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Abstract

The visual servoing formalism provides a framework for achieving tasks in an active closed-loop
fashion based on visual information. We consider a typical visual servoing approach that uses geo-
metric information about image features for controlling the position and attitude of a camera, and
extend the applicability of this approach by using tmage motion information. We present two dif-
ferent approaches to visual tasks that use motion information. The first uses the focus of expansion
which is related to the translational velocity of the camera. The second incorporates the parameters
of the 2D affine motion model in control equations. Both these approaches are illustrated by means
of a task of aligning the optical axis of the camera with the unknown direction of translational mo-
tion of the system on which it is mounted. Results of simulation experiments and real experiments
on a six DOF robot with a camera on its end-effector are presented.
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1 Introduction

In recent years, many approaches have been taken to perform tasks based on visual information.
These approaches have been motivated by a need to react to visual stimuli in appropriate ways,
resulting in a coupling between perception and action. Such approaches fall within the realm of
active vision because of the nature of the generic mechanism involved: visual input is processed,
and based on information derived from the processing, camera behavior is controlled, usually with
the goal of attaining a configuration that simplifies further action (Aloimonos et. al 1988, Bajcsy
and Campos 1992, Ballard and Brown 1992). Approaches in vision-based behavior span a broad
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spectrum ranging from methods that perform very specific tasks to methods that provide general
framework. An extensive survey of all the methods is beyond the scope of this paper. We mention
a few in each of the broad categories.

There are many examples for approaches that perform specific tasks. Nelson and Aloimo-
nos (1989) proposed a scheme to detect obstacles by using motion flow field divergence; Santos-
Victor et. al (1993), and Coombs and Roberts (1993) presented methods to steer a camera between
two walls, and to veer around obstacles, both methods being based on a simple analysis of the
computed optic flow fields. Performing saccades in real time to moving regions of interest has been
demonstrated in Murray et. al (1993). Krotkov (1987) presented a method to perform focusing,
based on a special search technique. Yuille and Geiger (1990) proposed a method to control move-
ments of stereo cameras to help in solving the correspondence problem. Coombs and Brown (1993)
outlined a method to control camera movements to keep stereo cameras locked on a target. Olson
and Coombs (1991) presented a real-time vergence control for stereo cameras by estimating vergence
error with a cepstral disparity filter.

In the middle of the spectrum, there are methods that perform more general tasks such as
gaze control and fixation; these are more general because fixation or gaze control can be used
as a means to accomplish other tasks. Grosso et. al (1992) computed the time-to-impact using
the vergence control of a binocular camera head. Ballard and Brown (1993) outlined the uses
of gaze control, and fixation in particular, in obtaining an object-centered reference-frame and
in figure-ground discrimination. A system performing several active visual tasks, including closed-
loop gaze-control (based on a differential analysis) for fixating on an object was presented by Grosso
and Ballard (1993). A fixation method running in real-time on a head-eye system was described
by Pahlavan et. al (1993). Target-tracking methods by cameras mounted on robots have been
demonstrated (Allen et. al 1993).

On the far end of the spectrum, there are methods that provide general solutions such as visual
servoing. Visual servoing methods (Espiau et. al 1992, Feddema and Mitchell 1989, Hashimoto 1993,
Papanikolopoulos et. al 1993, Weiss et. al 1987) present control-theoretic approaches for closed-loop
control of the position and attitude of the camera, using visual information. Wijesoma et. al (1993)
provide a comparison of different vision-based control strategies. These methods are general, and
can be used to perform a variety of tasks, each with its specific goal. For instance, the formalism
of Espiau et. al (1992) has been used in a wide range of tasks such as absolute positioning (Espiau
et. al 1992), target tracking (Chaumette and Santos 1993), and structure estimation (Chaumette
et. al 1994). Chaumette et. al (1994), for example, use visual servoing to choose the camera motion
that leads to a robust and accurate estimation of 3D structure. Our present work is in extending the
power of this class of approaches, by showing how wvisual motion information can be incorporated.

We start from one of the visual servoing formalisms (Espiau et. al 1992). The procedure outlined
by Espiau et. al (1992) for determining closed-loop control equations is suited for the use of geometric
information about primitives such as points, lines, and circles, all of which can be parametrized. We
show how this formalism can make use of visual motion information too. In particular, the methods
described in this paper use dynamic image parameters such as focus of expansion or coefficients
in the 2D affine motion field model. Such a use of dynamic image parameters for the purpose of
visual servoing is new, and it provides a starting point for other interesting closed-loop methods



using these parameters.

The ability to use motion information in visual servoing extends the applicability of active visual
techniques. The ability to operate in a dynamic environment is useful and is often critical. Certain
remarks are in order here. Using motion information is of relevance when the camera is undergoing
certain unknown motion, and/or when mobile objects are in the field of view. This is the case
when the camera is acting as a sensor for the host vehicle whose primary mission is not mere
visual exploration. This is not an unusual scenario. Consider Figure 1 which depicts navigational
situations where a vehicle carrying a camera moves about (to perform tasks such as driving on a
highway, or performing a landing sequence), and the camera acts as a sensory device for avoiding
obstacles, locating targets etc. Contrast this to a situation where the camera is stationary except
when performing a vision-based task (e.g., positioning). It is important to note that in the former
case, usually there are less degrees of freedom available for control than in the latter case (however,
when the motion is only external, as with moving objects in the scene, all the degrees of freedom
may be available for control). In the situations in Figure 1, only the rotational motion of the camera
is controllable.

T

Figure 1: Navigational situations

In this paper, we present methods that control only the rotational velocity of the camera. We
examine the use of two kinds of motion information. We show that the focus of expansion can be
treated just like geometric information. Thus, a straightforward application of the visual servoing
principle is possible. We illustrate this by considering the task to align the optical axis of the
camera with the unknown direction of translation—-henceforth referred to as the alignment task.
We also show how the visual servoing can be used in completely new ways, by incorporating the
parameters of the 2D affine motion model in the control equations. We demonstrate the approach
by presenting control equations for the alignment task. From another viewpoint, the task being
solved is an active method to determine the FOE. In other words, the direction of translation (or
equivalently, the FOE) is found by an active method that in fact aligns the camera axis with the
direction of translation. Barth and Tsuji (1993) have proposed a scheme for the alignment task,
based on fixation. A comparison with their scheme is more relevant after our methods are presented,
so we postpone a discussion of this to the end.

In summary, we present an approach to the tight coupling of behavior and motion perception.
We note that our innovative use of dynamic image parameters in closed-loop control is not lim-
ited to the task described here. It has general applicability; it is possible to use such dynamic
parameters for various active vision tasks to obtain fast and robust control methods. Our intention



here is to provide a starting point for such approaches. Parts of this work have appeared be-
fore (Bouthemy and Sundareswaran 1993, Sundareswaran et. al 1994a, Sundareswaran et. al 1994b,
Sundareswaran et. al 1994c).

2 Visual Servoing

In this section, we review the basic principles of visual servoing. Detailed descriptions can be found
elsewhere (Espiau et. al 1992, Feddema and Mitchell 1989, Hashimoto 1993, Papanikolopoulos
et. al 1993, Weiss et. al 1987).

The principle of visual servoing is to use visual information as observation in closed-loop control
when the desired configuration can be described as a particular visual observation. The control
is effected on the camera position and orientation or on an external object such as a robot arm.
The only condition is that the instantaneous change in the visual information (in the sense of
temporal derivative) as a function of the controllable parameters be known analytically. Intuitively,
if the effect of the control parameters on the observation is known, we could provide the appropriate
control in order to result in obtaining the desired observation. The visual servoing theory, described
in the references mentioned above, provides a framework for determining the control law which is
simply a set of equations to calculate the control parameters.

More precisely, for a given vision-based task, we have to choose a set s of visual features suited
for achieving the task (for example, the coordinates of an image point, the parameters of a selected
line, etc). In order to perform a control law based on s, we need to know the equations for the
variation of s with respect to camera translational and rotational motion (7,€). In other words,
we have to determine the matrix I described by the following equation:

=1 g) 0

Espiau et. al (1992) showed that the set of parameters whose variation can be written in the form
of Equation 1 are such that they only depend on the relative position and orientation between
the camera and the scene. This set of parameters includes parameters describing the position in
the image of any geometrical features (points, straight lines, etc.). In contrast, parameters such
as photometric parameters (which depend on lighting) and those based on image motion (which
depend on the relative velocity between the camera and the scene) are excluded. However, we will
see in this paper that parameters based on image motion can be used in visual servoing, even if
their change rate can not be expressed linearly to the camera velocity as stated in Equation 1.

In the terminology of Espiau et. al (1992), L is called the interaction matriz related to s. For
example, if s is the location (z,,y,) of the object in the image (say, its center of gravity), this matrix
can be obtained from the well-known equations relating the three-dimensional motion of a point to
the motion of its projection on the image (Horn 1987) for the considered point:

¥y = s U+ 2,W] + Azyy, — B [1+22] 4 Cy,,

. (2)
Y = Z(ggi,yp) [~V +yW]+A {1 + y;] — Bayy, — Cxy.



We assume that we have planar images obtained by the pin-hole perspective approximation, with
a focal length of unity. We adopt the standard coordinate systems shown in Figure 2 (the spherical
coordinates could be adopted as readily). The translational velocity 7" has components U, V', and
W. The components of the rotational velocity €} are A, B and C'.
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Figure 2: The coordinate systems for the 3D environment and the image. The 3D coordinate system
has its origin at the camera projection center, and the image coordinate system has its origin at the
center of the image.

Feddema and Mitchel (1989) give results for more complex visual features (image segments), and
Espiau et. al (1992) propose a general method for computing the interaction matrix of any visual
feature defined upon geometrical primitives and give explicit results for the parameters describing
the projection in the image of lines, circles, spheres and cylinders.

A task function e can be defined as

e=M (s —s"), (3)
where
- s is the measured visual features currently observed by the camera,
- 8" is the desired final configuration for s in the image, and

- M is a constant matrix which allows, for robustness issues, to take into account more visual
features than necessary. Let us note that M can simply be chosen as the identity matrix
when the number of the selected visual features is equal to the number of the camera d.o.f.
controlled by the task.

The control problem thus appears as the regulation of the task function e to zero or, equivalently,
as the minimization of |le|| in the image by appropriate camera motion. We would like the task
function to decay exponentially towards zero. For such a requirement,

e = —)e,



where A(> 0) is the exponent that controls the speed of the decay. Noting that M and s* are
constant and assuming for simplicity that the scene is static, we obtain:

T
ML ( N ) = e. (1)
Inverting Equation 4, we get the control law
( 0 ) — ALt M, (5)

where L™ and M™ are the pseudo-inverses of L and M.

Generally, the interaction matrix L cannot be exactly computed. For example, in the case of a
point, described by Equation 2, L depends on the depth Z which is generally unknown. In such
cases, a model of L (say IA/) has to be chosen and we finally obtain:

Ty _ [+ M+
(Q)_—)\LMe, (6)
An exponential decay of e will be ensured under the sufficient condition (Espiau et. al 1992):
MLLTM* >0 (7)

in the sense that an n x n matrix A is positive-definite if 7 Az > 0 for any nonzero z € R". Usually,
L is chosen as L*, the value of L at convergence. Indeed, in that case, the positivity condition is
valid around the desired configuration (Samson et. al 1991).

Thus, the principle of visual servoing is to use visual information to perform closed-loop control
to reduce an “error” in the visual information. Various tasks have been performed within the
framework of the visual servoing outlined here and described in detail by Espiau et. al (1992). We
propose to extend this visual servoing framework by making use of other important visual features
such as the focus of expansion or the 2D affine motion parameters.

3 Image motion information

The traditional visual servoing approach described in the previous section provides a method to
determine the camera control in such a way as to have a chosen geometric property (eg., an image
feature reaches a desired location). For instance, we could bring the camera to position itself at a
distance of, say, 30 cm from a square of known size, by requiring that the image projections of the
corners of the squares reach predetermined locations on the image (Espiau et. al 1992).

However, the visual servoing approach is more general. Indeed, it is well-known that we can
control any parameter, as long as its variation can be expressed in terms of the parameters that
can be controlled. We use this classical property by using parameters obtained from image motion.
First, we show that we can use the focus of expansion. This is only a modest step forward because
the focus of expansion (FOE) is a geometric property; this is because the FOE is a location on the



image plane, and can be treated as such. Nevertheless, this viewpoint brings out the notion of using
motion information available as a simple geometric feature (another such feature is the projection
of the axis of rotation on the image plane).

Secondly, we show how to use the parameters of the 2D affine model (henceforth, affine motion
parameters) of the optic flow. Here, we provide a significant extension to the visual servoing
framework. The affine motion parameters have been well-studied theoretically (Koenderink and
Van Doorn 1975) as well as empirically (Negahdaripour and Lee 1992, Bouthemy and Frangois
1993), and have been used in many applications.

Our work is in the same spirit as Murray et al. (1993) and Cipolla and Blake (1992) who use 2D
affine motion parameters in directly controlling camera behavior. We will illustrate our approaches
by proposing solutions to a task of aligning the optical axis of a camera with the camera’s unknown
direction of translation. The initial and final configurations of a camera (C') undergoing alignment
is shown in Figure 3. For simplicity, only the projection on the Y Z plane is shown. The translation
vector is T'. For the purposes of this paper, we restrict ourselves to pure external translation of the
camera (the first one in Figure 1), and hope that this will provide an initiative to solve the more
general cases.

v Y
T Z
C c !
Z
(a) Before Control (b) After Control

Figure 3: Effect of the alignment control: before control, the camera could be viewing in an arbitrary
direction: after control, the camera looks in the forward direction.

The alignment task can be accomplished by rotations of the camera with respect to the X and
Y axes (i.e., pan and tilt). This is evident if we note that rotations about two axes are sufficient
to orient the coordinate system in any desired way. Thus, while the rotation about the 7 axis
(roll) could also be used, it is not necessary. According to control theory (Espiau et. al 1992), this
additional degree of freedom can be used to perfom auxiliary tasks, but we will not explore that
possibility here. We will restrict our attention to the computation of the control rotational velocities
in the pan and tilt directions.

We show the theoretical development first, and then present experimental results.



4 Control using the FOE

The focus of expansion (.I?f, y¢) is the projection of the 3D translational velocity vector on the image
LLV, y; = 7. The location (zy,y;) may be treated as a geometric feature and used
to obtain control laws. For instance, we could apply control to bring this feature to the center of
the image, thus accomplishing the speciﬁed alignment task.

We only control camera pan A and tilt B, and we know, from the optic flow equations in

Equation 2,
N N 7 7R O X R
ys B )’ Lty —zsyy

In this case, the matrix L can be estimated on-line since it only depends on the position (zy,yy)
of the FOE measured in the image. In practice, however, an appropriate measure of the FOE is
sufficient; in our control scheme (whose details appear later in this section), for instance, we use
the direction to the FOE, without affecting the overall task. In Equation 5, we can set M as the
identity matrix and we finally obtain:

(5) = (550), ®

11— 1 —zsyp L+ a}
1+ 2% + v} —(L4+y}) xpyr )7

For the alignment task, 3 = y} = 0. One could also position the FOE at any desired location
(2%,y7) on the image plane using the same method.

plane: zy =

where

4.1 Computing the FOE

Here we describe how we can quickly determine an estimate of the location of the FOFE for transla-
tional motion (i.e., no rotational motion). Consider the optical flow equations in Equation 2. Since
there is no rotational velocity, the equations are simplified:

u(z,y) = ; [—U + 2W],
o) = o [V 4 yW], ©)

where Z(z,y) is the depth of the point prOJected at (z,y). It is easy to see that the point of
intersection of these image plane vectors gives the Focus of Expansion (FOE). Indeed, at this point
(xz = W’ y = L‘{/) u = v = 0, and the flow vectors spread out in a radial direction from thls point (see
Figure 4 (left)). The vector field (u,v), termed the optical flow field, has to be computed in order
to determine the FOE as the intersection of the vectors. There is a lack of reliable methods to
compute the optic flow rapidly enough to be implementable in current image processing boards so
as to use in a closed loop scheme. So, we suggest that it is desirable to estimate the FOE from the
normal flow field vectors; the normal flow vector is given by (Horn 1987)
Uy, = %V_’[,
IV



where [ is the spatio-temporal image intensity function, and I; and V1 are its temporal and spatial
derivatives. This is obtained from the image motion constraint equation

dl

— =0
dt ’

or, equivalently

Lu+ Lv+ 1 =0,

from which only the projection of (u,v) in the local intensity gradient (I, [,) direction (in other
words, on the normal to the local edge-hence the name normal flow) can be computed, and the
magnitude of this projection is determined by the partial temporal derivative I;. This constraint
is a manifestation of the aperture problem that complicates the computation of the exact optical
flow field, and in most cases, the optical flow field can only be approximately computed based upon
certain assumptions about the regularity of the field.

Figure 4: Optical flow for forward (left) and sideways translation (right).

We consider the optical flow induced due to the translation of the camera. When the camera
is translating forward (i.e., with the FOE at the center of the image), the flow field obtained is
radial, similar to the one shown in Figure 4 (left). On the other hand, if the motion is sideways,
the flow field obtained is a collection of nearly parallel vectors (see Figure 4 (right)). The goal is to
rotate the camera in such a way as to result in a radial flow field; one could potentially begin with
a parallel flow field (i.e., with the camera looking sideways or upward).

The clue about the = coordinate of the FOE is given by the distribution of the horizontal
components of the flow vectors. Consider the two half-regions of the image, indicated by L and R
in Figure 5. If the FOE is at the center (that is, on the line dividing the two regions L and R),
then the horizontal components of the flow vectors in L will be oriented towards the left, and the
horizontal components of the flow vectors in R will all be oriented towards the right, as for the
situation in Figure 4 (left). If this is not the case, then the FOE is not located on the dividing
line between the two regions. In particular, if all the flow vectors on the image are oriented to the
right (Figure 4 (right)), then the FOE is on the left, outside the image. In general, the ratio of
the number of vectors oriented to the left to the number of vectors oriented to the right yields an



estimate of the z coordinate of the FOE. With this approach, if the FOE is outside the image, we
can only determine the direction to the FOE. In a similar fashion, we can estimate the y coordinate
of the FOE, using the vertical components of the flow vectors. The fact that we only estimate the
direction to the FOE when the FOE is outside the image does not affect the control greatly; we
assume that the FOE is on the border of the image in the computed direction and calculate the
control.

Figure 5: Two halves of the image.

The method described here permits an implementation that is rapid and is accurate enough for
the control scheme when the FOE is not exactly at the center. After convergence, however, if the
control is not withdrawn, the approximate computation of the FOE creates a minor oscillation of
the center about the FOE. As will be seen in the experiments, it is small enough to be negligible
but perfect precision is not guaranteed.

We can use normal flow instead of optical flow. We show in the Appendix that the direction
of the components of optical flow coincide with the direction of the components of normal flow,
with high probability. Since the control proposed here uses only the direction of the components,
such a consistency might be sufficient, and it has been verified experimentally. Aloimonos and
Duric (1992) proposed a different approach that is based on finding intersection of half planes
defined by the normal flow vectors.

We now summarize the method with more details: the normal flow field is computed, and the
fraction h, of positively oriented (i.e., towards the left) horizontal components and the fraction
v, of positively oriented (upwards) vertical components are determined by counting. Assuming a
uniform distribution of image gradient directions, the approximate FOE is computed as

(=(hp = 0.5) * Wi/2, —(v, — 0.5) % H;/2),

where Wi and Hj are the width and the height of the image in focal length units. This gives a
location on the image if the FOE is within the image, or a location on the border of the image if
the FOE is on the border or is outside the image; in the last situation where the FOE is outside
the image, the computed position is in the direction of the FOE.
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5 Control using the 2D affine parameters

In this section, we propose to use, under the same servoing formalism, measures obtained from the
affine motion parameters. We consider the same (alignment) task as in the previous section, to
illustrate the derivation method. We begin by describing the parameters of the 2D affine motion
model, and then derive the control laws to do the alignment task using these parameters.

5.1 The 2D affine motion parameters

The 2D affine motion model (Equation 11) is often useful. It is possible to derive expressions for

the first-order parameters (affine parameters) assuming that an analytical surface is imaged (i.e.,

it is possible to describe the depth by a Taylor series expansion). It has been already shown (Ne-

gahdaripour and Lee 1992) that the affine parameters can be reliably estimated. Multiresolution

methods for the estimation of the affine parameters (Bergen et. al 1992) yield accurate values.
The optical flow equations are repeated here from Equation. 2 (see also Figure 2):

u(z,y) = 5y [FU+aW]+ Afay] - B[l + 2% + Cy,

10
v(z,y) = 7o [V +yW]+ Al +y?] — Bloy] - Ca. (19)
Let the first-order approximation be
u(:ﬂ’ y) = a + T + asy, (11)
o(ey) = autase + agy,
Let the first-order model for the imaged surface be (i.e., local planar approximation)
7 =Zy+ 71X+ Y.
It is easy to show that
1 1 )
7= Z_o(l - Nz — 72y), (12)

From Equations (10), (11), and (12), we get (Bouthemy and Francois 1993, Negahdaripour and
Lee 1992):

ap = —%—B, aq _;_,()-I_A’
a2 F(nV) = C, (13)

7 7
az = 7(RU)+C, as = z(7V+W).

=2
<
+
3
S
I

5.2 Control method

We have,
U V
CLIZ—Z—O—B, CL4:—Z—O+A. (14)

Since we are considering external motion that does not have rotation, the parameters a; and ay
should be zero if alignment has been achieved (since U = V = 0 in this condition). Therefore, the

11



first approach to use the affine parameters will be to provide control so as to attain a; = a4 = 0. The
flaw in this observation is that the rotational velocity will not be zero once control has begun. This
results in a fizating situation, instead of the aligned situation where the angular velocity components
will be zero. This problem is discussed in more detail in Sundareswaran et al. (1994b). We consider
here another approach.

Consider an alternative set of parameters U, = Z% and V, = ZLO From the equations for a; and
ay, 1t is clear that

Uz:—al—B, ‘/;:—CL4+A. (15)

If we apply control in such a way to result in zero values for these variables, we will achieve the
goal of setting the components U and V of the translational velocity to zero (the tacit assumption
is that infinite depth does not occur). This is an intuitive set of parameters to control, because the
quantities that we desire to control (namely U and V'), are directly related to the chosen parameters.

The derivatives of these parameters are given by

: . : U _ UZ
I R - V | VZ '
V. as+ A Zo + 73‘1
The components of the velocity, which remain constant in a global coordinate system, change
however in the camera coordinate system because of the control rotation of the camera axes. Since
the rotational velocity is Q = (A, B, (') about the three axes, the change in the translational velocity
T = (U,V,W) is simply the cross product

T=-QxT. (17)
In detail, .
U CV — BW
V= AW-=-CU |. (18)
W BU — AV

From Equations 15, 16, and 18, we get

U:z — C . _%+§._g A 4 —CCL4+CL1% .
€ 7 C B Car + as 2

When the planar approximation to the viewed surface does not have a large angle of inclination
with respect to the camera, we have

1 w Zo as + ae

Te ZO ZO 2 ’ ( )

where 7. i1s used to denote the instantaneous time-to-collision. Furthermore, we assume that C' =0
since we do not control this velocity. We thus obtain:

()2 1) (2)(%)

12



The task function is as before:

*
e=s—s§,

-()

For an exponential decay of the task function,

V. ) V.-V )

Rearranging Equation 20, we obtain the following control law :

(5)=2 (2 ) 0(w)-(2)) =

Using the approximations (19), the positivity condition (7) is ensured when the task is realized.
Convergence of the control law will thus be obtained if the initial configuration is not too far
from convergence. Our experiments, wherein divergence was never observed, confirm that such
approximations do not disturb the task behavior.

Let us finally note that the observations U/, and V, are given by

where

Slea e

U, = —a;— B, and
V. = —as+ A,

where A and B, under the conditions presented here—assuming that there is no external agent
causing rotational velocity, are nothing but measures of the rotational velocities resulting from the
control applied at the preceding instant.

5.3 Calculating the 2D affine parameters

The 2D affine parameters can be calculated directly from the spatial and temporal derivatives of
the image sequence. Recalling that the model is

U(."C, y) = a + a2 + asy, ¢
22
(z.1) (22)

viz,y) = a4+ asx + agy,
and the motion constraint equation (Horn 1987) is
Lu+Lv+ 1 =0,

where all the quantities are functions of # and y (indices omitted for simplicity).

It is easy to see that a direct substitution of u(z,y) and v(z,y) from Equation 22 in the last
equation yields one equation in six unknowns. Thus, in principle, knowing the spatial and temporal
derivatives at six points (belonging to a region whose projected motion satisfies the affine model),

13



we can solve for all the six affine parameters. In practice, for robustness reasons, a large number of
points are considered, and a standard procedure for solving an overconstrained set of equations is
used to determine the parameters.

The procedure presented above is the simplest possible approach; other methods using multires-
olution (Bergen et. al 1992), or techniques from robust estimation theory (Odobez and Bouthe-
my 1994) have been developed, but real-time implementations that can be used in closed-loop
schemes are still lacking. The sensitivity of the affine parameters has been analyzed by Negah-
daripour and Lee (1992). In our experiments, we use the simple procedure presented above, with
points taken from all over the image.

5.4 Discussion

In our approaches, we have restricted ourselves to pure external translation of the camera. It would
be interesting to examine the general case where there is rotation also. For the FOE-based method,
we need a more sophisticated method to determine the FOE in the presence of rotation. For the
affine parameter method (Equation 21), the parameters U, and V, will be controlled to be zero; but
this will not result in alignment (due to the external rotation). Thus, the problem can be alleviated
if the external rotation can be measured and the parameters are chosen as

Uz = —a; — Bcamera - Bexternala ‘/2 = —ay4+ Acamera - Aexternal;

the task of alignment can still be achieved. We would like to note, however, while this inconvenience
arising due to external rotation is a problem for the alignment task, it is not necessarily a general
constraint for motion information-based tasks.

6 Experiments

The two alignment methods, namely the one using the FOE and the one using the parameters U,
and V,, have been studied in simulation and have also been implemented in a real system.

6.1 Simulation experiments

Here we present the approach to the simulation, the results of the simulation, and a brief discussion
of the results.

6.1.1 Approach

The simulation was carried out using a discrete-time approach. Time ticks were chosen at unit
intervals, and the control and the state of the system were calculated at these instants in time.
This approach would closely approximate a real implementation with no asynchronous activities
(i.e., time durations of actions such as acquiring images and computing the control are roughly
constant in different iterations).
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All the methods were implemented using the software package MATLAB. No noise was added
during the simulations to avoid using an incorrect model of the noise; instead, we carried out
experiments on a real system (see section 6.2).

Parameters that change continuously over time were discretized with a fine resolution. For
example, the vector T undergoes a continuous change while the control is being applied; this change
is given by Equation 17, repeated here:

T=-QxT.

During the simulation, at a given time tick, we need to recalculate the translation vector T' to
account for the change since the last time tick; we divided the time interval between the two ticks
into 500 equal parts and incrementally modified 7.

We describe in the following paragraphs the results of the simulations, and how the results were
used to validate the methods. Four different graphs are used to present the results. The first one
contains curves showing the components of the 3D translational velocity in the camera coordinate
system. For proper alignment, we expect the curves corresponding to U and V' to go to zero, and the
curve for W to achieve a large positive value equal to the speed (magnitude of the velocity) of the
camera. The second graph shows the corresponding variation of the angular velocity components;
we expect them to start from zero and go to zero at convergence; in between, they may have a non-
zero value. The third graph shows the variation of the norm of the vector (s — s*) (see Equation 3)
constituting the controlled parameters; this should go to zero at convergence with an exponential
decay. The fourth and final graph shows the variation of the angle between the translation vector
T and the optical axis Z of the camera; this should go to zero as well, at convergence.

6.1.2 Results

The curves in Figure 6 show the results from simulating the FOE-based algorithm. For this experi-
ment, an initial translational velocity of [2, 8, 2] focal units was used; this choice is not critical, and
was used for demonstration purposes only. Any other initial translational velocity could be chosen,
and the results will be qualitatively similar. A A value of 0.2 was used. The translational velocity is
controlled as desired, with U/ and V' going to zero, leaving W as the only non-zero component. The
angular velocities are computed correctly to provide the necessary correction to bring about the
alignment. The “clipping” of the angular velocities is related to the qualitative nature of the FOE
computation that is simulated. That is, when the FOE is outside the image, we can only compute
the point on the border which is in the direction of the FOE from the center of the image. Thus,
the angular velocity remains clipped until the FOE “enters” the image. The task function, and the
angular separation betwen the optical axis and the translation vector go to zero, as expected.

The second simulation we present is the control using angular velocity, from Equation 21 (use
of affine motion parameters). The curves are shown in Figure 7 with same configuration as in the
previous case (initial translation [2,8, 2] focal units, A = 0.2).

From the results of typical simulations shown here, the two control methods to perform the
alignment task were empirically validated. In these noise-free simulations where the parameters
are computed analytically, the methods appeared to be stable, and achieved convergence rapidly.
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Figure 6: The FOE-based method: results. The top row shows the change in the velocity components
(translational velocity components on the left, and the angular velocity components on the right). The
bottom row shows the task function decrease on the left, and on the right, the angle between the
translational direction and the optical axis. The reason for the flat parts of the curves on top right and
bottom left is the due to the feature of the simulated FOE detection method that determines only the
direction towards an FOE outside the image.
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Figure 7: The angular velocity based method: results. The top row shows the change in the velocity
components (translational velocity components on the left, and the angular velocity components on the
right). The bottom row shows the task function decrease on the left, and on the right, the angle between
the translational direction and the optical axis.
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Theoretically however, there will be a problem in the angular velocity based method for large depth
(since U, and V, are zero for infinite depth). Our simulation results did not suffer from this problem
even for very large value of depth (until 10000 focal units). This is undoubtedly due to the fact
that no noise was considered in the simulations. When calculated on real image sequences, large
values of depth are likely to be problematic because the affine parameters will be very sensitive
under such conditions. We have not yet quantified the effect of large depth since our experimental
system described below does not allow imaging objects located far away.

6.2 Real experiments

In the experiments, we used a camera with a field of view of about 35 degrees mounted on a
six degrees-of-freedom cartesian robot AFMA (see Figure 8). The camera can be positioned and
oriented in the workspace with an accuracy of 0.5 mm and 0.05 degrees. The camera output is
digitized by an image processing board (EDIXIA). For the experimental results reported here, the
images are digitized and then subsampled by a factor of four (without any filtering) by the EDIXIA
board and sent to the host (Sun Sparc 20). The size of the images processed is 128 x 182 pixels.
All the image processing and control velocity computations are carried out on the host and the
computed control is transmitted to the robot controller. The transmissions to and from the host
occur via a BIT 3 Sbus/VMEbus board. A minimum of ten milliseconds are required for the controls
to take effect. About 100 milliseconds are required for the entire process of acquiring, subsampling
and transferring an image. Note that for the implementation, the camera parameters obtained from
calibration, namely the center of the image and the interpixel distances, are required.

Figure 8: Experimental cell where all the experiments were conducted. See text for description.

Smoothing of the image is done before the computation of the spatial and temporal derivatives
always done with only two images) using a separable Gaussian filter whose discrete representation
y y g g p p
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is

[0.0223211 0.229742 0.495015 0.229742 0.0223211],
which corresponds to a ¢ of 0.75. The derivatives are calculated using a 4 x 4 x 2 cell in the z, y
and t directions respectively, as suggested by Horn (1987).

Numerous experiments were carried out using our implementation of the methods described. We
only report results from representative experiments here. They were conducted indoors; a sample
image can be seen in Figure 9. The translational motion was towards the floor with cluttered
objects; the floor was not fronto-planar, but with an average angle of inclination in the range 45-70
degrees (note that it is 90 degrees for a frontal planar surface) between the floor surface and the
optical axis. For all the following experiments, the amplitude of the translational motion was equal
to 1.5 cm/s and the distance between the camera and the floor varied from 3 m to 0.75 m (which
approximatively leads to a time-to-collision from 200 to 50). Finally, at the initial camera position,
the angle between its optical axis and the direction of translation was equal to 25 deg.

Figure 9: A typical image obtained during one of the control maneuvers.

6.2.1 The FOE method

The FOE method described in section 4 has been implemented. The FOE is calculated as described
in section 4.1. The control loop consists of the following steps which are repeated:

e obtain two successive images,

e compute the FOE location,

e compute the rotational velocity control required using the control law in Equation 8, and
e apply the control rotational velocity for a finite duration.

Note that the control is applied for only a finite duration during each iteration. This is because the
qualitative method used for the FOE computation works only for pure translation. The total time
spent in one iteration is 800 ms.
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The result of a typical experiment is shown in Figure 10. The plot shows the variation of the
angle between the direction of translation 7" and the optical axis Z with respect to the iteration
number of the control law. As expected, the angle decreases and converges to zero. The final error
plotted in Figure 10 is 0.2 degrees. In this experiment, the duration of the applied control was
set to 200 ms and the value of A to 0.35. These two parameters the product of which determines
the speed of convergence have been tuned in order to preserve the stability of the system while
minimizing the speed of convergence.

25 T T T T T

20

15

10

00 10 20 30 40 50 60

Figure 10: The angular error plot for the FOE method.

6.2.2 The Affine Parameters method

The affine parameters method described in section 5 has also been implemented. The affine parame-
ters are computed using an over-constrained set of equations by considering the intensity derivatives
from all over the image, thresholded by gradient magnitude to suppress contribution from relatively
uniform regions where estimates are noisy.

The robot, as before, is commanded to move the camera with a certain translational velocity.
The control loop consists of the following steps which are repeated:

e Obtain two successive images,
e compute the affine parameters of the flow field,
e compute the rotational velocity control required using the control law in Equation 21, and

e apply the control rotational velocity.

Here, two different programs, one in which the control is applied for a finite duration (again, 200 ms)
and another in which the control is applied in a continuous manner, have been implemented. Each
iteration took 800 ms for the first program and 400 ms for the second one.

The error plots from experiments using the two different implementations are shown in Figure 11.
On the left is the plot (final error = 0.05 degrees) for the implementation where the control is applied
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for a finite duration (discrete control), and on the right, for continuous control (final error = 0.15
degrees).

For the discrete control, A was set to 0.7. A choice of a higher value than in the FOE method
has been made possible since the affine parameters are computed more accurately using a global
linear regression than the position of the FOE. This allows the system to obtain a more precise and
rapid convergence, as well as a better stability.

Furthermore, for the discrete control, while the two successive images are acquired, the control is
withdrawn; this means that the affine parameters a; and a4 provide only the translational velocity
information, and hence the control computation is accurate. On the other hand, for the continuous
control, a; and a4 contain the rotational velocity terms in addition to the observation, namely the
translational velocity terms (which is the information we need). As an effect of the inaccuracies
introduced in the observations, the continuous control converges more slowly and less precisely. An
iteration takes however half as much time, leading to a total time to convergence nearly equal for
the two methods.
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Figure 11: The angular error plots for the affine parameter method; on the left is the plot for the method
using discrete control, and on the right is the plot for the method using continuous control.

We finally note that the different assumptions made in deriving the control laws (frontal planar

surface, _ri o —g—g R~ %, etc) do not have any noticeable influence in the realization of the task.

7 Discussion

In this paper, we have proposed an approach to use image motion information in an active visual
task.

Barth and Tsuji (1993) also describe a method for achieving alignment of the optical axis with
the translational direction. The method relies on the ability of the camera to fixate at a scene point,
and based on a simple analysis of the optic flow field near the fixation point, saccades are made to
eventually achieve alignment. They present a theoretical justification for their method, and show
simulation and real experiments. Their scheme differs from ours in that they require the camera to
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be able to track a 3D point (fixation), and the saccade is calculated in a qualitative fashion. Also,
their scheme requires the computation of optic flow; even though their method does not require an
accurate flow field, they do not indicate how this can be exploited.

We have not examined the possibility of predicting motion. Standard methods such as Kalman
filtering could be employed to predict the FOE or the affine motion parameters; this would increase
the stability of the methods.

The methods proposed here require the following camera calibration information: the center
of the image (where the optical axis of the camera intersects the image plane) and the interpixel
distance in both x and y directions. These parameters are used in the control equations.

In the affine parameter method, we assume that the affine approximation to the optical flow
field is valid. This is supported by several useful methods developed based on the affine approxima-
tion (Bouthemy and Francois 1993, Negahdaripour and Lee 1992). Nevertheless, this approximation
can fail for the entire image when there are objects located at very different depth in the scene, or
moving objects of significant size. Motion-based segmentation of the image into regions (Bouthemy
and Francois 1993) could be one possible solution, but far too complex to be implemented in such
a closed-loop procedure. However, recently designed multi-resolution robust estimation methods
such as (Odobez and Bouthemy 1994) can cope up with these situations.

We have described elsewhere an application for the alignment task (Bouthemy and Sundareswa-
ran, 1993). This application explored a coupling of qualitative vision methods and active vision
methods, and we believe the coupling is an interesting direction that needs to be explored. We
outlined this idea by considering a qualitative method that can detect moving objects seen by a
camera that itself is under motion (Bouthemy and Francois 1993). The qualitative method under
consideration works well if the motion of the camera is, for example, along its optical axis. To
improve this solution, we do not attempt to find a general solution to extend the method, but
to use system capabilities to circumvent the restrictions in order to be able to still use the same
method that is simple enough and known to be robust and efficient. A promising approach consists
in designing active schemes in order to dynamically place the camera in some known tractable
configuration and then to use simple interpretation methods. This is precisely a goal of the active
visual task described here. The proposed coupling of a qualitative method and an active visual
method was validated by a real example in which a mobile camera detects a moving object. In
part, it was also a demonstration to show that the servoing methods described here work not only
in the case of a static environment, but also when there are small moving objects in the scene.

8 Conclusions

In this paper, we have proposed the use of motion information in the visual servoing framework
where only geometric information has been used so far. Two control schemes, one using the focus of
expansion, and the other using affine motion parameters, were presented. Experimental results from
a camera mounted on a robot serve to validate our proposal. A control method presented here has
been used successfully to provide an interesting new direction of coupling between qualitative and
active visual methods. Future work includes processing on the image-processing board to improve
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speed and performance, and to investigate other forms of tight coupling between camera behavior
and motion information.

We believe that the work presented here provides a starting point for formal approaches to
closed-loop control using motion information; these are expected to be useful for active visual tasks
involving a camera undergoing motion and/or is monitoring moving objects.
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APPENDIX

Consistency in component directions of normal and optical flow vectors

Consider the optical flow vector ¢ at a point (x,y) on the image plane. Let the local image
gradient at (z,y) be along the unit normal vector 7, and €, and €, be the unit vectors along the x
and y axes respectively. Then the normal flow is v;, = (¢-7)ni. If ¥- €, > 0, then v}, - €, > 0 with
high probability; similarly for the case v €; < 0, and for ¢- €,. The situation is described pictorially
in Figure 12. In the figure, without loss of generality, we have chosen the flow vector ¢ in one of
the quadrants. If the angle subtended by ¢ with the x axis is ®, then the probability that the sign
of v, - 7 agrees with the sign of U - €, is given by

T—®

?

s

assuming a uniform distribution of the direction of 7. In other words, the signs will disagree if the
normal vector is found in the shaded region of Figure 12, and this happens with probability ®/=.
At the same time, the probability that the sign of v, - €, agrees with the sign of ¢ €, is

Pt+e

Figure 12: lllustration for the agreement of the signs of v - €, and v,, - ¢,.

Since ® < /2, the probability of being correct is more than half (in fact, if one of them is close
to half, the other one will be close to one, which means that if the sign of one component (z, say)
being correct is close to “chance,” then the sign of the other component (y) will be correct with a
probability close to 1). For clarity of explanation, we have omitted the degenerate cases ® = 0 and

¢ =n/2.
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