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Abstract—This paper deals with the recovery of 3D information using a single mobile camera in the context of active vision.
First, we propose a general revisited formulation of the structure-from-known-motion issue. Within the same formalism, we handle
various kinds of 3D geometrical primitives such as points, lines, cylinders, spheres, etc. We also aim at minimizing effects of the
different measurement errors which are involved in such a process. More precisely, we mathematically determine optimal camera
configurations and motions which lead to a robust and accurate estimation of the 3D structure parameters. We apply the visual

servoing approach to perform these camera motions using a control law in closed-loop with respect to visual data. Real-time
experiments dealing with 3D structure estimation of points and cylinders are reported. They demonstrate that this active vision

strategy can very significantly improve the estimation accuracy.

Index Terms—Computer vision, robotics, active vision, structure from motion, vision-based control.

1 INTRODUCTION
RECOVERING 3D structure from images is one of the

main issues in computer vision. Among others, like a
stereovision approach [16], or the use of projective invari-
ants [33], an appealing way of solving this problem is to
use 2D motion computed in image sequences acquired by
a monocular camera. However, to get an accurate three-
dimensional geometric description of a scene from such 2D
usually noisy measurements is not an easy task. It requires
the development of efficient algorithms for the analysis and
the interpretation of 2D dynamic visual information.

Basically, two main approaches have been investigated
to solve the problem of structure from motion : long range
motion-based methods and short range motion-based ones.
In the former one, images are considered at distant time
instants and a large camera displacement is generally per-
formed to obtain accurate results. This approach is based
on the extraction of a set of relatively sparse, distinguish-
able two-dimensional features in the successive images [11],
[16], [25], [34], [38], [42]. Inter-frame correspondence is first
established between these features. Then, the 3D structure
is determined requiring a measure of the camera displace-
ment, expressed by a translation and a rotation matrix. In
the latter approach, images are considered at video rate. In
this case, emphasis is generally placed on the estimation of
the optic flow field between two successive frames [2], [37],
[40] or on the direct use of the spatio-temporal derivatives
of the image brightness [26]. These observations must also
be combined with a measure of the camera velocity (instead
of camera displacement) to determine the 3D structure of
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the scene. In that case, equations for structure estimation
become linear. However, a robust and accurate computa-
tion of feature correspondences or optic flow fields remains
a difficult problem requiring the development of sophisti-
cated time consuming algorithms. Furthermore, the optic
flow field and the spatio-temporal derivatives of the im-
age brightness are corrupted by noise, and often partially
incorrect near occlusion or motion boundaries, leading to
generally poor and unstable results in the 3D reconstruc-
tion, in particular when considering object limbs.

To alleviate these problems, hybrid approaches have
been proposed [15], [30]. They are based on the utilization
of the camera velocity in the 3D reconstruction process,
while relying on the tracking of 2D sparse image features.
Such methods avoid the intermediate stage of optic flow
computation, and involve simple matching process. Fur-
thermore, we will see in this paper that the formulation,
based on the use of continuous camera velocities instead
of camera displacements, allows us to determine simple
closed-form expressions for the 3D structure estimation of
geometrical primitives such as circles, spheres and cylin-
ders. However, they still suffer from sensitivity to noise
and unsatisfactory accuracy.

A solution to cope with the robustness problems consists
in integrating the data obtained from multiple successive
camera positions. The methods employed are generally
based on Kalman filtering [16], [22]. They enable to esti-
mate both structure and motion (up to a scale factor) if the
3D relative velocity between the scene and the camera is
assumed constant over time [27]. An original factorization
method based on the singular value decomposition has also
been proposed by Tomasi and Kanade [36]. This method
does not require a constant 3D relative velocity, but is valid
only if an orthographic projection model can be considered.

Nevertheless, all these approaches (long range motion-
based methods as well as short range motion-based meth-
ods) do not involve any strategy to select motions and
trajectories that the camera should undergo (at least, it
is essential that objects of interest remain in the field of
view of the camera). Hence, an alternative solution that
we investigate in this paper, is to follow an active vision



approach. Active vision, which can be defined as an intelli-
gent data acquisition process, has been recently introduced
by Bajcsy [4] and Aloimonos et al. [3], and has been ex-
tended by several researchers including Abbott and Ahuja
[1], Ballard [5], Brown [9], and Sandini and Tistarelli [32].
Bajcsy [4] attempted to explore the environment by tuning
parameters involved in the processing steps and sensor pa-
rameters in order to obtain the best fit between model and
data. Aloimonos et al. [3], [18], [20] discussed active vision
from a mathematical point of view, focusing on complex
problems such as stability, linearity and uniqueness of so-
lutions. They have shown that some vision problems, that
are ill-posed and unstable for a passive observer, become
well-posed and stable for an active one. Furthermore, ac-
tive vision can greatly facilitate the computational process:
quantities that are complex or time-consuming to compute
with a passive system, are much more easily computed with
an active one [5].

Research work going on in several groups aims at devel-
oping active vision systems with great visual abilities such
as control of ocular parameters (e.g. aperture, focus) [1],
spatially-varying sensing [12], [28], [35], and gaze control
(1], [5], [21], [24], [28], [32], [39]. Indeed, one of the most
important requirements in the recovery of depth informa-
tion is the robustness to the noisy nature of real data. The
control of the viewing parameters gives stable and robust
means for shape and motion perception. More specifically,
the control of ocular parameters allows the system to main-
tain a suitable image quality despite the degradations that
may occur during the acquisition process. The control of
gaze is vastly used in binocular camera heads [5], [24], [28],
[39]. This mechanism, called vergence, consists to bring
and maintain the two camera axes to a specified spatial
target position: the fization point. This permits to get rid
of the inter-frame correspondence problem in the 3D visual
perception process [4], [9].

Our concern is to deal with the problem of recovering the
3D spatial structure of a static scene using a single mobile
camera by means of an active vision scheme [10]. Within
the active vision paradigm, we consider that the camera
motion can be controlled. This implies that measurements
of the camera velocity from the successive robot joint posi-
tions are available. However, they are usually noisy. There-
fore, the handling of measurement errors on the camera mo-
tion is explicitly incorporated in our scheme. We show in
this paper that 3D reconstruction can be solved in a much
more efficient way using adequate controlled camera mo-
tions, compared to usual dynamic vision approaches. This
problem has already motivated some investigations [3], [6],
[31], [32], but only for the case of points. Furthermore,
effective comparisons between dynamic vision and active
vision schemes have not yet been performed through real
experiments. In this paper, the problem of 3D reconstruc-
tion of a large class of geometrical primitives is addressed
at three levels:

+ modeling aspect: we propose a general revisited formu-
lation of the structure-from-known-motion issue which is
valid for the most representative geometrical primitives.

Our approach is based on the so-called interaction ma-
trix [14], which relates 2D motion of the projection of
the primitive in the image with 3D camera motion, and
which enables to determine the 3D position of the limb
surface of the primitive.

« optimization aspect: we derive sufficient conditions
to minimize effects of the different measurement errors
which may occur in this process. More precisely, we de-
termine the adequate camera viewpoints and motions
which provide a robust and accurate estimation of the
considered 3D structure. We apply the visual servoing
framework to perform such motions using a control law
in closed-loop with respect to visual data.

¢ experimental aspect: we demonstrate with various
real-time experiments that our active vision scheme sig-
nificantly improves the accuracy of the structure estima-
tion.

This paper is organized as follows. In Section 2, we present
a general method for the estimation of the 3D structure of
geometrical primitives using dynamic vision. Section 3 con-
tains the derivation of the types of camera motions which
improve the robustness of the solutions, and describes a
vision-based control scheme able to generate such motions.
Experimental results demonstrating the efficiency of our
method are reported in Section 4. Concluding remarks are
given in Section 5.

2 STRUCTURE FroM MoTiON UsSING Dy-

NAMIC VISION

Let us first recall how we can determine the depth of a
point in the scene using a moving camera. Let us consider
a usual perspective projection model (see Fig. 1). Without
loss of generality, the focal length is assumed to be equal
to 1. The relation between the 3D point X = (X,Y,72)
and its projection = (z,y, 1) on the image plane is given

by:
X.
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Fig. 1. Camera model and coordinate system.

The velocity screw of the camera frame (O,)?,?,Z),
plotted in Fig. 1, with respect to the scene is denoted
by T (V(0),Q), where V(O) (Vx,Vy,Vz) and
Q = (Qx,Qy,Qgz) are respectively the instantaneous tran-
slational and rotational velocities. If scene point X is sta-
tic, we get:

(2)

Differentiating (1) and using (2) lead to the well known



relations [19]:

()3 () (5) o

with oy = 2yQx —(142?)Qy +yQz and ay = (14+y%)Qx —
zyQy —2Qyz. From (3), we can easily derive the expression
of the unknown depth Z. We obtain [22]:

—Vx +zVz
W +yVz

(@ —az)(@Vz = Vx) + (4 — o) (yVz — W)
(Vg —Vx )2+ (yVz — W)?

17 = (4)
An estimation of depth Z can thus be computed from the
measured values of z,y, z,y and camera velocity T'. Let
us note that no information on Z can be retrieved if the
camera motion is such that Vx = 2V and Vy = yV7z.

We now introduce the unified formalism capable to han-
dle the case of points, but also planar and volumetric para-
metric primitives. Let us consider a 3D geometrical prim-
itive Pg of the scene; its configuration is specified by an
equation of the type:

where h defines the type of the considered primitive, and
the value of parameters P specifies its corresponding con-
figuration. The representation of Pg, expressed by param-
eters P (vector of dimension n), is chosen complete and
minimal in order that any position of the primitive can be
represented by only one value of P.

Using (1), (5) becomes:
h(2,1/Z, P) = 0. (6)

where h' denotes the expression of the resulting equation.
Under the trivial condition g—hzl # 0 which is satisfied in
all the non-degenerate cases (a degenerate case occurs for
example when a line is projected onto the image plane as
a point, or a circle as a segment), the implicit function
theorem ensures the existence of a unique function p such
that:

1/Z = p(z, Pp) (7)

where representation P; , function of P, is chosen complete
and minimal (its dimension is denoted nr).

Let us denote P; the projection in the image plane of Pg.
The configuration of P; can be formally written as follows:

glz,p)=0, Ve eP; (8)

where g defines the type of the 2D image primitive and the
value of p, function of P, specifies its configuration. Once
again, representation p, of dimension m, is chosen complete
and minimal in order that any position in the image of P;
can be represented by only one value of p. For planar prim-
itives (a circle for example), the function p represents the
plane in which the primitive lies. For volumetric primitives
(sphere, cylinder, torus,...), the function g(z, p) represents
the contour of P;, and the set of 3D points, the projection
of which constitutes the set of 2D contour points, defines

limb surface
-

1/Z = u(=, Pp)

Fig. 2. Perspective projection (g) of a cylinder (4) in the image and
corresponding limb surface (u).

the function p(z, Py), therefore called the limb surface
(see Fig. 2).

The relation which links the motion of the primitive in
the image (in fact, the temporal derivative p of parameters
p), and camera motion 7" can be explicitly derived [14]; it
is given by:

b=LI(pPy) T )
where Lg,
fully characterizes the interaction between the camera and

called the interaction matrix related to p,

the considered primitive.

We are now able to present a general method to recon-
struct a 3D geometrical primitive by dynamic vision (i.e.,
to compute the value of P from the measurements of the
camera velocity T, and of the image parameters p and p).

Let us denote H(p,p, Py, T) the following function de-
rived from (9): o

Hp b, P, T)=p— Ly (p, P) T =0.

(10)

Under the condition that 3?7{ (of dimension m x np) is

of full rank ny, the implicit function theorem allows us to
express P; with respect to the other parameters involved
in (10). Since the dimension nz of P; has been chosen
minimal, we obtain an unique solution:

P, =P (T p,p). (11)

More precisely, for all the primitives that we have consid-
ered (straight lines, circles, spheres and cylinders - see the
Appendix at the end of this paper), parameters P; are
simply determined from the resolution of a linear system
derived from (10).

Let us note that it is possible to find the camera motions
which do not provide any information on the spatial con-
figuration of the primitive of interest: they are such that

aa;{ is not of full rank. For example, in the case of a point,
Ly
we have

37'[ _ VX — IVZ

oP;,  \ W —yVz

(see (3)), which is of full rank 1 if Vx # 2Vz or V¢ # yVz.
Finally, knowing g(z,p) and u(z, P;), we can solve for
parameters P which completely define the configuration



of the considered 3D primitive. Since the dimension n of
P has been chosen minimal, we again obtain an unique
solution:

P=P(pPp). (12)

Let us note that our method is based on a continuous
approach, since it uses the measure of the camera velocity.
It is basically different from the discrete ones [11], [25],
[38], [42] which consider a camera displacement (described
by a translation and a rotation matrix) instead of camera
velocity. Indeed, from a geometrical point of view (see
Fig. 3), our method consists in determining the intersection
between a generalized cone (defined by its vertex O and the
function g(z, p)) and the limb surface (derived as explained
above from motion equation (9)). On the other hand, the
discrete approach, equivalent to a stereovision paradigm,
is based on the intersection between two generalized cones
(corresponding to each camera position). If we consider
the intersection of two volumes, instead of a volume and a
surface, then, it is more complicated to derive closed-form
expressions (and therefore to get robust estimations) in the
case of complex primitives. For a circle for example, the
discrete method proposed in [29] is based on the resolution
of a complex non linear system, whereas our method 1is
based on the simple resolution of two linear systems.

Limb surface

Fig. 3. Difference between continuous (left) and discrete (right)
approaches for 3D structure estimation.

The estimation of the position (Xg, Yy, Zp) of a point,
which has been described at the beginning of this section,
can of course be obtained using this formalism. Indeed, in
that straightforward case, we have:

X—XOIO

hMX,P)=<¢ Y -Y3=0
Z—ZOIO

’ _Jz—20=0
Q(LB)—{ Yy =0

1/Z = p(z, Pr) = 1/Z0. (13)

The depth Zp is obtained from the motion equation (3)
(corresponding in fact to (9)); it is given by (4) (to be
related to (11)). Then, we get X = 20Zp and Yy = yo 2o
(i.e., relation (12)).

The application of this method to the most representa-
tive geometrical primitives (straight lines, circles, spheres
and cylinders) is described in the Appendix. For each of
these primitives, we first present the equations of their re-
spective function h(X, P), g(z,p) and p(z, P;), and of the

related interaction matrix LZ (p,Pr). Then, we describe

how parameters P; can be determined from p, p and 7.
Finally, we present how parameters P are obtained from
p and P;. The set of camera motions which cannot pro-
vide an estimation of the structure of the considered prim-
itives is also given. As seen on all the considered exam-
ples, the closed-form expressions of the 3D parameters to
be estimated are simply and systematically obtained from
the resolution of two linear systems (the first one serves to
determine the parameters of the limb surface using the in-
teraction matrix, the second one to determine parameters
p).

The main limitation of our method is that it assumes the
presence of rather simple objects in the scene. On the other
hand, it seems more efficient to obtain a global analytical
structure estimation of geometric primitives, described by
vectors of parameters, than a discrete sparse one given by
the 3D positions of some points or segments. Furthermore,
our approach could be used for more complex parametric
primitives, such as torus or ellipsoid for example.

3  STRUCTURE FrROM MOTION USING ACTIVE
VISION

In the previous section, it has been shown that the con-
tinuous approach exploiting camera velocity is an attrac-
tive solution to cope with the 3D reconstruction of a static
However, structure estimation from a monocular
image sequence is very sensitive to the measurement er-
rors [13] and to the nature of the camera movements [15].
The experimental results reported in the next section will
confirm that important errors on the structure estima-
tion appear when no particular strategy concerning cam-
era motion is defined. We have also pointed out that some
given motions are not able to provide any 3D-information.
Therefore, one of the goal of an active vision scheme is to
find an optimal camera motion which could lead to a robust
and non biased estimation of the 3D spatial structure. In
this section, we state the problem in terms of the minimiza-
tion of the errors occurring in the reconstruction process.
Two kinds of errors are of particular concern: the first one
is related to the discretization step that affects our con-
tinuous method, the second one is due to the unavoidable
measurement errors on the image data and on the camera
motion.

scene.

3.1 Suppression of the Discretization Effects

The method presented in Section 2 is based on the mea-
surement of p, i.e., the temporal derivative of the parame-
ters representing the considered image primitive. The exact
value of p is generally unreachable and the image measure-
ments only supply Ap, the variation of p during the time
interval At between two successive images. Using Ap/At
instead of p in the derivations mentioned above induces
errors in the 3D reconstruction. These errors due to the
discretization step can be important, as it will be seen in
the experimental results.

On the other hand, if we can ensure that p = Ap/At, Vt,



the discretization step will have no effect. Such a condition
is satisfied if and only if:

p=--=p"=0ve (14)
From (9), we have
Bng(p:PL)T_f(papLiT)
Thus:
=i P T bt gy Py (1)

A sufficient and general condition to satisfy (14) is to con-
strain the camera motion to be such that:

p=P, =0Vt (16)

Indeed, in that case, we have T'€ Ker LZ,Vt. Using (16),

we can easily show that T € Ker Lg,Vt, from which we

deduce p = 0,V¥t. A simple recurrence can finally be em-
ployed to check that (14) is ensured.

In other words, a solution to suppress the discretization
error is that the equation of the limb surface remains un-
changed in the camera coordinate system, and that the
projection of the 3D primitive constantly appears at the
same position in the image while the camera is moving.

We can show that, except for points and lines, the first
condition p = 0 implies the second one P; = 0, which
reduces the problem to a fixation situation. We will see
in Section 3.3 that the visual servoing approach [14], [17],
[41], is perfectly suited to generate such camera motions.
It enables the definition of control laws in closed-loop with
respect to visual data, which automatically compute the
camera motion satisfying particular constraints, such as
p=0and P, =0.

Let us note that the condition that we have exhibited
is only sufficient, and not necessary. Indeed, camera mo-
tion exists such that p = 0 with p # 0. For a point for
example, we can easily show, by differentiating (3), that
p = 0 when the camera motion is a pure translation paral-
lel to the image plane performed at constant velocity, i.e.,
VX = Vl,Vy = V2 and VZ = QX = Qy = QZ = (0. More
generally, determining all the solutions of the non linear
system (14) seems out of reach. Moreover, they deeply de-
pend on the considered primitive since they require the
knowledge of % and %. On the other hand, condi-
tion (16) is valid for any kind of primitives. It has the
supplementary advantage that the primitive will remain in
the field of view of the camera during the estimation pro-
cess.

3.2 Minimizing Effects of the Measurement

Rrrors

Another important point in an active vision paradigm is
to select configurations of the camera with respect to the
primitive of interest, likely to provide an estimation as ro-
bust as possible. More precisely, we show in this section

that the effects of the measurement errors on the estima-
tion of the 3D spatial structure of a primitive depend on
the position of the primitive in the image. Therefore, we
propose to constrain the camera motion in order to focus
on the primitive, so that the projection of the primitive
to be reconstructed is located at the position in the image
that minimizes the effects of the measurement errors.

Let P designate one component of P, the parameter vec-
tor representing the considered primitive. Let us recall that
P depends on information extracted from the image (p, p)
and on the measured camera velocity 7. If we suppose that
the measurement errors on p,p and 7T are not correlated,
the uncertainty op on the estimation of P can be written
in the form:

(op)® =

(17)

where pi(i=1.m), Pj(j=1..m), and Tk(k=1._6) are, respectively,
the different components of p, p and T'. Minimizing op is

equivalent to minimizing each term (%)2 where a denotes
any of the variables p;, p; and Tj. Since we are interested
in determining the optimal positions of the primitive in the

image, we have to find the values of p such that:

P2
(M) =0, Vaand Vj =1 to m. (18)
Opj

To find all the solutions of this non linear system in an an-
alytical way seems unreachable. However, we have derived
the following particular solutions of interest:

« for a point, the effects of the measurement errors on the
estimation of its depth Z are minimized
e, M) _0(8)

) dx - dy -

Va e {z,y, 2,9, Vx, W, Vz, Qx, Qy, Qz}),

if the point constantly appears at the center of the image
(zx = & =y = y=0,Vt) during the time interval required
for the estimation, and if we have Vz; = Q7 = 0. In other
words, the camera must be displaced on a sphere the
center of which is the point to be reconstructed. It is
interesting to notice that we get conclusions similar as
those obtained in [6], [12] and [32], where the interest of
locating the fixation point of an active binocular head in
the center of the image is demonstrated.

o for a sphere, the effects of the measurement errors are
minimized, if the image of the sphere remains a circle
centered in the image and if Qz = 0. The optimal tra-
jectory of the camera is thus the same as in the previous
case.

o for a straight line, the effects of the measurement errors
are minimized, if the line always appears centered and
vertical (respectively horizontal) in the image, and if we
also have Vy = Vz = Qx = 0 (respectively Vx = Vz =
Qy =0).



o for a cylinder, similarly, effects of the measurement er-
rors are minimized, if the projections of its two limbs lie
astride the image center in a symmetric manner, verti-
cally, and if V3 = 0 (or horizontally with Vx = 0). The
camera must be displaced on a circle around the cylinder
axis (see Fig. 4).

ccl] |
_

Fig. 4. Optimal camera motion and resulting image in the cylinder
case.

Unfortunately, due to the complexity of the stated prob-
lem, we have not been able to prove that these solutions are
unique. On the other hand, we have checked that numerous

configurations really do not minimize all the (%)2 terms,

and thus, are not likely to provide a robust estimation [8§].

We now describe how it is possible to automatically com-
pute the camera motion satisfying the constraints described
above.

3.3 Image-Based Closed-Loop Control

Active vision aims at improving the knowledge of the
environment by means of adequate camera motions. A
control law in closed-loop with respect to visual data, such
as visual servoing [14], [17], [41], is perfectly suited to
generate such motions. This approach is based on the reg-
ulation to zero of a task function e which can be written
as follows [14]:

WHWC (p—p*) + (Is — WHW)e,  (19)

€=

where:
o p denotes the 2D parameters describing the projection in
~ the image of the primitive at which the camera is fixating
at or focusing on. p is measured at each iteration of the
control law. B
¢ p* is the target value of p to be obtained. In order to
suppress the discretization error, we have to satisfy p =
0. In this fixation task, p* is set to the initial measured
value of p. In the focusing task, p has to reach a desired
value to obtain a robust estimation (x =y =0 for a
point for example); in that case, p* must then be equal
to this particular value. -

o (' is a matrix which represents the inverse Jacobian of the
vision-based task. Ideally, this matrix is chosen as the
pseudo-inverse of the interaction matrix related to p:

C —_—

Ly" (p, Py). (20)

But, since the real value of P; is unknown, we choose:
(B: EL)

T+
C=1; (21)

where E is the current estimation of the parameters of
the limb surface obtained by the method described in
Section 2.

o €5 is a secondary task which allows the camera to move
along a desired trajectory (on a sphere or a circle for
example). e, also permits to satisfy the additional con-
straint £; = 0 for the point and straight line cases.

o WTW and Is — W W are two projection operators which
guarantee that the camera motion due to the secondary
task is compatible with the regulation of p to p* (Is is
the 6 x 6 identity matrix and W is a full rank matrix such
that Ker W = Ker LZ. More details are given in [14]).

Once the task function e is defined, a simple control law,
which computes camera velocity 7' and ensures an expo-
nential decrease of ¢, is given by [14]:

Oe,

T=-Xe— (Is—WtW) =

(22)

where A (> 0) is the factor that controls the speed of the

decay and where the term (Is — W+W) %22 s tied to the
generation of a non zero camera motion When the vision-
based task is realized (i.e., when p = p*).

For example, in the case of the point reconstruction, we

have (see (3)):

T _ -1/Z 0 z/Z zy —(1 4 2?) Yy
£ 0 -1/7 y/Z 1+ —zy —x
(23)

from which we can easily compute LT Since LT is a

full rank matrix, we also have W = LT and W+t = LT+

Furthermore, the secondary task ej is chosen as:

X(t) = X(0) = Vi (1)
26) L S0 1 it s 9t
' + zVi(t) + yVal(t
e = 0 Y (24)
0
0

where (X (t),Y(t), Z(t))T is the current camera position,
(X(0),Y(0),2(0))7 is its initial position and V;(¢) and
V4(t) are any temporal functions such that V1 (0)=V2(0) =
0, whose role is to make the camera move in the X and Y
directions. Let us note that at least one of these two func-
tions has to be non zero so that the camera really moves
under the constraint p = p*. For instance, we can set
Vi(t) = Vit (resp. Vi(t) = %th + Vi) if a constant camera
velocity (resp. a constant acceleration) is desired.

As far as the third component of e, is concerned, we
have chosen Z(t) = Z(0) + zVi(t) + yVa(t) [8], in order
to satisfy the additional constraint Z = 0 that suppresses
the discretization error. Finally, when the focusing task is



realized (i.e. = y = 0), we get:

—ZVi (1)
—ZVa(t)
ey 7 0
ot 1+ 22 Va(t)
—-Vi(t)
0

T=—(Is —W*rW) (25)

which allows the camera to move on the sphere the center
of which is the considered point, if the required estimated
value Z corresponds to the real one (otherwise, the focus-
ing task is not realized and the control law generates cam-
era motions compensating the introduced perturbation).
We can also check on (25) that T,T, ... T'"] all belong to
Ker Lg.

Let us finally note that it is straightforward to elaborate
similar control laws for other primitives such as straight
line, cylinder, and so on [8§].

4 EXPERIMENTAL RESULTS

We present in this section the experimental results obtained
for the 3D structure estimation of a point and a cylinder.
For each of these primitives, we compare the results de-
livered by a dynamic vision approach (i.e., unconstrained
camera motion) with those given by the active vision ap-
proach in order to demonstrate the improvement brought
by the latter.

Our experimental system is composed of a camera
mounted on the end effector of a six d.o.f. robot arm (see
Fig. 5). The image processing part is performed on a com-
mercial board. A classical robot speed control scheme has
been used to perform the specified camera velocities, which
allows the successive image acquisitions and structure es-
timations to be executed while the camera is continuously
moving. In all the experiments described below, results
have been obtained at a rate of 12.5 Hz, which means that
each iteration of the 3D structure estimation is achieved in
80 milliseconds. Let us recall that an iteration k consists
in:

acquiring an image,

extracting the visual features p . and their velocity p

k

measuring the camera velocity E‘F()k),

estimating the parameters Py describing the 3D spatial
structure of the considered primitive, and

if active vision is used instead of dynamic vision, com-
puting the next desired camera velocity Tix41) by visual
servoing.

Let us note that Q(k) is computed using the expression
(Q(k) - Q(k_n))/(nAt), where At is the duration of each

estimation iteration (i.e., 80 ms), and n > 1. Similarly,
T(xy 1s measured from the robot joint positions recorded at
iterations (k) and (k — n).

Let us also point out that the estimated structure param-
eters depicted on all the following plots have been obtained
by computing the average of the three successive estimated
values E(k), B(k_l) and E(k—z)-

(k)

Our experimental cell at IRISA composed of a camera

Fig. 5.
mounted on the end effector of a six d.o.f. cartesian robot.

4.1 Case of the 3D Point Reconstruction

The first image acquired by the camera is depicted in
Fig. 6.a. The point that we consider is the center of grav-
ity of the white ball which is in the field of view of the
camera. The image processing step simply consists in ex-
tracting and tracking along the image sequence the center
of gravity of the ellipse corresponding to the projection of
the ball in the image. The image is segmented using a
simple thresholding technique.

4.1.1 Results Using Dynamic Vision

From the initial position, the camera moves with succes-
sive different constant velocities. More precisely, in the re-
ported experiment, we have set Vx = Vy = Vz = 40 mm/s,
Qx = Qy = Qyz = 3.5 dg/s from iterations 0 to 30,
60 to 90 and 120 to 150, and Vx = Vy = Vz = —40 mm/s,
Qx = Qy = Qy = —3.5 dg/s from iterations 30 to 60,
90 to 120 and 150 to 180. These motions do not satisfy
the fixating and focusing constraints of our active scheme.
It induces a motion of the point in the image of about
2 pixels between each image acquisition. The obtained re-
sults using n = 1 (i.e. two successive images) are shown
in Fig. 7.a. Plots represent the 3D coordinates (X,Y, Z) of
the considered point, estimated at each iteration of our al-
gorithm. The position (X,Y, Z) of the point is expressed in
a world reference coordinate system (corresponding to the
first camera position). The plots should then correspond
to constant values over time. As expected, unstable and
noisy results can be observed in that experiment where no
particular strategy as far as camera motion is concerned
has been selected: the standard deviation on depth Z is
about 3 ¢cm and errors can reach 10 cm (that is 12.5%).
If larger values of n are considered (see Fig. 8.a where
a value of n = 20 has been used), more stable results are
obtained. However, as explained in Section 3.1, discretiza-
tion effects due to the important image motion magnitude
and change of depth between instants k£ and k—n, induce a
bias in the estimation. In this experiment, the mean value



of estimated depth Z is 82 cm when considering the first
camera motion (iterations 0 to 30, 60 to 90, etc.), while it
is 86 cm for the other one.

Fig. 6. Images acquired at the initial camera position (a) and after
the realization of the focusing task (b).
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Fig. 7. Successive values of the 3D point coordinates X,Y,Z (ex-
pressed in mm) estimated with n = 1 : (a) using a dynamic
vision approach, (b) obtained with camera motion allowing only
to suppress the discretization error, (c) using the complete active
vision scheme.

4.1.2  Results Using Active Vision

As proposed in Section 3.1 to improve these results, we
first constrain the camera movement in order to suppress
the discretization error. Consequently, the point projection
must remain static in the image, and the distance between
the camera and the point has to be maintained constant.
To perform that task, we use the control law described
in Section 3.3 by setting Vi (¢) = Va(¢) = 0.1¢ from itera-
tions 0 to 30, 60 to 90, etc, and V4 (t) = Va(t) = —0.1¢ from
iterations 30 to 60, 90 to 120, etc. This leads to a trans-
lational camera velocity with equivalent amplitude than in
the previous experiment. Results using n = 1 are shown
in Fig. 7.b. During the first iterations, errors remain large.
This is due to the fact that several iterations are required
by the control law to correctly achieve the fixation task.
After this short transient period, results are better since
the standard deviation on Z is now equal to 1.7 cm. They
are however not yet optimal and will be further improved
thanks to the focusing step of our active vision scheme.
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Fig. 8. Same experiments of the 3D point structure estimation as in
Fig. 7 but with n = 20.

Using n = 20 leads to more accurate results (see
Fig. 8.b): the obtained estimations are quite stable, with a

standard deviation on Z equal to 3.6 mm. This last exper-
iment involving a large time interval also proves that the
discretization step has really no more influence.

As explained in Section 3.2, still more robust results can
be obtained by positioning the camera in such a way that
the point constantly appears at the center of the image
(see Fig. 6.b). Indeed, effects of the measurement errors
are minimized for that position.

The estimated 3D point coordinates obtained after the
realization of the focusing task are shown in Fig. 7.c and
Fig. 8.c. For n = 1, we obtain a standard deviation on 7
equal to 1 cm and, for n = 20, it is equal to 1.3 mm (that
is 0.2%). These results are particularly stable and accurate
compared with all the previous ones.

Because of the quality of the obtained results using a
large value of n and a simple average filter, we have not
implemented a method to integrate all the successive mea-
sured data. Such a method [27], [36] would of course be of
great interest if inaccurate results were obtained, or if the
camera motion was unknown, which is not within the scope
of this paper. In conclusion, these experiments confirm
that an important camera translation between the two con-
sidered images is essential to obtain stable results (which
is quite well-known). Furthermore, they demonstrate that
a continuous method can reach stable results without any
bias provided adequate camera motions are performed. Fi-
nally, they prove that the accuracy of the estimation can
be improved by controlling the location in the image of the
primitive projection.

4.2 Case of the Cylinder Reconstruction

Let us now apply this approach to the 3D reconstruction
of a cylinder. In that case, the parameters to be estimated
are its radius R, the direction (U, V, W) of its axis and the
coordinates (Xg, Yy, Zy) of the point of the cylinder axis
the nearest to the camera (see Appendix Section A.4).

The initial image acquired by the camera is shown in
Fig. 9.a (note the superimposed two white lines correspond-
ing to the two selected limbs of the cylinder). The image
processing step now consists in tracking these two straight
lines along the image sequence and in determining the (p, )
parameters describing their position in the image. The ex-
traction, maintenance and tracking of the contour segments
(in fact a list of edge points) are achieved in 40 ms. The
technique we use is described in [7]. It is based on a local
and robust matching of the moving edge-points constitut-
ing the selected line.

(a)

Fig. 9. Images acquired at the initial camera position (a) and after
the realization of the focusing task (b).



Since the observed phenomena are similar to those al-
ready described in the case of the point reconstruction, we
only report the results obtained using a not constrained
camera motion with n = 1 (see Fig. 10), and results ob-
tained using our active vision scheme with n = 20 (see
Fig. 11) once the focusing task has been achieved (see
Fig. 9.b). We can point out the very significant improve-
ment resulting from the use of the active vision paradigm.
As far as depth estimation is concerned, the maximal er-
ror on Zy is about 2 mm using active vision, which can
be compared very favorably to the important error (about
5 cm) obtained using only dynamic vision. As far as cylin-
der radius is concerned, the error between its real value
(40 mm) and the estimated one is plotted in Fig. 12. Af-
ter the first iterations, this error is lower than 0.5 mm and
generally around 0.2 mm, whereas the cylinder is located
at 80 cm from the camera. These accurate results validate
the proposed active vision scheme.
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Fig. 10.
using dynamic vision for n = 1 (Vx = V;

Qx = Qy = Qz= 3 dg/s).

Successive values of the 3D cylinder parameters estimated
= Vz= 50 mm/s,

5 CONCLUSION

We have described an original formulation of the prob-
lem of reconstructing 3D parametric geometrical primitives
using a mobile monocular camera. The introduction of
the interaction matrix related to the primitive under con-
cern allows us to define a general and attractive framework
which can be applied to usual primitives such as points and
straight lines, but also to more complex primitives such as
cylinders, circles and spheres, without additional complex-
ity in the derivation of the solution. Let us recall that our
method only requires an explicit equation of the primitive
to be reconstructed, from which we can determine the equa-
tions of the limb surface, the projection of the primitive in
the image, and the related interaction matrix. Thanks to a
continuous paradigm based on the link between the image
motion and the camera velocity, our 3D structure estima-
tion scheme simply consists in determining the intersection
of the limb surface and the viewing cone.

Since the nature of camera motion affects the accuracy
of the results, we have focused on this critical aspect of
dynamic vision. We have mathematically and experimen-
tally shown that very noticeable improvements can be ob-
tained in the 3D reconstruction, if the camera viewpoint
is properly selected, and if optimal camera motions are
generated. Our approach consists in particular in fixat-
ing at and focusing on the 3D primitive to be determined.
This confirms the point of view of previous works on the
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Fig. 11. Successive values of the 3D cylinder parameters estimated

using the active vision scheme for n = 20.
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Fig. 12. Errors (in mm) between the real value of the cylinder radius
and the estimated one using the active vision scheme.

promising strength of active vision paradigms [3], [4], [6],
[32] and gaze-holding [5], [24]. We have stressed that this
active vision approach can be adequately performed using
visual servoing. A real-time version of this structure from
controlled motion scheme has been implemented on an ex-
perimental system, and it turns out to be powerful and
efficient.

Current work is devoted to the development of global
perceptual strategies able to appropriately combine a suc-
cession of such optimal individual primitive reconstruction
steps to recover the complete spatial structure of complex
scenes [23].

APPENDIX

We describe in this appendix how the 3D structure esti-
mation method described in Section 2 can be applied to the
most representative geometrical primitives: straight lines,
circles, spheres and cylinders.

A.1 Case of the Straight Line

A straight line can be represented as the intersection of
two orthogonal planes:

h(X, P) = {AZX—i—BgY—i—CgZ—i—Dz -0 (29
AI+ Bi+Ci=1

withd A2+ B2 +C3=1
A1As + B1 By + C1C2 = 0.

A minimal and complete representation of the resulting 2D
line can be derived:

g(z,p) = xcosf 4+ ysind —p=20 (27)

cos = Aj/\/A?+ B?
with sinf = Bi/\/A?+ B?
P = —Cl/w/A%—}—B%.



Furthermore, the function p defined in (7) is obtained
from (26) as follows:

1/Z = p(z, Pp)
with A = —AQ/DQ,B = —BQ/DQ and C = —CQ/DQ. Fi-

nally, the relation between the image line motion and the
camera velocity is given by the interaction matrix related
to p = (p,0). More precisely, we have [14]:

=Ax+ By+C (28)

Apcos@ Apsind

p = —App
= ( Agcost@ Agsinf  —Agp )V(O) (29)
(L4 p%)sind —(1+p®)cost 0
+ . 0
—pcosf —psinf -1

with A\, = —Apcosf — Bpsinfl — C, and A\g = Bcosl —
Asin$.

We now have to estimate the parameters of the two
planes which define the straight line from the measured
values of p, p and T

Let us first point out that parameters A;, B; and C; are
straightforwardly obtained from p and 8. Next, as stated in
Section 2, parameters describing function p are determined
from the measure of the camera velocity and the resulting
straight line motion in the image. Indeed, A, B, C are given
by the resolution of the following linear system:

—Apcost) — Bpsind —C = A,
—Asinf + Bcos0 = Xy (30)
Acosf + Bsinf — Cp = 0
where A, and Ag are obtained from (29):
I p+ (1+ p?)(Qy cos 0 — Qx sind)
Fe Vx cos@ + Vy sinf — pVy
. (31)
N = 0+ p(Qx cosf + Qy sinb) + Qyz
b= Vx cos@ + Vy sinf — pVy '
Finally, we get Dy = 1//A2+ B2+ (C?, Ay = —AD»,
BQ = —BD2 and 02 = —CDQ.
We can easily show, by computing ——— defined

0P

from (10), that camera motions unable to proviLde any in-
formation on the spatial location of the 3D straight line
are such that Vx cosf + Vy sinf — pVz = 0 (see also (31)).
These motions are such that the center of projection O con-
stantly belongs to the plane defined by the initial position
of O and the image line.

A.2 Case of the Circle

A circle can be represented as the intersection of a sphere
and a plane which contains the center of the sphere:

(X — X0)2+(Y - Y0)2+(Z - Zo)z—R2IO
h(i, E): . :
UX=-X0)+ V(Y —-Yo)+W(Z—-2p)=0
(32)
where R is the radius of the circle, Xy,Yy and 7, are
the coordinates of its center and U,V,W are the com-
ponents of the vector normal to the circle plane (with

U?+V?+ W2 =1). Function u defined by (7) is directly
obtained from (32):

12 =p(z,Pp) = Az + By + C (33)
A = U/UXeg+ VY +W2Zy)
where B = V/(UXo+ VYy+WZ)

The ellipse which results from the projection of a circle

can be defined as follows [8]:

9(z,p) = 2® + a1y’ + 2azey + 2a3z + 2a4y + as = 0 (34)
= (B2K + 1 — 2BY,)/ag
(AB[{ — BXO — AYo)/ao

az = (ACI{ - CXO - AZo)/Clo

a4 = (BCI{ - CYO - BZQ)/CLO
(02]{ + 1-— QCZQ)/(IQ

apg = A2I\7 + 1-— 2AXO

K=XZ+Y+ 72— R?

with (35)

The motion of the ellipse parameters is given by [14]:

dl = 2(B(12 - Aal)VX + 2(11(3 - ACLQ)VY
+2(Ba4 - Aa1a3)VZ
+2a4Qx + 2a1a3Qy — 2(12(a1 + 1)QZ
Ci2 = (B - AGQ)VX + [BCEQ - A(?(I% - al)]Vy
+[A(a4 — 2&2&3) + Bag]VZ
+a3Qx + (2az2a3 — a4)Qy + (a1 — 2a3 — 1)Qz
Ci3 = (C - Aag)VX + [A(a4 - 2&2&3) + Cag]Vy
+[Caz — A(24d3 — a5)]Vz
—asQx + (1 + 243 — a5)Qy + (a4 — 2a2a3)Qz
Ci4 = (agB+aQC—2Aa4)VX+(a4B—|—alC—2Aa2a4)Vy
+(Ba5 + Ca4 - 2Aa3a4)VZ
+(as — a1)Qx + (2aza4 + a2)Qy — (2aza4 + a3)Qz
Cig = 2(0&3 - A(Is)VX + 2(0&4 - A(IQCE5)VY
+2(Ca5 - Aa3a5)VZ
—2a4Qx + 2((13(15 + Clg)Qy — 2asa5Q 7.
(36)
Parameters P; = (A, B,C) are given by the mean least
squares solution of the linear system defined by (36), from
which we can deduce parameters U, V, and W. We can

show that

is always of full rank 3, provided a cam-

era translational motion is performed. This means that an
estimation of the 3D circle parameters can be obtained for
any camera motion with a non zero translational compo-

nent. Finally, using (35), we obtain the following linear
system:
( A2CL1)]{ + 2Aa1X0 — QBYO = a; — 1
(AB A2a2)A — ( — 2Aa2)X0 — AYO = Qa3
(AC A2a3)lx - (C - 2A613)X0 - AZO = as
(BC A2a4)lx —|— QACl4X0 CYO — BZO = aa
( A2a5)[x + QACL5X0 - QCZO = das — 1
(37)

The resolution of (37) allows us to simply determine

Xo, Yo, Zy and K (and thus R).



A.3 Case of the Sphere

The image of a sphere of radius R and center with coor-
dinates (Xg, Yo, Zp) is again characterized by an ellipse of
equation:

22 + a1y? + 2a02y + 2a3z + 2a4y + a5 = 0 (38)
ap = (R — Z§)/ a0
as = (XOYO)/GO
. as = (XQZQ)/CEQ
th 39
he ay = (YOZO)/GO (39)
as = (R2 Y02)/a0
@ = R2—Y02—Zg
and function p is given by [14]:
1/Z =z, Pr) = Az + By + C (40)
A = Xo/(XZ+YE+Z2-RY
with { B = Yp/(X2+YZ+Z2 - R?) (41)
C = Zo/(XE+YE+ ZE — R?)

where P; = (A, B, C), which represents the normal of the
limb plane of the sphere, can be computed exactly as in
the circle case. Finally, the radius and the position of the
sphere can be determined using (39) and (41).

A.4 Case of the Cylinder

Let us now apply the same approach to the reconstruc-
tion of a cylinder, the equation of which is given by:

MX,P) = (X—X0)’+ (Y —Y0)’+(Z - Zo)*

(UX+VY +WZ)?-R*=0 (42)
where R is the radius of the cylinder, (U, V, W) represents
the direction of its axis, and (Xg, Yo, Zo) is the point of the
cylinder axis which is the nearest to O. The parameters to
be estimated are thus P = (U, V, W, Xq, Yo, Zo, R).

In the non-degenerate cases, the projection in the im-
age plane of a cylinder is constituted by two straight lines
Di(p1,01) and Da(pa,P2). Function p defined by (7) is
given by [8]:

/7 = p(z, Py)

where A = Xo/K, B=Yy/K, and C = Zy/K (with K =
X2+Y?2+72—R?) are the components of the vector normal
to the limb plane of the cylinder.

Besides, the motion of the cylinder in the image resulting
from camera motion is described by the interaction matrix
related to p = (p1, 61, pa, 02):

—Az+By+C (43)

Ap, cos O
Ap, cos 0y
Ap, cos 03
Ag, cos O
(1+ p?)sin by
—p1 cos by
(1+ p%)sin 0
—pa cos O

Apy sinty
Ag, sin 01
Ap, sin s
Ag, sin 0y

_)‘P1p1
_)‘Glpl
_)‘Pzp2
_/\€2p2
—(1+p3)costy 0

—p1sin 6y
—(1+ p3)cosby 0

—pa sin O

Ap, = —(Ap1cos by + Bpysinth + C)
. Ay, = Bceost#y — Asinb,
with Ap, = —(Apa cos by + Bpasin by + C') (45)

Ag, = Bcosfy — Asinfa.

Parameters P; = (A, B,C') can be determined by solv-
ing the linear system (45), A,,, As,, Ay, and Ag, being
directly obtained from (44), exactly as in the previous case
of the straight line.

It can be derived from (44) that the camera motions
which do not permit to solve the linear system (45) are
such that the center of projection O always remains in
one of the planes defined by the initial position of O and
the image lines (i.e. Vxcosfy + Vysinfy — p1Vz = 0,
or Vxcosfs + Vysinfy — p2Vz = 0). Indeed, in that
case, only two equations of (45) are valid, whereas three
are necessary to obtain a unique solution. Moreover, if
the camera motion is such that O constantly belongs to
the line resulting from the intersection of the two planes
(i.e., such that Vxcosf; + Vysinf; — p1Vz = 0 and
Vx cosfly + Vy sinfly — paVz = 0), then A, , Ag,, A,, and

Ag, are all let indeterminate.

Next, parameters P describing the location and the
structure of the cylinder can easily be obtained from the
intersection of the limb plane Py and the planes P;; and
P:y, defined by O and the two image lines D; and D3 (see
Fig. 13). That intersection is formed by the two lines Dp, ,
and Dp, ,, from which we can determine the position of the
cylinder axis. Indeed, its equation, which is sufficient to de-
termine U, V, W, Xy, Yy and Zj, is given by the intersection
of the two planes P, and P4, orthogonal to Py and Pys
and containing DPp,, and Dp, , respectively [8]. Finally,
the cylinder radius R is obtained by computing the dis-
tance between the cylinder axis and Dp,, or Dp,,.

2

Da

Fig. 13. Top view of a\cylinder.

It 1s also possible to develop a similar method for esti-
mating the 3D structure of a cylinder using only the pro-
jection of one limb in the image [8]. Such a method is useful
when the correspondence between straight lines extracted
from the image and limbs of the cylinder is not obvious to
determine.
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