
trajectory

Figure 4: Tracking ellipse and servo on a sphere: t =
62, t = 126, t = 416, t = 760, t = 1602

software has already been used for the development of
a large number of applications. Let us finally note that
ViSP also features a virtual six dof robot that allows
to simulate visual servoing experiments. Dealing with
vision-based control, many new features can be added
to this software. Only eye-in-hand 2D visual servoing
with respect to geometrical features have been proposed.
Therefore other visual servoing technics can be introduced
such as stereo visual servoing, or visual servoing wrt.
dynamic informations or motion, etc. Furthermore, now
that a set of basic tools are available, it is necessary to be
able to deal with high-level mission that combines many
tasks.

References

[1] S. Boukir, P. Bouthemy, F. Chaumette, and D. Juvin. A lo-
cal method for contour matching and its parallel implementa-
tion. Machine Vision and Application, 10(5/6):321–330, April
1998.

[2] P. Bouthemy. A maximum likelihood framework for determin-
ing moving edges. IEEE Trans. on PAMI, 11(5):499–511, May
1989.

[3] F. Chaumette, P. Rives, and B. Espiau. Classification and re-
alization of the different vision-based tasks. in K. Hashimoto,
editor, Visual Servoing, pp. 199–228, World Scientific, Singa-
por, 1993.

[4] P.I. Corke. Visual control of robot manipulator. K. Hashimoto,
editor, Visual Servoing, pp. 1–32, World Scientific, Singapor,
1994.

[5] E. Coste-Manire, P. Couvignou, and P. Khosla. Visual servo-
ing in the task-function framework: a contour following task
Journal of Intelligent and Robotics Systems, 12:1–21, July
1995.

[6] B. Espiau, F. Chaumette, and P. Rives. A new approach to
visual servoing in robotics. IEEE Trans. on Robotics and
Automation, 8(3):313–326, June 1992.

[7] G. Hager and K. Toyama. The XVision system: A general-
purpose substrate for portable real-time vision applications.
Computer Vision and Image Understanding, 69(1):23–37,
January 1998.

[8] K. Hashimoto, editor. Visual Servoing: Real Time Control
of Robot Manipulators Based on Visual Sensory Feedback.
World Scientific Series in Robotics and Automated Systems,
Vol 7, World Scientific Press, Singapor, 1993.

[9] K. Toyama, G. Hager, and J. Wang. Servomatic: A modular
system for robust positioning using stereo visual servoing. In
Proc. of the International Conference on Robotics and Au-
tomation, pp. 2636–2643, Minneapolis, April 1996.


