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Short Papers 

Visual Servoing in Robotics Scheme 
Using a Cameraaser-Stripe Sensor 

D. Khadraoui, G. Motyl, P. Martinet, J. Gallice, and F. Chaumette 

Abstruct- The work presented in this paper belongs to the realm 
of robotics and computer vision. The problem we seek to solve is the 
accomplishment of robotics tasks using visual features provided by a 
special sensor, mounted on a robot end effector. This sensor consists of 
two laser stripes fixed rigidly to a camera, projecting planar light on the 
scene. First, we briefly describe the classical visual servoing approach. 
We then generalize this approach to the case of our special sensor hy 
considering its interaction with respect to a sphere. This interaction 
permits us to establish a kinematics relation between the sensor and the 
scene. Finally, both in simulation and in our experimental cell, the results 
are presented. They concern the positioning task with respect to a sphere, 
and show the robustness and the stability of the control scheme. 

Index Terms-Vision-Based Control, Task Function, Laser-Stripe, In- 
teraction Matrix, Sphere. 

I. INTRODUCTION 

Nowadays, the vision sensor is increasingly an essential element 
in the resolution of complex problems of environment perception. 
Its miniaturization and recent image processing developments have 
made possible, first, the mounting of the visual sensor on the end 
effector of a robot, and secondly, the integration of visual information 
in a robot control loop. These developments have made feasible the 
accomplishment of many more robotics tasks such as target trachng 
and obstacle avoidance. 

Some of the earliest work on the use of sensory feedback was done 
by Bolles and Paul in [4] and was experimented in a programmable 
assembly system. Sanderson and Weiss conducted work on the use 
of visual data in robot control [15]. They presented two separate 
approaches. The first, commonly called “position based”, is founded 
upon the adjustment of the end effector pose parameters [2], [3], 
[14]. Thus, in this approach, an interpretation step of the end effector 
pose is necessary. This step usually includes some inaccuracies, 
depending on the visual sensor geometry, environment and robot 
models. Moreover, the search for the end effector pose is time 
consuming and may affect the system’s overall behavior. The second 
approach, which removes the drawbacks of the previous one, directly 
controls the end effector of a robot using visual data. This control 
scheme corresponds to the one we developed and is called “visual 
servoing”. 

In this approach, the control is directly specified in terms of 
regulation in the image. It is noteworthy that this approach has the 
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advantage of avoiding the intermediate step of the estimation of the 
3D pose T of the workpiece with respect to the end effector. 

It has been shown in [6] that all visual servoing tasks can be 
expressed as the regulation to zero of a function e ( r , t ) ,  called 
vision-based task function, and defined by: 

e ( r ,  t )  = C [s(T;  t )  - s*] (1) 

where 
S ( T .  t )  is the value of the visual features currently observed by 
the camera. These features are associated with the 2D geometric 
primitives in the image that correspond to the projection of the 
3D primitives in the scene. They depend on the pose T between 
the sensor and the scene; 
s* is the desired value of s to be reached in the image; 
C is a matrix which has to be selected as an approximation to 
the inverse Jacobian matrix related to s. 

For a given vision-based task, modeling consists in choosing the 
relevant visual features to achieve the task, and then constructing 
the matrix C. It requires the establishment of the interaction matrix 
related to the chosen visual features, which is defined by: 

s = La[ (2) 

where i is the time variation of s: and E is the object velocity with re- 
spect to the sensor (with < = (T; 52) = (Tz7 T,,T,, iIz,  0,; O z ) T ) .  

The control problem can then be formalized in terms of sensor- 
based-control [l l]  applied to visual servoing. A basic control law 
consists in trying to insure that the task function e ( r , t )  behaves 
approximately like a first-order decoupled system. In that case, we 
should have e = -Xe where X(>O) controls the speed of the 
exponential decrease. 

Since e ( r : t )  depends on the motion of both object and sensor, 
we have: 

(3) 
de de &=-tc+-  dT dt 

where the sensor velocity Ec is considered as the input of the robot 
controller. Therefore, (,- can be chosen as: 

(4) 

where & / d ~  and %/at have to be determined. It is shown in [ll] 
that a sufficient condition for an exponential convergence of e is 
given by: 

e (“-I > o .  
aT d r  

This relation allows us to choose C as C = LbL,.. , where L&* 
is the pseudo inverse of the interaction matrix computed for s = s* . 
Indeed, in that case, we have de/& = L.GLS. Lg which allows 

us to consider de/& = I , ,  in the control law (4). The positivity 
condition ( 5 ) ,  now reduced to LT,’,,, Lg > 0. is thus satisfied in the 
neighborhood of s* . Furthermore, de /a t  represents the contribution 
of a possible autonomous target motion and is generally unknown. 

h 
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Consequently, if the object is motionless ( a c / a t  = 0), the control 
law (4) can finally be written: 

(6) 
T+ = = -ALis=s- [ S ( T .  t )  - S * ]  

This simple control law only requires the tuning of gain A, which 
depends on the rate of the control law and the robot dynamics. 

11. COUPLING A CAMERA AND LASER STRIPE 

In [SI and [SI, Chaumette and Espiau et al. modeled a set of low 
level geometrical primitives such as points, lines, circles, cylinders 
and spheres using a single camera. Our work also consists in the 
modeling of visual data, but by using a sensor termed "active" in the 
sense that it is composed of a camera and two laser stripes. The use 
of laser stripes allows us to reduce illumination problems. A camera 
alone detects more information about the image than necessary, and 
therefore computing time of the image processing is generally high 
because of the complexity of the scene. Laser stripes remove this 
drawback because only the information given by the projection of 
the laser stripes on to the scene is detected by the visual sensor. 
Laser stripes in robotics have been widely used in real-time tracking 
of  moving objects [13], and also in many applications involving 
the recognition and interpretation of a workpiece surface [I]. The 
particular aim of these applications was to search for the three 
dimensional information of the visualized objects. 

In our application, we use two laser stripes rigidly attached to the 
camera, which are fixed to a robot manipulator. Each stripe projects 
a light plane on to the scene, which is static. 

In this case, the visual features observed are very straightforward 
to detect and depend only on the geometry of the object. The features 
are limited to points of discontinuity or straight lines in polyhedra1 
scenes [SI, [9], [12]. Therefore, image processing is thus significantly 
reduced, procuring a saving of time which enhances the dynamics of 
the system. The only constraint imposed by the laser stripe is to know 
the approximate position of the laser plane with respect to the camera 
frame. This can be obtained using classical calibration techniques [8]. 
Knowing the laser plane parameters and the geometry of the objects, 
we can model visual data observed in the image. After modeling the 
related interaction matrices, we can build the control scheme given 
by (6) which will enable visual servoing. 

We now present a general method for the modeling of these 
interaction matrices. Let us consider an elementary visual signal 
s provided by this sensor. This camera-laser feature is defined as 
a function s = f ( p ( r ) )  which depends on the configuration of 
the considered primitives, represented by the parameters p .  These 
parameters p depend on the pose r between the sensor and the 
primitive. So, the time variation of s can be obtained as: 

. a s a p .  
- -T  
a p  8T (7) 

where S represents the time variation of s in the image, and i. 
is nothing but (, the object velocity with respect to the sensor 
(I = i- = dr /d t ) .  We then have the interaction matrix L.; expressed 
by 

The computation of a s / d p  is generally trivial, and we will see in the 
next section how to compute a p / a ~ .  

If we choose a new representation of the considered primitive, 
parametered by the function q = y(p). which depends on the initial 
parameters p .  we can express 4 as follows: 

(9) 

Elliuse given 

discontinuity 
Ellipse given 
b thelaser 
skpe B 

Camera-laser coupling Image plane 

Fig. I. Camera-laser coupling with a sphere 

and then the corresponding interaction matrix is given by 

In the past [12], this method has been used to compute interaction 
matrices related to polyhedral scenes. In that case, visual features only 
consist of points of discontinuity and straight lines. But this method 
is more general since it can be applied to any geometrical primitive. 
In the next section, we present the case of a spherical scene using 
several representations in the image plane [lo]. 

111. MODELLING VISUAL FEATURES OBTAINED FROM A SPHERE 

In order to model visual features obtained from a spherical scene, it 
is necessary to select those which can be used in the control scheme. 
Then, we have to compute the related interaction matrix.The sphere 
(see Fig. 1) is represented by its center mo = ( x o y o a ~ ) ~  and its 
radius 1'. such as 

a 2  
( x  - .co)' + (y  - yo)' + ( 2  - 2 0 )  - T = 0. (11) 

Each laser stripe rigidly attached to the camera is characterized by 
a plane equation: 

K X  + by + cz + d = 0. (12) 

As shown in [7], the visual servoing approach is not sensitive 
to approximate models and calibration errors. Therefore we can 
consider, without loss of generality, a pinhole camera model with 
unit focal length. so that a point z(s. y, z ) ~  in 3D space projects 
into X =: (XI'l)T on the image frame with 

x = L. (13) 
2 

By using (13) into (12) and (1 l), we can express the ellipse equation 
giving the projection in the image of the intersection between the 
sphere anid the laser plane (see Fig. 1). Obviously, the camera only 
detects the portion of the ellipse corresponding to the near side of 
the sphene. The equation of this ellipse is given by [SI 

El ( X .  A )  = X' + Al lT2  + 2AzXY + 2A3X 
+ 2A4Y + As z= 0 (14) 

where 

241 = [b'(z; + I J ~  + x i  - T ' )  + 2bdyo + d2]/Ao 

'42 = [ a b ( ~ i  + + - T ' )  + adyo + b d ~ o ] / A o  
143 = [ o c ( z i  + yo2 + s i  - 1 , ' )  + crdzo + cdso]/Ao 

. l a  = [bc(zX + y,' + Z; - T ' )  + b d ~ o  + cdyo]/Ao 
As = [c2(z: + yo2 + J$ - 1 . ' )  -+ 2cdzo + d']/Ao 

A" = n2(2,2 + yz + x; - T 2 )  + 2adzo + d 2  # 0. (IS) 

We now describe the computation of the interaction matrices related 
to three representations of the sphere projection in the image. The 
first uses the A, parameters above. The second uses the classical 
moments of inertia of the ellipse, and the third searches for the points 
of disconitinuity depicted in Fig. 1. 
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A. A, Parameters 
In this case, we have s = A = (.41. . . . . 24;) and p = 

(.. / I .  ( . d. .ro, yo. 30.1 . ) .  In order to establish the interaction matrix 
related to these parameters, we have to compute the time variation 
of A which can be expressed as follows: 

In our conditions, we have ?I = b = i. = 11 = 1 = 0. since camera 
and lasers are rigidly coupled, so that the laser plane and the image 
plane are immovably locked together. p can thus be restricted to 
p = rrLo = (xo.yo, :o). We have m u  = -T - f2 x m o .  which 
allows us easily to compute D p / a ~ .  We obtain 

0 -1 0 20 0 -L(J 

-1 0 0 0 - 2 0  yo 

0 0 -1 -yo .)'[I 0 
( 

DT 

Moreover, we have from ( 1  S), (1 8), shown at the bottom of the page, 
with CL = 2a2.ro +2(id. 3 = 2ciLyo and n, = 2n' :o. LA is thus easily 
obtained by the matrix product of aA/ap and a p / d T  

B. Moments of Inertia 
The ellipse parameters can also be expressed from moments of 

inertia i l l L J  = Y ~ ~ ~ C y t r ~ Y l Y ' I ' - '  (with 1 + j  < 3 ) .  which can easily 
be extracted from a digitized image. Then, as new representation of 
the ellipse, we choose the parameters p = (A-c. 1;. //x, 1/11. p o ~  j 
with [SI 

where aA/% is nothing but the interaction matrix L i  and i?p/3A 
can easily be determined from (19) We deduce the interaction matrix 
LF. expressed with the representation y using the following relation 
@I:  

A1 = p o 2 / 1 - I L O  

242 = /I1 1 / / L A "  

A 4  = -(E,/I02 + I ; P l l j / / l 2 o  

A s  = [ / I ? ,  - j C 2 0 ~ / 0 2  + X , L p r o  + 2/~IlAYCl< + / ~ " 2 ~ : L l / / ~ L o .  

AJ = - ( X ,  p r o  + l ? / / i i ) / / / m  

(21) 

C. Points of Discontinuity 
In order to elaborate the interaction matrix related to the points 

of discontinuity, it is necessary to determine the expression of two 
ellipses (see Fig. 1). The first ellipse, given by (14), is the projection 
on to the image of the intersection between the sphere and the laser 
plane. The second is given by the sphere projection on to the image (a 
circle if the sphere is centered in the image) and can be expressed by: 

E.L(X:  B )  = X2 + B1Y2 + 2ByLXI' + 2B3X 

+2B4Y+l33 = o  (22) 

where [5] 

B ,  = [,.Z - :rp - :;]/Bo 

Bz = [ . r o ~ o ] / B o  
133 = [.roso]/Bo 

B4 = [ Y o ~ o l / &  

13- a -  - i1.2 - .r; - y;]/l3" 

(23) B ~ .2  - yi - " # 0. 0 - 1  

The intersection of these two ellipses defines two points which 
are precisely the points of discontinuity under consideration. Then, 
we can determine the interaction matrix related to each point of 
discontinuity X, = ( X ? ,  I:,). We compute the time variation of 
the expression El ( X .  A )  and E2 ( X .  B ) .  We have: 

We thus obtain a linear system with -$,->?c as unknowns. The 
resolution of this system gives the interaction matrix Lke of the 
point of discontinuity, knowing: 

the coordinates X, . Ye of the point of discontinuity extracted 
after each image acquisition; 
A given by (15), A given by (16), B given by (23) and & 
obtained in a similar manner to A. These expressions depend 
on [ and 3D scene parameters. 

IV. RESULTS 
As a testbed, we used two laser stripes coupled to the camera 

sensor, mounted on the end effector of a S degrees of freedom robot 
manipulator which does not provide the rotation f!, . The chosen 
task consists in positioning the camera with respect to a sphere in 
such away that the projection in the image gives a centered circle 
( X O  = go = 0, 20 = :* j .  The experiments were performed with a 
sphere of radius 3 cm, the desired distance i* between camera and 
object being fixed at 30 cm. We used the different parameterizations 
presented in the previous section, i.e., the -4, parameters, the moments 
of inertia and the points of discontinuity. In all our tests, we used a 
constant gain A, fixed experimentally at 0.1. With higher values, the 
control law can become unstable, especially if the robot starts very 
far from the desired position. On the other hand, with lower values, 
stability is always ensured with a slower speed of convergence. 
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Fig. 2. Use of the 4, parameters in the control law 

A. Results Using the Az Parameters 

We first perform the positioning task using the -4, parameters. Both 
laser planes have been calibrated in order to produce two orthogonal 
ellipses centered in the image at the desired position. These particular 

(see (15)), s* is given by s* = ( .~ ; ,~OA; I . .~~ ,AT~O' J~I~OAS~)  with: 

AT, = [h?, ( X *  - 1 2 )  + d;l]/d;l 

il;1 = [ h l , ( . / I ( ;  - r 2 )  + h l I d l l 2 * ] / &  

AJI = [e:, ( 2 *  - P) + 2 C l ,  d / l 2 *  + dfl]/d:l 

AT:! = d :2 / [& (z *  - 2 )  + 44 
A;, = [ ( I / Z C / L (  3 ~ 1 ) + ~ ~ l L ~ ~ / 2 z * ] / [ ~ , ~ ~ 2 ( ; *  - '2) + &]  

* ,  
configurations simplify the relation ( 1  1 )  which is given by 

Lasrr (Cll = 0, b l l  # 0. C l 1  = 1 
d 2 ,  = - ( 2 2 *  - p*) / ;*  
(112 # 0: b / 2  = 0. C l 2  = 1 
d12 = - ( ; 2 *  - p * ) / _ * .  

* 2  

(25)  

With two laser stripes, we can choose s = 
( A i i ~ b i  .&I -q41AiI~IZ~22-432A42Ai2) where A,, is the The interaction matrix related to s = s* is expressed as (26), 
parameter A, corresponding to the ellipse . j .  At a desired position shown on the next page. In this case, the rank of Ly& is 3, with 

=[.E(.* - 2 )  + 2 C ( 2 & 2 3 *  + d;2]/[n:2(2* - 1 2 )  + ( 2 3  

{ 
{ Lasrr 2: 
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kernel given by: 

This means that 3 camera degrees of freedom, correctly chosen 
using the form of the interaction matrix, are sufficient to achieve the 
positioning task. We have selected the camera translational velocities 
T, . T,, and 7:. In this case, the corresponding interaction matrix 
consist9 of'the first three columns of the general form given in (26). 

We note that, because of the particular configuration of Ly.s=s.. 0, 
could be used instead of 1,);. and R, instead of 1,. 

We present simulation results in Fig. 2, with noise corresponding to 
errors in the robot and sensor geometric models, as well to errors due 
to the image processing (2% white noise on the image coordinates 
and on the camera location). The different parts show (see Fig. 2): 

(20,): the target image (configuration of the ellipse in the desired 
image); 
( 2 b ) :  the initial image observed by the camera before visual 
servoing ; 
(2 ( . ) :  the behavior of each component of the control vector 
during visual servoing (translational velocity 7, Ty , T, ); 
( 2 4 :  the evolution of the overall error /Is - s* 1 1 ;  
(2c): the behavior of each point of discontinuity during the task. 

0 

b l d l  

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Lt+,. = -  

0 
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Fig. 3 .  Use of the moment, of inertia in the control law 

We observe in Fig. 2 that the convergence to the desired image 
is correctly performed. The stability and robustness of the control 
scheme have been proved under a variety of simulation conditions. 
Note that the noise introduced into the measurements and robot 
locations brings little perturbation to the system. 

B. Results Using the Moments of Inertia 
We can perform the same positioning task from parame- 

ters given by the moments of inertia We now choose s = 
( X , , . I ; , . ~ L O ~ . ~ ~  I ~ .  ~ I O L ~ . - T ~ ~ ~ . ~ ; ~ . / I L ( I * .  j c 1 1 2 , j m 2 ) .  Using (19), 
s* is expressed by 

0 

0 
-X*I< 

2bi i 
* 0 

I-* Ii 
0 -~ 

21112 

The expression of the interaction matrix related to s = s* is easily 
obtained; see (29), shown at the bottom of the previous page. 

This matrix has the same kernel as that using the A, parameters. 
In this case, we used camera velocity components T,, Rz and R, 
to accomplish the task. The expression of the corresponding task 
function and control law can be obtained in a similar manner as 
stated previously. Fig. 3 presents the simulation results obtained in 
the presence of noise. 

C. Results Using the Points of Discontinuity 
Finally, the positioning task with respect to a sphere was carried 

out in our experimental cell using the points of discontinuity of the 
ellipse. Using two laser stripes, we have s = ( X , ,  Yl. . . . . X q .  1 ; ) .  
where the first two points belong to laser plane 1 (all = 0) and 
the last two points belong to laser plane 2 ( b l a  = 0). At the 
desired position, the sphere is centered in the image, thus s* = 
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Fig. 4. Use of points of discontinuity in the control law 

(X*. 0. -X*. 0.0. I.7*7 0. -Ir*) with X* = Y-* = , r / J n .  

The rank of the interaction matrix related to s = s* is again 3. The 
matrix is obtained as (30), shown at the bottom of the previous page. 

The processing applied to the image consists of a simple direct 
thresholding which keeps only the information corresponding to the 
over-light area due to the laser stripe projection on to the scene. 
It is then easy to extract the points of discontinuity of the ellipse 
with a sampling rate equal to the video rate (25 Hz). Results 
obtained in our experimental cell using the three translational degrees 
of freedom are shown in Fig. 4. They show the stability and the 
exponential convergence of the control law. We may remark that 
these experimental results and those obtained in simulation with other 
parameters display approximately the same behavior. 

V. CONCLUSION 

In some applications, using only a camera may tum out to be 
restrictive due to the difficulty of extracting “useful” information from 
the image. That is why a special sensor, created by the coupling of a 
camera and laser stripe, was chosen. Indeed, with such a sensor, image 
processing is significantly reduced, and moreover the primitives in the 
image are relatively straightforward. In this paper, we have presented 
a general method for modeling visual features using this useful sensor, 
and applied this method to a spherical scene case. Then we integrated 
this work under the taskfunction approach which enables positioning 
robotics tasks to be performed with good results from the point of 
view of robustness and stability. Finally, in simulation and in our 
experimental cell, results were presented for the positioning task with 
respect to a sphere. 

In all the experiments, the interaction matrix and its pseudo- 
inverse C are computed only once since they are chosen constant 
and correspond to their value computed at s = s* desired image. 
Computation time is thus the same as far as interaction matrices are 
concerned. In the same way, numerical stability is equivalent (and 
good) for the three representations that we have studied. The main 
differences between the three approaches are the manner of extracting 
the visual data by image processing and the level of noise related to 
each of them. In our case, no significant difference has really been 

200 

pointed out. Let us note that the method we have presented to compute 
the interaction matrix is general. Similar derivations could be obtained 
for other non polyhedral objects such as circles, cylinders, etc. 

We have demonstrated the various advantages of a camera-laser 
coupling. Nevertheless, this sensor has some constraints. This cou- 
pling involves some restrictions in the laser stripe projection on to 
the scene. It is necessary to choose the most favorable attitude of the 
laser stripe in order to achieve a robotics task under conditions of 
optimum stability. Moreover, a calibration step is essential in order 
to compute each parameter of a laser plane. This calibration step is 
necessary in order to compute the desired position to be reached in 
the image (this could also be done by a learning approach) but, as 
shown in [7], calibration parameters are not sensitive for the stability, 
robustness and convergence of visual servoing. 
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Subspace Methods for Robot Vision 

Shree K. Nayar, Sameer A. Nene, and Hiroshi Murase 

Abstruct- In contrast to the traditional approach, visual recognition 
is formulated as one of matching appearance rather than shape. For 
any given robot vision task, all possible appearance variations define 
its visual workspace. A set of images is obtained by coarsely sampling 
the workspace. The image set is compressed to obtain a low-dimensional 
subspace, called the eigenspace, in which the visual workspace is repre- 
sented as a continuous appearance manifold. Given an unknown input 
image, the recognition system first projects the image to eigenspace. The 
parameters of the vision task are recognized based on the exact location 
of the projection on the appearance manifold. An efficient algorithm for 
finding the closest manifold point is described. The proposed appearance 
representation has several applications in robot vision. As examples, a 
precise visual positioning system, a real-time visual tracking system, and 
a real-time temporal inspection system are described. 

Index Terms-Visual workspace, parametric eigenspace representation, 
learning appearance manifolds, image recognition, nearest neighbor, 
visual positioning, real-time tracking, temporal inspection. 

I. INTRODUCTION 
For a robot to be able to interact in a precise and intelligent manner 

with its environment, it must rely on sensory feedback. Vision serves 
as a powerful component of such a feedback system. It provides 
a richness of information that can enable a manipulator to handle 
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uncertainties inherent to a task, react to a varying environment, and 
gracefully recover from failures. In order for the robot to interact 
with objects in its workspace, it requires a-priori models of the 
objects. Traditionally, robot vision systems have heavily relied on 
shape (CAD) models [4]. 

Will shape representation suffice? After all, most vision appli- 
cations deal with brightness images that are functions not only of 
shape but also other intrinsic scene properties such as reflectance and 
perpetually varying factors such as illumination. This observation has 
motivated us to take an extreme approach to visual representation. 
What we seek is not a representation of geometry but rather up- 
pearance [20], encoded in which are brightness variations caused by 
three-dimensional shape, surface reflectance properties, illumination 
conditions, and the parameters of the robot task. Given the number 
of factors at work, it is immediate that an appearance representation 
that captures all possible variations is simply impractical. Fortunately, 
there exist a wide collection of robot vision applications where perti- 
nent variables are few and hence compact appearance representation 
in a low-dimensional subspace is indeed practical. 

A problem of substantial relevance to robotics is visual semoing; 
the ability of a robot to either automatically position itself at a desired 
location with respect to an object, or accurately follow an object as 
it moves through an unknown trajectory. We use the visual servoing 
problem to describe our appearance based approach. To place our 
approach in perspective, we review existing methods for servoing. 
All of these methods can be broadly classified into two categories; 
(a) feature/model based and (b) learning based. The first category uses 
image features to estimate the robot’s displacement with respect to the 
object. The objective is to find the rotation and translation that must be 
applied to the end-effector to bring the features back to their desired 
positions in the image. Image features used vary from geometric 
primitives such as edges, lines, vertices, and circles [33], [5], [lo], [7] 
to optical flow estimates [26], [13], [3] and object location estimates 
obtained using stereo [2]. The control schemes used to drive the 
robot to its desired position vary from simple prediction algorithms 
employed to achieve computational efficiency to more sophisticated 
adaptive self-tuning controllers that account for the dynamics of the 
manipulator. Many of the above methods require prior calibration of 
the vision sensor’s intrinsic parameters (e.g., focal length) as well as 
its extrinsic parameters (e.g., rotation and translation with respect to 
the manipulator). 

The second category of servoing methods includes a learning 
component. In the learning stage, the mapping between image features 
and robot coordinates is generated prior (off-line) to positioning 
or tracking. This mapping is then used to determine, in real-time, 
errors in robot positionhelocity from image feature coordinates. This 
is generally accomplished without any explicit knowledge of the 
object’s geometry or the robot’s kinematic parameters. In addition, 
calibration of the vision sensor is not required as long as the sensor- 
robot configuration remains unaltered between learning and servoing. 
These methods differ from each other primarily in the type of 
learning algorithm used. The learning strategies vary from neural- 
like networks [ l l ] ,  [14], [17], [32] to table lookup mechanisms such 
as the cerebellar model articulation controller (CMAC) [l], [16]. 

Our appearance based approach to robot vision offers a solution to 
servoing that differs from previous work in two significant ways; 
(a) the method uses raw brightness images directly without the 
computation of image features, and (b) the learning algorithm is 
based on principal component analysis [25], [6] rather than a large 
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