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Abstract. We propose in this paper an active vision approach for per-
forming the 3D reconstruction of static scenes. The perception-action
cycles are handled at various levels: from the definition of perception
strategies for scene exploration downto the automatic generation of cam-
era motions using visual servoing. To perform the reconstruction we use
a structure from controlled motion method which allows a robust esti-
mation of primitive parameters. As this method is based on particular
camera motions, perceptual strategies able to appropriately perform a
succession of such individual primitive reconstructions are proposed in
order to recover the complete spatial structure of complex scenes. Two
algorithms are proposed to ensure the exploration of the scene. The for-
mer is an incremental reconstruction algorithm based on the use of a
prediction/verification scheme managed using decision theory and Bayes
Nets. It allows the visual system to get a complete high level description
of the observed part of the scene. The latter, based on the computation
of new viewpoints ensures the complete reconstruction of the scene.

1 Active Vision to handle the perception action cycles

Most of the approaches proposed to solve vision problems are inspired from the
Marr paradigm which considers a sensor, static or mobile but not controlled.
Unfortunately, this approach appears to be inadequate to solve many problems
where appropriate modifications of intrinsic and/or extrinsic parameters of the
sensor are necessary. This is why Aloimonos, Bajcsy, or Ballard (among others)
have proposed to modify the Marr concept. They proposed a new paradigm
named active vision. Since the major shortcomings which limit the performance
of vision systems are their sensitivity to noise, their low accuracy, and their
lack of reactivity, the aim of active vision is generally to elaborate strategies for
adaptively setting camera parameters (position, velocity,.. .) in order to improve
the perception task. Thus, function of the specified task and of the data extracted
from the acquired image, an active vision system might be induced to modify its
parameters (position, orientation, ocular parameters such as focus or aperture),
but also the way data are processed (region of interest, peculiar image processing,
etc). It controls either the sensor parameters, either the processing resources
allocated to the system [20].
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However, this is a general definition of active vision and the different authors
who had introduced this concept had different motivations. What is usually
called active vision can be divided into four main classes : the active vision in-
troduced by Aloimonos [3] is a mathematical analysis of complex problems such
as stability, linearity and uniqueness of solutions ; the goal of active perception
as defined by Bajcsy [4] is to elaborate control strategies for setting sensor pa-
rameters in order to improve the knowledge of the environment. Thus, active
vision is defined as an intelligent data acquisition process ; the animate vision
[5] is based on the analysis of human perception. Animate vision mainly uses
binocular camera heads. Its goal is on one hand to solve the gaze control prob-
lem, and on a second hand to facilitate the computational process ; dealing with
purposive vision [2], the goal is to acquire and extract from the environment
only the information needed to ensure the realization of a given task. Actions
irrelevant to the specified problem will not be executed.

Despite these differences, the goal of the active vision community is to show
that an active system is more relevant to the application (usually because it is
goal driven), more robust (because they can handle either uncertainty and/or dy-
namic environment) and more accurate (because they are able to modify their
own configuration). From our point of view we think that these different ap-
proaches are closely related. The methodology used in this paper to define ef-
ficient exploration and reconstruction strategies is based on the three following
relations:

— the perception-action cycle. The main point of the proposed approach is the
relation between the motion of the camera and the information acquired dur-
ing this motion. Visual information is used to control the camera motion, and
camera motions are used to acquire information. We see this feedback loop
as a fundamental characteristic of an active vision system. At this level, real
time implementation (i.e., images handled at video rate) is a fundamental
issue to allow an efficient feedback between perception and action.

— the relation between global and local. A task is usually defined in a global
way (by the goal). However, data available to ensure this goal are usually
local. The relation between the global modeling of the goal and this set of
local sub-model (closely related to the parameters and the location of the
camera) must be studied in order to ensure the execution of the nominal
task. Describing a task as a scheduling of elementary tasks is a fundamental
step to describe and implement such systems. However efficient techniques
are necessary to link the local and global models.

— the relation between continuous and discrete. This aspect of the problem
is closely related to the previous one. In one hand, the local elementary
tasks can be handled in real time using continuous schemes. In that case,
information must be seen as an infinite flow of data acquired by the sensor.
In an other hand, the scheduling of these different tasks may require sensor
planning strategies and therefore discrete camera motions. In that case, we
manipulate discrete information (logic, temporal, etc.).
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Let us now consider how this methodology has been applied to the scene re-
construction and exploration problem. Qur concern is to deal with the problem
of recovering the 3D spatial structure of a whole scene without any knowledge
on the localization and the dimension of the different geometrical primitives
of the scene (assumed to be composed of polygons, cylinders and segments).
The autonomous system we propose deals with various issues from the auto-
matic generation of camera motion using image-based visual servoing to sensor
planning to ensure a reconstruction as complete as possible of the scene. The
whole system is described using a hierarchical parallel automata (see Fig. 1). It
has three main perception-action cycles. The main one is the exploration-
reconstruction cycle which ends only when the reconstruction is complete. This
cycle deals with global information and the resulting camera motions are dis-
crete. However, when an object is observed, the system enters in the second
cycle which is the incremental reconstruction loop. The main goal of this level
is to bridge the gap between a local modeling of the scene and a global one.
The latter cycle deals with the active reconstruction itself which is here intrinsi-
cally based on a local/continuous approach. There, for each observed segment, a
recognition task is performed in order to determine the nature of the primitive
(cylinder or segment). Then, if a cylinder has been recognized, an estimation
of its parameters based on its two limbs is performed in order to get a more
robust reconstruction. Finally in both cases, we have to compute the length of
the primitive. In parallel to the reconstruction tasks, due to the camera motion,
occlusions and manipulator joint limits avoidance tasks are realized. Let us now
examine the various issues raised by this reconstruction problem.

Scene reconstruction

Incremental reconstruction

P

Incremental exploration

Primitive reconstruction

Global exploration

Map update
Computing viewpoints Prediction / verification | |- — — — — — —

Bayes Net

selection

N

Fig. 1. Hierarchical parallel automata describing the whole reconstruction process

Exploration - Complete reconstruction. The first issue deals with the ex-
ploration. The goal is to determine where the objects are and to ensure the
completeness of the reconstruction (for all the most a reconstruction as com-
plete as possible). Previous works have been done in order to answer the “where
to look next’ question [9,21,8,22,23]. As far as we are concerned, in the high
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level perception strategies of our reconstruction scheme, active vision is used to
determine the camera position which provides the maximum of new information
(Section 4). The resulting gaze planning strategy proposes a solution to the next
best view problem that mainly uses a representation of known and unknown
areas as a basis for selecting viewpoints. We have chosen to handle this problem
as a function minimization problem. We define a function to be minimized which
integrates the constraints imposed by the system and evaluates the quality of
the viewpoint. When an object is observed, the exploration process ends and its
reconstruction is realized.

Primitive reconstruction and camera motion generation. The approach
we have chosen to get an accurate three-dimensional geometric description of a
scene is based on a continuous structure from motion approach [7]. Very notice-
able improvements can be obtained in the 3D reconstruction if the camera view-
point is properly selected and if adequate camera motions are generated (Sec-
tion 2). These motions are generated using the visual servoing approach [11,13].

This approach has many advantages. First of all, visual servoing allows to
generate automatically the camera motions defined for an optimal estimation of
the primitives. To this purpose, we define a secondary task such as a trajectory
tracking in “parallel” with a priority task (e.g., gaze control). Second, as the
camera motions are dedicated to the estimation of one primitive, we have only
one features to track in the images sequence. Therefore, we are able to perform
a real time estimation of the primitives parameters. Furthermore, as we used a
continuous structure from motion approach, the motion of the primitive in the
image is very small during the estimation since the primitive must remain at a
constant position in the image. Therefore, the spatio-temporal matching process
is quite straightforward and can be handled in real time. This real time compu-
tation of the camera motion allows us to deal on-line with some other constraints
such as occlusions and kinematics problems specific to the manipulator.

Incremental reconstruction. However, since the camera motion is controlled
for the estimation of one primitive at a time, this implies to successively focus
on each primitive of the scene, using a local exploration algorithm. The pro-
posed method is based on a prediction/verification scheme (Section 3). Bayes
nets [18,19,6,10] seem to be well adapted to manage this process. They allow us
to model “expert” reasoning. Furthermore, they are adapted to the automatic
generation of action while performing this reasoning. Thus we can directly in-
troduce perception strategies within the scene interpretation process. This al-
gorithm proposes a partial solution to the occlusion problem and allows us to
obtain a high level description of the scene. This way, we can bridge the gap
between a set of local sub-models (obtained using a continuous method) and a
global model of the scene (thus obtained using a discrete method).

The remainder of this paper is organized as follows. Section 2 is devoted to the
local aspect of our reconstruction scheme and describes the structure from mo-
tion framework based on an active vision paradigm. Section 3 describes the Bayes
Nets-based prediction / verification scheme used to get a complete description
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of the observed part of the scene. The last cycle is described in Section 4 where
the computing viewpoint issue used to ensure a reconstruction as complete as
possible of the scene is proposed. Finally, Section 5 presents experiments carried
out on a robotic cell which have demonstrated the validity of our approach.

2 3-D structure estimation using active dynamic vision

The measure of the camera motion, which is necessary for the 3D structure es-
timation, characterizes a domain of research called dynamic vision. The method
used here is a continuous approach [1,12] which stems on the measure of the
camera velocity and of the motion of the considered primitive in the image.
More precisely, we use a “structure from controlled motion” method which con-
sists in constraining the camera motion in order to obtain a precise and robust
estimation [7].

For most of the geometrical primitives, it is possible to determine the inter-
action matrix LT defined by the classical equation [11]:

P =Lp(P,p)T. (1)

where P is the time variation of P due to the camera motion 7,. The parame-
ters P describe the position of the object in the image while the parameters p;
describe the position of the object limb surface (i.e., for a volumetric primitive,
it defines the 3D surface in which the limbs lie).

From the resolution of a linear system derived from (1), it is possible to
obtain the parameters p; [7]. Then, using geometrical constraints related to the
considered primitive, we can estimate the parameters p which fully define its 3D
configuration. B

When no particular strategy concerning camera motion is defined, important
errors on the 3D structure estimation can be observed. This is due to the fact
that the quality of the estimation is very sensitive to the nature of the successive
camera motions. An active vision approach is thus necessary to improve the
accuracy of the results by generating adequate camera motions. In fact, two
main results dealing with this problem have been achieved [7]:

1. A sufficient and general condition that suppresses the discretization error is
to constrain the camera motions such that the projection of the primitive
must be kept constant in the image and no variation must occur on the limb
surface parameters during the camera motion (i.e., P= pr = 0,Vi).

2. A more robust estimation with respect to measurement errors is obtained
if the location between the camera and the primitive is considered. Indeed,
particular positions of the primitive in the image do minimize the influence of
the measurements errors. Thus, in order to obtain an optimal estimation,
a gaze control task which constrains the camera motion so that the object
remains fixed at its specified position in the image is realized (see Fig. 2).

For example, in the case of a cylinder, it has been shown that the optimal camera
motion is such that the cylinder constantly appears as two static centered, ver-
tical or horizontal, straight lines in the image sequence. Visual servoing [11,13],
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which is the main point of low level perception-action cycles, is very well qualified
to control camera motions in order to satisfy these constraints.

[
A

Fig. 2. Optimal camera motion and resulting image in the cases of a straight line and
a cylinder

3 A Bayes-Nets Based Prediction / Verification Scheme

The next level of our reconstruction scheme is the incremental reconstruction of
the objects observed from a computed viewpoint. In order to obtain as accurate
results as possible, we have chosen to perform the reconstruction in sequence. The
resulting algorithm [16] allows us to perform an estimation of all the primitives
which appear in the camera field of view. However:

— The description of the scene is a low level and local description which only
contains a list of 3D segments and cylinders. It might be more interesting to
get high level global information such as junctions, polygons, and faces.

— The scene reconstruction is incomplete for two main reasons. First, the pro-
jection in the image of some segments have a too small length to make their
reconstruction possible. Second, as this algorithm only deals with the ob-
served objects, it has a local perception of the scene. According to this, some
objects may not appear in the camera field of view (because of occlusions or
because they are located in an unknown and unobserved area).

To cope with these problems, we propose a Bayes Nets based predic-
tion/verification scheme. A Bayes Net [18] is a directed acyclic graph where
nodes represent the discrete random variables and where links between nodes
represent the causality between the variables. Such a net can be used to represent
the knowledge available on a particular domain. The graph structure and the
a priori knowledge introduced in the graph (as conditional probability tables)
must be defined by the conceptor of the application. The advantages of Bayes
Nets lies in the ability to reflect the a priori knowledge available on the applica-
tion. This knowledge is reflected in the structure of the net through the nature
and the number of nodes (variables), the different states of these variables and
the relations (links) between these variables. The knowledge is also present in
the conditional probability tables associated with the variables of the net. These
tables reflect the expert reasoning as well as the uncertainty associated with the
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observations. Finally, the propagation allows to take each new observation into
account. The influence of an observation is propagated to the other variables of
the net according to the causality relations.

The goal of our prediction/verification scheme is to determine the relations
between reconstructed 3D segments and to infer either the presence of new
segments, either the existence of more complex objects. As our reconstruction
scheme is incremental, we determine the consequence of the introduction of a
new segment S; in the 3D map of the scene as soon as the structure of S; is
known. Our approach can be decomposed into three steps. For each couple of
segments (S, St), we propose hypotheses on the relation between these two seg-
ments. Then, we verify if these hypotheses match the observations. Finally, the
system proposes a new model of the scene resulting from the integration of the
new segment.

Prediction Dealing with two segments Sy and S;, the possible actions are the
followings: fuse the segments, create a junction, or add a link (a new segment)
between Sy and S;. Therefore the aim of the prediction step is to create some
hypotheses leading to the realization of one (or more) of these actions. The
hypotheses are directly linked to the actions:

Hi: there is a junction between Sy and S; ;

Hj: there are one or two segments between Sy and S;.

Hj;: Sy and S; are identical ;

Hy: there are no (or some other) relation between Sy and S;.

We have a multi-step strategy. First, we compute the belief we have in simple
topological relations (proximity (p(N)), coplanarity (p(C)), collinearity (p(P)))
between Sy and S;. Then, according to these beliefs, it is possible to classify the
pair of segments into five classes (see the first raw of the Table in the Fig. 4).
Classes are C;: CN P (coplanar, neighbor and parallel) , Co: CN-P, C3: C-NP,
C4: C‘!N—!P, and C5: -C-N-P.

Using the belief we have in the belonging of the couple of segments to each
class, the system can infer the belief in each possible hypothesis. We have defined
decision strategies which are able to determine the best hypothesis according to
the available knowledge. These strategies are coded in conditional probability
tables P(H|C) where H is the hypothesis and C' the class (see Fig. 4). These
tables are defined in an empirical way from a set of elementary considerations
about topological relationship that we usually find in a group of segments. These
considerations often reflect the truth, though they provide no guarantee. How-
ever, extreme precision is not required. Rather, they must reflect the knowledge
we want to transmit to the system.

The prediction step reasoning can be encoded in a simple Bayes Net (see
Fig. 3.a). It is composed of six nodes. Links between these nodes depict the
causality relations between the different steps of reasoning and thus its progres-
sion. One node is associated to each topological relation, another to the class,
and one node is associated to each set of hypotheses. Indeed, two sets of hypothe-
ses are emitted. The first concerns the relation between the closest extremities
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Fig. 3. (a) Prediction net and (b) Verification net
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Fig. 4. Elementary classes and associated hypothesis (closest extremities) and Condi-
tional probabilities table P(hypotheses | classes) for the closest and distant extremities
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of the segments (see Fig. 4) and the second concerns the relation between their
distant extremities. In both cases, the same hypotheses can be emitted, though
the associated conditional probabilities can be very different. As already stated,
the hypothesis with the higher belief is not always the correct one, and this is
the reason why we will always consider for each case (closest and distant ex-
tremities) the two hypotheses with the highest belief (H} .. and H2 ). These
two hypotheses are then verified or invalidated.

Verification In order to verify the two selected hypotheses, we use the rea-
soning encoded in the Bayes Net depicted in Fig. 3.b. We use two similar nets,
each associated with one of the two sets of hypotheses (i.e close and distant ex-
tremities). Considering the two hypotheses, we first define the nature (segment,
junction, string) and the position of the created object associated with each hy-
pothesis. Then, we compute the belief in the existence of this object using the
observation node. Finally, knowing the belief in each hypothesis and the belief in
the related observation, it is possible to determine the most probable hypothesis
(or to reject both).

The most important node in the verification net is the observation node.
Sometimes, the hypotheses can be verified (or invalidated) using direct observa-
tion in the images previously acquired. In such cases, the validation is performed
using the 3D information associated with the hypotheses and the 2D observa-
tion. We perform a back-projection of the 3D objects in each image previously
acquired by the camera and we try to associate this projection to the observed
data in more than one image (to avoid false matching). For each possible match-
ing, we compute the belief granted to this matching. The case of a single segment,
or of a junction is simple. If this junction exists, it has already been observed
(because the presence of the two segments has been already verified). Thus, the
verification is performed as described above. In the case of a string, with three
segments, the presence of two of them is certain (they have been used to predict
the presence of the third). However, the last one has not been yet reconstructed
(most of the time), and its presence is not validated. When no matching is found
in the images previously acquired, it is necessary to know why. The first possi-
bility is that the segment under consideration does not exist, the second is that
it is occluded by another object. In the latter case, it necessary to move the cam-
era to a new viewpoint from which the segment can be observed. Rather than
computing explicitly a viewpoint (e.g. [9,21]) and researching off-line the con-
sidered segment, we prefer to turn the camera around a segment which belongs
either to the occluding polygon or to a plane to which the considered segment
belongs. During this motion, automatically generated by visual servoing [11], an
image processing is performed on-line to detect the appearance of the researched
segment.

Modeling. At this step of the reconstruction process, we have a model of the
scene composed of 3D segments, 3D junctions, or even a coplanar string of seg-
ments. It is finally quite easy to use this information in order to get 3D polygons.
To this end, we use the junction information and the coplanarity information
already used in the hypotheses generation (see [14] for further details).
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This three-step approach allows us to get a high level and more complete repre-
sentation of the scene. Section 5 will present experimental results which illustrate
the different key points of this algorithm.

4 Global exploration - complete scene reconstruction

Since it is not possible to ensure that the model of the scene issued from the local
exploration process is complete, we present now the last perception-action cycle
which includes the two previous ones and ensures a reconstruction as complete as
possible. We have to determine viewpoints able to bring more information about
the scene. By information, we mean either a new object, either the certainty that
a given area is object-free.

Knowing the set of viewpoints since the beginning of the reconstruction pro-
cess, it is possible to maintain a map of the observed and unexplored areas using
a ray tracing scheme. The knowledge is composed by: the objects already re-
constructed O, the known free space V, and the unknown area U. Using this
knowledge, we have defined a gaze planning strategy which proposes a solution
to the next best view problem that mainly uses a representation of known and
unknown areas as a basis for selecting viewpoints. We have chosen to handle
the “where to look next” problem as a function minimization problem. Such a
function F(¢) has to integrate the constraints imposed by the system and to
evaluate the quality of a viewpoint in order to select the next camera viewpoint
¢r+1 which corresponds to its minimal value. The cost function is minimized
using a fast deterministic relaxation scheme corresponding to a modified ver-
sion of the ICM algorithm. The camera viewpoints are constrained inside an
hemisphere located around the scene, but only in the region already observed
and object-free (in order to avoid collision). At the beginning of the exploration
process, as the observed area is null, the camera motion is limited to the surface
of the sphere.

The function F is taken as a weighted sum of the following measures:
Quality of a new position. The quality of a new position ¢:41 is function of the
volume of the unknown area which appears in the camera field of view. The new
observed area G(¢¢y1) is given by:

G(dt+1) = V(pt41) = V(dt41) NV (2)

where V(¢;41) defines the part of the scene observed from the position ¢4 and
V(¢t41) NV defines the sub-part of V(¢:+1) which has been already observed
(see Fig. 5).

Displacement Cost. A term reflecting the cost of the camera displacement be-
tween two viewpoints ¢; and ¢y is introduced in the cost function F, in order
to reduce the total camera displacement (see [16]).

Reachability Constraints. To avoid unreachable viewpoints, we use a binary test
which returns an infinite value when the position is unreachable. A position is
unreachable if it is not in the operational space of the manipulator, or if this
position is located in an unknown area (leading to a collision risk).
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Fig. 5. Quality of a new position (2D projection).

If a new object is observed from the selected viewpoint, its reconstruction
is performed. On the other hand, if the observed space is free of new objects, a
next viewpoint has to be computed. This process is iterated until the end of the
exploration. In theory, it must end when all the space has been observed, i.e., if
U = (). However, this condition is usually unreachable. Ensuring the completeness
of the reconstruction is not always possible. Some areas may remain observed
only from a set of viewpoints unreachable by the camera. Furthermore, due
to the objects topology, some areas may be unobserved whatever the camera
position. Thus the exploration process is said to be as complete as possible if,
for all reachable viewpoints, the camera looks at a known part of the scene. We
thus can be sure that, at the end of the exploration process, all the areas of the
scene are either free-space, either an object which has been reconstructed, either
an unobservable area.

5 Experimental results

The whole application presented in this paper has been implemented on an ex-
perimental testbed composed of a CCD calibrated camera mounted on the end
effector of a six degrees of freedom cartesian robot. Describing the complete
implementation of our system is not the goal of this paper ; however we want
to underline the fact that, if it is important to bridge the gap between con-
tinuous/local and discrete/global in the vision/control part of an active vision
system, it is also important to consider this gap from a software engineering point
of view in order to obtain a safety implementation of such system. As classical
asynchronous languages are not really adapted to specify and program either
the continuous and the discrete part of our algorithm, we have implemented the
control/estimation algorithm and the task controller using SIGNAL [17]. SIG-
NAL is a real-time synchronous data-flow language adapted to implementation
of vision-based tasks such as visual servoing and estimation. Dealing with the
high level PAC, we have used SIGNALGTi, an extension that introduces inter-
vals of time. SIGNALG Tiprovides constructs for the specification of hierarchical
preemptive tasks executed on these intervals. It allows to consider in an unified
framework the various aspects of the perception action cycle: from data-flow task
(estimation, visual servoing) to multi-tasking and hierarchical task preemption
(perception strategies).
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Structure from controlled motion. As already stated, we are interested
in the reconstruction of cylinders and segments. We here presents the results
obtained for the structure estimation of a cylinder. Fig. 6.a represents the initial
image acquired by the camera and the selected cylinder. Fig. 6.b contains the
image acquired by the camera after the convergence of the visual gazing task.

a b

Fig. 6. Position of the cylinder in the image before (a) and after (b) the focusing task

Fig. 7 describes the evolution of the estimation of the parameters of the
cylinder displayed in Fig. 6. Fig. 7.a shows its radius r and the coordinates
Zo, Yo, 20 of a point of its axis. Let us note that the cylinder radius is determined
with an accuracy less than 0.5 mm whereas the camera is one meter away from
the cylinder (and even less than 0.1 mm with good lighting conditions). Fig. 7.b
reports the error between the estimated value of the radius and its true value
(i.e., r; —rx) using the two limbs-based estimation. As far as depth is concerned,
its standard deviation is less than 2.5 mm (that is 0.25%).
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Fig. 7. Estimation of the parameters of a cylinder in the camera frame (a) estimated
position of a point on the axis (zo, Yo, 20) and radius (r) (in mm) (b) error between
the real and estimated radius of the cylinder (in mm)

The experiment of the cylinder structure estimation has been carried out fifty
times from different initial camera locations. For each one of the 50 experiments,
we have computed the estimated radius 7, and the estimated depth z,. Each
time, the measured error 7 — r* is less than 0.5 mm and the standard deviation
of all the estimations (i.e., o7) is around 0.02 mm (resp. o5 = 0.23 mm). These
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results underline the fact that our estimation algorithm is particulary robust,
stable and accurate.

From a local to a global description of the scene. We present in this
section the reconstruction results obtained for a polyhedral object (see Fig. 8.a).
This scene allows us to illustrate the interests of the proposed method. The
result of the scene reconstruction using the simple incremental reconstruction
process is depicted on Fig. 8.b. As already stated, as they are too small, some
of the vertices of the polyhedron have not been reconstructed. Furthermore, due
to the local approach used in that process, others remain occluded and thus
non reconstructed. We now focus on two aspects of the Bayes Nets prediction
verification scheme.

Fig. 8. Polyhedral scene: (a) view of the scene (b) model of the “polyhedron” scene
acquired using the incremental algorithm (c) model of the same scene acquired using
the prediction /verification scheme and numbering of the reconstructed segments in the
order of their introduction in the map of the scene

Fig. 9. Polyhedral scene : arrows point at the next primitive to be estimated

Consider that segments Sy and S; have been already estimated and that So
has just been reconstructed (see Fig. 9.abc), the system considers the relation
between S; and Sy and between S; and S;. Dealing with Ss and Sy, the system
concludes easily to the presence of a junction between them. Dealing with the
couple (S1,52), there is around lcm between their closest extremities. The belief
for Sy and S; to be neighbor is 61% and to be coplanar is 99% ; thus they
are likely to belong to the class Co. According to the strategies encoded in the
Hypotheses Bayes Net, it is likely that there exists a junction with a 46% belief
and a a segment between them with a 41% belief. The remaining 13% are shared
between the two other hypotheses. After the verification process, and according
to the observations, the former hypothesis (junction) is verified with a 60% belief.
This high value (even if this hypothesis is false, see Fig. 8.a) results from the fact
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that these two segments are very close in the different images (around 5 pixels).
Thus the observations reinforce this hypothesis. However, the latter hypothesis
is verified with a 95% belief. Indeed, a 2D segment is observed at the predicted
position in many images. Finally, according to the belief in each hypothesis, to
the belief in the observations, a new segment Sz is added to the model of the
scene (with a confidence of 53%, while the confidence in a junction creation is
only 37%). This underlines the interest to consider a multi-hypotheses approach.
A classical approach might have chosen the first (and wrong) hypothesis.

Let us now consider a second interesting case. When segment Sy is recon-
structed, within relations with other segments, the system proposes the creation
of a junction with S; and the creation of a segment between their two distant
extremities. Such a segment has never been observed (and could not have been
observed according to the current knowledge on the scene and on the camera
trajectory). Therefore, as described in the previous section, the camera focuses
on Sz, and turns around it (see Fig. 10). During this motion, automatically gen-
erated by visual servoing, observers are looking for a moving segment located at
its expected position in the images. The discovered segment is then reconstructed
and introduced in the scene model (see Fig. 10.c).

Fig. 10. Verification of a hypothesis: (a) rotation around S7 (b) Sio is discovered and
(c) reconstructed

Scene exploration - computing viewpoints. The example reported here
(see Fig. 11.a) deals with a scene composed of a cylinder and four polygons which
lie in different planes. In Fig. 11.b is displayed the initial image acquired by the
camera. Only the cylinder and a polygon are reconstructed during the first local
incremental reconstruction process (see Fig. 11.c). Fig. 12 presents the different
steps of the global exploration of the scene. Each figure shows the obtained 3D
scene, the camera trajectory and the projection on a virtual plane of the un-
known areas. Fig. 12.a corresponds to the camera position ¢¢ obtained just after
the local exploration process. The first camera displacements allows to reduce
significantly the unknown areas (see Fig. 12.b). A new object is then detected.
A local exploration process is performed. It ends at position ¢o4 (Fig. 12.c). At
this step, the two polygons on the “top” of the scene have been reconstructed. A
new global exploration is then performed. After a last exploration process, the
last polygon is observed and reconstructed (Fig. 12.d). At this step, 99% of the
space has been observed, which ensures that the reconstruction of the scene is
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complete. Fig. 11.d shows the final 3D model of the scene (to be compared to
Fig. 11).

0 d
) W \
b c d
Fig. 11. (a) External view and (b) first view of the scene and results of the first local

exploration /incremental reconstruction process : (c) reconstructed scene and projection
on a virtual plane of the unknown area (d) 3D model of the reconstructed scene.

a b
Fig. 12. Different steps of the global exploration process (camera trajectory, 3D model
of the reconstructed scene and projection on an virtual plane of the unknown area).

6 Conclusion

We have proposed an active vision approach to the 3D reconstruction of static
scenes composed of cylinders and polyedral objects. The perception-action cy-
cles are handled at various levels: from the definition of perception strategies
for scene exploration downto the automatic generation of camera motions using
visual servoing. As the structure from controlled motion approach used to per-
form primitives estimation is based on particular camera motions, perceptual
strategies able to appropriately perform a succession of such individual primi-
tive reconstructions have been proposed in order to recover the complete spatial
structure of complex scenes. An important feature of our approach is its ability
to easily determine the next primitive to be estimated without any knowledge or
assumption on the number, the localization and the spatial relation between ob-
jects. To this purpose, an algorithm has been proposed to ensure the incremental
reconstruction and exploration of the scene. It is based on a computing view-
points algorithm and the use of a prediction/verification scheme managed using
decision theory and Bayes Nets. Finally, experiments have proved the validity
of our approach (accurate, stable and robust results with efficient exploration
algorithms).
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