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Positioning a Camera Parallel to a Plane

Using Dynamic Visual Servoing

Armel Crétual

Abstract

Visual servoing is generally based upon geometrical
features. Recent developments were made in the way of
a generalization of this approach to dynamic features.
The idea is that velocity in the image can be measured
without the constraint of having an a priori knowledge
of the scene. In this paper, a control law to position a
camera mounted on the end effector of a robot, in such
a way the image plane becomes parallel to a planar ob-
ject, is presented. A dynamic visual servoing approach
is used by defining a control loop upon the second or-
der spatial derivatives of the optical flow. A fizating
task, which guarantees the object stays in the camera
field of view is joined to the first one. Then, results
obtained on a 6 d.o.f. robot are laid out for the two
studied tasks.

1 Introduction

Vision-based control or visual servoing, as described
in [1, 2, 3], proposes to establish a closed-loop control
using visual features directly measured in the images
acquired by the camera. By using geometric features, a
linear relation between variation of these features and
the kinematic screw of the camera can be built. Spec-
ifying a temporal evolution requested for this features,
a simple inversion of the obtained relation gives the
translational and rotational velocities of the camera
that brings this evolution. This method has been ap-
plied for numerous tasks such as target tracking [4, 5],
positioning with respect to an object [1, 6], reconstruc-
tion of 3D objects by active vision [7].

However, use of geometric features in visual servoing
imposes the presence of visual marks on the observed
scene, to get the position of their projection in the im-
age. Therefore, a new approach in visual servoing is
to extract no more geometric features, but dynamic
ones which allows us to turn one’s back on this strong
a priori constraint. New tasks have been able to be
defined, such as alignment of optical axis with an un-
known translational camera motion [8], active fixation
coupled with contour tracking [9], docking maneuver

Frangois Chaumette
IRISA / INRIA Rennes
Campus de Beaulieu
35042 Rennes cedex, FRANCE
E-mail {acretual, chaumett}Qirisa.fr

43

[10] and camera self orientation with control of time to
contact [11]. In these two last papers, the planar ob-
ject orientation is estimated from the first order optical
flow. Then, a sideway translation in the direction of
increasing distance between the camera and the object
combined with a fixating rotation ensures the docking
with a partially open loop.

Work that we present in this paper consists in es-
tablishing a control law by visual servoing that brings
the image plane parallely to a motionless planar ob-
ject. The chosen approach is to exploit features related
to the camera motion in the image. First, in Section
2, we define precisely the task we wish to complete.
In Section 3, we briefly recall general concept of vi-
sual servoing, in particular when geometric features
are used. Then, we develop in Section 4, a control
scheme based on the regulation to zero of the second
order parameters of the projected motion. Two control
law are then built, a first one, where only the camera
orientation is controlled and a second one which con-
sists in adding a fixation task to the first one, which
constrains the camera position in such a way the same
physical point always appears in the image center is
then presented. The multi-resolution algorithm of mo-
tion parameters estimation used is briefly presented in
Section 5. Finally, experimental results obtained on a
6 d.o.f. Cartesian robot are presented in Section 6.

2 Task to be performed

The object is considered to be planar and motionless.
Vector 7 represents the normal direction to this plane
(see Figure 1). The optical axis of the camera is the
axis Z of the camera frame. The task consists in po-
sitioning the image plane parallely to the object plane,
which comes down to align the optical axis with the
normal 7. Points P; and P, represent the physical
points projected at the image center in the initial po-
sition and after convergence respectively.

To complete the alignment task between the opti-
cal axis and the normal to the object plane, which
will henceforth be simply called alignment task, the
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Figure 1: Context and expected result of the task

kinematic screw V. of the camera is controlled. We
therefore wish to define a relation between this screw
and the acquired measures.

We wish to solve the alignment problem by two
ways. The first one consists in assuming that the plane
can always be viewed by the camera. In this case,
camera pan and tilt only have to be controlled. In
the second one, we want to compensate the displace-
ment of the object in the image due to the rotational
motion. A fixation task which always maintains the
same point as the intersection of the optical axis and
the object, meaning in particular that P, = P;, is thus
performed. The rotational d.o.f. being constrained
by the alignment task, we complete this fixation using
the translational d.o.f. along the orthogonal axes to
the optical axis.

Having the image plane parallel to the object plane
means that the perspective projection keeps the ratios
between all distances and vice versa. On the contrary,
if these two planes are not parallel, ratios are not kept.
We could have use this property to build our control
law, but it would have meant to know the ratio be-
tween the 3D lengths of segments. This a priori strong
knowledge on the scene drives us to reject this method.
Consequently, we have developed an approach based
on dynamic information we present now.

3 Visual servoing

Let V., = (T, Q)T be the kinematic screw between the
camera and the fixed frames where T' = (T,,T,,T)
and Q = (Qg,8,, ;) represent its translational and
rotational component respectively. If s is a vector of
geometric features and the object is motionless, the
derivative $ can be expressed as a linear function of
the screw V. in the form:

s=LV.

where L is called the interaction matrix related to s
[1]. The vision-based task e (to be regulated to 0),
corresponding to the regulation of s to a desired value
s*, is defined by:
e=C(s—s")

where C is chosen in order to ensure convergence (see
condition (1)).

If the error decreasing is wished to be exponential,
what means é = —\e, we get from [8]:
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V,=-AL*tCte
where L+ is the pseudo-inverse of a model or an ap-
proximation L of L.

The exponential decay will be ensured and will remain
stable under the condition [8]:

CLL*C*t >0 (1)

The optimal choice would be to have C = L. How-
ever, LT is often impossible, or at least, heavy to com-
pute. Therefore, another way is to consider C' as a
constant matrix which can be chosen equal to the iden-
tity if the number of visual features considered in s is
equal to the number of the camera d.o.f. controlled to
perform the task (see [1] for more details).

4 Alignment

4.1 Associated task function

Let Z = Z,, + 71X +72Y be the equation of the object
plane in the camera frame. The condition of paral-
lelism between the image and object planes is conveyed
by the fact that this equation checks:

()-(5)-()

(5%)

Let (2,7)7 be the coordinates of a point in the image
plane. Its velocity in the image is a quadratic function
of x and y, whose parameters can be extracted from
two successive images. We can write [12], [13]:

{; :

a1 = —v; — (Y
a2 = NVg + Uy
a3 = y2Uz + 1

(2)

a1 + azx + asy + bz + by

a4 + asx + agy + bsy? + bazy (3)

with

as = —vy + {ly
as = 710y — £,
ag = YoUy + U,

bl = —MV; — Qy b2 = —Y2U; + Qz
b3 = b2 b4 = bl
1
where (vg,vy,v,) = Z_pT

If v, # 0, condition (2) is equivalent to:
b1+Qy=b2—Qm:0

As a consequence, we choose as vector of measures:

(28) - (3) o ()

by — Qy
We get the following desired value s* of vector s :
s* =(0,0)T
And consequently, we choose e = s meaning C' = .

Y1V,
Y2Uz

71 and 2 also appear in the linear terms as, as, as
and ag of the image flow. In [10] and [11], these linear
terms are used to realize alignment. However, 1 and



72 are multiplied by v, or v,, which means that the
translational velocity parallel to the image plane, T,
and Ty, must not be equal to zero to obtain a mea-
sure of the plane orientation. Ensuring such condition
does not seem to be realistic and is even contradictory
with the realization of the fixation task. That is why
we have chosen to use the quadratic terms b; and bs,
combined with a camera motion in the direction of the
optical axis.

We now want to determine the link between deriva-
tive § and camera pan and tilt, (2, and (2,, which are
the two camera degrees of freedom devoted to the re-
alization of the alignment. From [12], we get:

Z
Z_p = Mz + Q) +72(vy — Q) — 02
P 5
o= 7 -m%)+ (0 + 1Y )
Yo = ’71('7293/ -Q;) - (’Y% +1)Q,
The derivative $ of the vector of measures s is:
. Tz - vaz
. NV +N1—F——
S1 _ Zp
()= ) @
52 . T, — Zyv,
YoV + 72T
p

Substituting (5) in (6) and using a constant velocity
T, (which means T, = 0), we get:
) o

ézvz(

This can be expressed under matricial form by:

. Q.
s=1L (Qy>+6m—|—5s

0 —’Uz:| 5 = (_727)202
v, 0 e 'Yl'UzQz
5 — 71”1(71”2 + Yovy — Uz)

y Yoz (1102 + Y2Uy — vz)

= (v; — Mz — ’YZUy)S
4.2 Control law

An exponential decrease of the error is expected:

Q,

Consequently, the control law is given by:

Qs
Q?/
—0,

where the estimate L of L is: I = [ 9 ]

—Qy + 71 (Nvz + 720y —v2) — 120
Qp + v2(N1vz + 120y —v2) + N2

with: L = [

and:

s':—)\s=L(

) =—L7" (As + 85 + 6m)

[ 0

using as approximation 0 of v, (see (4)):
. a2+ta

5= : 6 9)

In fact, we have as+as = 2v,+v1v,+72vy. However,

the term y1v; + 72v, can be considered negligible in
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front of v,, and especially near convergence. Indeed
we thus have: y; = v = 0 (and v, = v, = 0 if fixation
is also required). Using the same approximation, we
obtain d; = 0, s. The control law thus becomes:

()£ ) () on

where 51 = b1 + )y and s = by — (), are measured
using the algorithm presented in the next section (to
obtain b; and b2) and using the measure of the camera
pan and tilt, and where (2, is a measure of a possible
rotation around its optical axis.

Finally, since L and L are always of full rank 2 and
C = I, the positivity condition (1) is here given by:

cLi-'c-' = 1,
Uz

Thus, convergence will be ensured as soon as 0, has
the same sign as v, (# 0) which appears to be a very
weak condition.

4.3 Control law for fixation

Fixation is obtained by maintaining to zero the oth
order terms a; and a4 of the image velocity, which

means we want to regulate (v, + Q,) and (v, — Q).
This means:
ar \ _ v = —(y
<a4 ) _Oﬁ{ vy =

Since (1, and 2, are controlled by the alignment task,
we use Ty, and T}, for fixation and compensation of the
rotational motion in the following form:

(%) =%( o)
2w () ()

%
where Z, = ﬁ/ﬁ; is the estimation of the depth Z,,
and 0 is now deduced from the following relations:
ag +ag =20, + Y1V + 720y
= 2v, — 53% — 34%

with 7 being the measured values of T'. Therefore:

1 T. T,
Vy, == |as+ag+ s3=+ s4=
2 T

z z

5 Motion model estimation

The motion parameters are estimated using the ro-
bust multi-resolution estimator (RMRmod) presented
in [14]. The image associated to a stage of the multi-
resolution pyramid is obtained from the lower one by
a classical Gaussian filtering. Let ©; be the vector of
the eight parameters of the quadratic motion model at
instant ¢. Beginning from the upper one, estimation



in each level consists in a minimization with respect
to ©; of the criterion:

C(©r) =2,p(DFD(p,6y))
=2_p PUet1(p + de, (p)) — It(p))

where points p are all the points of the image, I is the
intensity function, de, is the displacement due to O,
and p is Turkey’s biweight function.

As DFD(p,0,) is not linear in regard to ©;, an
incremental strategy is built. The first value of es-
timate ©; is set to null and successive refinements
AO; are computed using first order approximations
rp of DED(p,©;). At each iteration, increment A®;
is given by:

A®, = argmin } _ p(ry(A6y))
p

Increments are cumulated until a predefined conver-
gence criterion is met. Estimation at next level is ini-
tialized by the value reached in the current one. This
scheme exploits an Iterative Weighted Last Squares
procedure, and in fact, only involves the computation
of the spatio-temporal derivative of the intensity func-
tion.

6 Experimental results

The experimentations are made on a 6 d.o.f. Cartesian
AFMA robot and with an SunVideo image processing
board providing subsampled images to an Ultra Spark,
where the motion parameters estimation is performed.
The camera is mounted at the end of the effector to
get an “eye-in-hand” system. A typical scene can be

2).

seen on Figure

Figure 2: Typical scene

Due to the complexity of the RMRmod algorithm,
especially to compute the quadratic terms of motion,
256 x 256 images have to be used to provide sufficient
information. Nevertheless, the quadratic parameters
are more significative far from the center of the image,
and the RMRmod algorithm allows to compute the
motion model on a part of the image. Thus, to reduce
computation duration, estimation is only performed
on the area defined by the 256 x 256 image where
a disc of radius 75 pixels has been withdrawn at the
center. Therefore, the rate of our control scheme is
increased of about 20%, compared with the case where
estimation is done over all the image. Nevertheless,
this rate is only 1.2 Hz. Consequently, the gain of the
control law must be kept very small near convergence

46

to prevent from oscillations. However, this gain can
be higher far from convergence, to decrease time to
convergence. Thus, A has been implemented under
the following form:

A= Amin + )\maz/n
with Apin the value of A\ near convergence, Ay, a
higher value and n the number of iterations.

6.1 Alignment

We implemented the alignment task on the experimen-
tal cell with A = 0.04, Appae = 0.1 and T, = 1
cm/s. Initial angular errors were approximately 12
degrees on z axis and 15 degrees on y one. In this
experiment, where fixation was not ensured, we have
set T, =T, = 0. We have also constrained Q, = 0.

Results are displayed in Figures 3 to 6, with respec-
tively the task function components s; and ss, the
rotation velocities {0, and , computed by the con-
trol law, the angular errors on each axis, arctan(y;)
and arctan(yz) and the constant parameters of the
motion model a; and a4. Angular errors are com-
puted by angular difference between the optical axis
and the known normal to the plane directions in the
fixed frame. Of course, the normal direction is unused
in the control law.

Convergence is well obtained and remains stable de-
spite noisy measurements. Rotational parameters are
zero at convergence, which guarantees stability. Angu-
lar errors decrease quite quickly despite the low gain
value. Residual angular errors after convergence (in-
ferior to 1 dg) are, in part, due to uncertainty on this
direction of about 1 degree on each axis. Constant pa-
rameters are displayed here to be compared with the
following alignment and fixation task.

6.2 Alignment and fixation

We also implemented the fixation task combined with
the alignment one with A,,;, and 7, unchanged. 2D
motion estimation can not be done when displace-
ments in the image are too great. Fixation task pre-
cisely ensures this displacements stay small. There-
fore, gain can be higher than without fixation at the
beginning of the task. Thus, A;q; has been set to
0.25. In the presented experiment, initial angular er-
rors were approximately 30 degrees on x axis and 25
degrees on y one. Very important errors can now be
taken into account since fixation will allow the camera
to always observe the considered object. Finally, €2,
was also kept zero in this case.

Results are presented in Figure 7 to 11 with respec-
tively the task function components, the rotation ve-
locities and the translation ones given by the control
law, the angular errors and the constant parameters.

Measurements stays noisy, but convergence is still
obtained. Rotational and translational parameters
also converge to zero. Convergence can also be noticed



with the decreasing angular errors. Values of constant
parameters are 2 times smaller than without fixation
at the beginning of control and reach a zero value ear-
lier which ensures a correct realization of the fixation
task. By way of comparison, the point projected at the
center of the image at convergence have been “manu-
ally” retrieved on the initial image for the two cases.
Initial position was the one considered in the previous
experiment (12 and 15 degrees of angular errors). For
the alignment only task, displacements were respec-
tively 116 and 126 pixels upon z and y axes, and for
the alignment and fixation task, -5 and -20 pixels.

7 Conclusion

We presented a vision-based control approach using
dynamic features to complete the task of alignment
between the optical axis of the camera and the normal
direction to a planar object. This regulation using con-
trol of the rotation has been completed with a fixation
task to ensure that the object is always kept in the
image. Those theoretical results have been validated
by tests on an experimental eye-in-hand system.

Our major problem is the important duration of
each iteration which imposes a small gain with ad-
equate tuning. A first amelioration that could be
brought is to make the motion parameters estimation
faster. This task can also be improved by positioning
the image plane parallely to a moving object whose
projection does not take up a preponderant part of
the image. This can be done for the first part by esti-
mation of the object motion and for the other one by
motion-based segmentation.
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