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Abstract

In this paper, we apply the synchronous approach to real
time active visual reconstruction. It illustrates the ade-
quateness of SIGNAL, a synchronous data flow program-
ming language, for the specification of a system dealing
with various domains such as robot control, computer vi-
ston and the programming of hierarchical parallel automata.
More precisely, our application consists in the 3D structure
estimation of a set of geometrical primitives using a camera
mounted on the end effector of a six dof robot. At the level
of camera motion control, the visual servoing approach is
specified and implemented in SIGNAL as a function from
sensor inputs to control outputs. The 3D reconstruction
method is based on the “structure from controlled motion”
approach. Its specification is made in parallel to visual ser-
voing. We also present a perception strategy for connecting
up several estimations, using time ntervals and hierarchi-
cal structures for task preemption in SIGNAL. The integra-
tion of these techniques is validated experimentally by their
implementation on a robotic cell.

1 Introduction

In this paper we apply the synchronous approach to real
time active visual reconstruction. We present the integra-
tion of different new techniques for the structure estima-
tion of a robot environment by means of an active vision
scheme. Recovering 3D structure from images is one of the
main issues in computer vision [1] [7][9][19]. The approach
we have chosen to get an accurate three-dimensional ge-
ometric description of a scene is based on the active vi-
sion paradigm and consists in controlling the motion of
a moving camera. The idea of using active schemes to
address vision issues has been recently introduced [3][4].
Here, the purpose of active vision is to constrain the cam-
era motion in order to improve the quality of the percep-
tual results. Such constraints are ensured using the visual
servoing approach [8] which is based on the task-function
framework [18] to define the sensor-based control of the
robot; in our case, the sensor is a camera mounted on the
end effector of a robot arm.

The technique involved for the integration is the syn-
chronous approach to reactive real time systems [5]. One
way of interpreting the synchrony hypothesis consists in
considering that computations produce values that are rel-
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evant within a single logical instant of time. A family of
languages is based on this hypothesis [12]. They are pro-
vided with environments featuring tools supporting spec-
ification, formal verification and generation of executable
code, all based on their formal semantics. Among them,
SIGNAL is a real-time synchronized data-flow language [14].
Its model of time is based on instants, and its actions are
performed within the instants; extensions we propose in
this paper provide constructs for the specification of dura-
tional tasks.

The synchrony hypothesis clearly applies to the eg-
uations defining a sensor-based control law, and benefits
to the implementation of the corresponding control loop.
Classical asynchronous languages are less adapted to spec-
ify and program such algorithms because they do not han-
dle properly the simultaneousness of the values involved
in equations. Therefore, we propose to use SIGNAL whose
adequateness is exploited at the various levels of the appli-
cation. Such an application allows us to show benefits of
using SIGNAL in the following domains involved in robotics
and computer vision: robot control, estimation algorithms,
and task level programming.

The remainder of this paper is organized as follows: Sec-
tion 2 is devoted to image-based control loop description
and specification. In Section 3, structure from motion as-
pects based on an active vision paradigm are considered.
Section 4 is devoted to perception strategies and their spec-
ification in terms of a hierarchy of tasks.

2 Equational aspect of Visual Servoing

Two main approaches are currently used in robot con-
trol based on visual data [20]: the position-based control
which is achieved by computing, from the visual data, the
3D position and orientation of the camera with respect
to its environment, and the image-based visual servoing,
which consists in specifying a task as the regulation in the
image of a set of visual features [2][8][11][13][16]. This sec-
tion recalls the application of the task function approach to
visual servoing and the expression of the resulting control
law, before the presentation of its specification in SIGNAL.
2.1 Visual Sensing

We first examine what data can be extracted from an
image and incorporated in a vision-based control scheme.



Let us model a camera by a perspective projection.
Without loss of generality, the camera focal length is as-
sumed to be equal to 1, so that any point with coordinates
z = (z, vy, z)T is projected on the image plane as a point
with coordinates X = (X, Y, 1) with:

z (1)

Let us consider a geometrical primitive P, of the scene;
its configuration is specified by an equation of the type:

(2)

where h defines the kind of the primitive and the value of
parameter vector p stands for its corresponding configu-
ration. Using the perspective projection equation (1), we
can define from (2) the two following functions [8]:

(X,P)=0,VX eP;
{ ?/Z =u(X,p,) ®)

L)

h(z,p) =0,z € Ps

where:

e P; denotes the projection of P, in the image ;

e g defines the kind of the image primitive and the value
of parameter vector P its configuration ;

e function p gives, for any point of P; with coordinates
X, the depth of the point of P, the projection of which
results in point X ; and

e parameters p_ describe the configuration of g and are
function of parameters p.

More precisely, for planar primitives (a circle for exam-
ple), the function g represents the plane in which the
primitive lies. For volumetric primitives (sphere, cylin-
der, torus,. .. ), function g represents the projection in the
image of the primitive limbs and function p defines the 3D
surface in which the limbs lie (see Fig. 1). Function g is
therefore called the limb surface.

surface

g(X,P)=0

Figure 1: Image (g) of the primitive (h) and limb sur-
face (p) in the case of a cylinder

Let 7. = (V, Q)T be the camera kinematic screw. The
time variation of P, which links the motion of the primitive
in the image to the camera motion 7., can be explicitly
derived [8] and we get:

P=1}(Pp)T. (4)
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where LE(P, ]_70), called the interaction matrix related to
P, fully characterizes the interaction between the cam-
era and the considered primitive. In [8], a systematic
method for computing the interaction matrix of any set
of visual features corresponding to geometrical primitives
(lines, spheres, cylinders,. ..) is proposed.

We may thus choose as visual features in a visual servo-
ing framework the parameters P which describe the config-
uration of one or several primitives observed in the image
(such as the coordinates of a point, the orientation and
distance to origin of a line, the inertial moments of an el-
lipse, etc) or, more generally, any differentiable expression
obtained from P (such as the distance between a point and
a line, the orientation between two lines, etc).

The design of a vision-based task now consists in se-
lecting the visual features P, able to realize the specified
task, and their desired value P, to be reached in the im-
age. As shown in the next section, the control law able
to perform such a task is essentially based on the inter-
action matrix related to P (we will see in Section 3 that
the interaction matrix is also involved in our 3D structure
estimation method).

2.2 Task Function and Control

Embedding visual servoing in the task function approach [18]

allows us to take advantage of general results helpful for
analysis and synthesis of efficient closed loop control schemes.
We only recall the obtained results, all the developments
being fully described in [18] and, in the particular case of
vision-based control, in [8]. We define a vision-based task:

e =C(2-P,) (5)

where:

e P, is the desired value of the selected visual features;

e P is their current value, measured from the image at
each iteration of the control law;

e C can be considered as the inverse jacobian related to
the vision-based task and is defined as C = VVL£+, w
being a full rank matrix such that Ker W = Ker L7

When the vision-based task does not constrain all the cam-
era degrees of freedom, a secondary task, such as a trajec-
tory tracking, can be combined with e;. It can be ex-
pressed as the minimization of a cost function k., with
gradient function gQT. A global task function e, minimiz-
ing h. under the constraint e, =0, takes the form:

(6)

where W+ and I — W W are two projection operators
which guarantee that the camera motion due to the sec-
ondary task is compatible with the regulation of P to P,.
For making e exponentially decrease and then behave like
a first order decoupled system, we have [8]:

e= Whe,+ (Is —w*w) 4"

(7)

where:



e T, is the desired camera velocity given as input to the
robot controller;

e ) is the proportional coefficient involved in the expo-
nential convergence of e;

—

o 22 can be written under the form:

at
- o T
ag _ + agl +w 825
= w o (I — wtw) e (8)

The choice of the secondary cost function generally allows
us to know ag?/at. On the other hand, vector <9/\gl/8t rep-
resents an estimation of a possible autonomous target mo-
tion. In our case, since we are interested in the 3D recon-
struction of static scenes, we will assume that de, /9t = 0.
2.3 Towards Implementation

From the point of view of programming, visual servoing
has two specific features. First, it has an equational na-
ture: it expresses relations between various flows of data,
in a declarative way. In particular, the iterative aspect in
the control loop (at each instant) is completely implicit.
Second, it is synchronous: the equations involve values of
the different quantities within the same instant. Classi-
cal programming methods are not well adapted to specify
and program such algorithms. Asynchronous imperative
languages require the explicit management of low level as-
pects of the implementation (like the sequencing of com-
putations imposed by data dependencies). Furthermore,
there is no well-founded support or model of the temporal
aspects. Hence, we use the synchronous data flow language
SIGNAL, providing the adequate high-level of abstraction
for specification, as well as a coherent model of time.

2.4 Data Flow Equations in SIGNAL

SIGNAL [14] is a synchronous real-time language, data
flow oriented (i.e., declarative) and built around a mini-
mal kernel of operators. This language manipulates sig-
nals, which are unbounded series of typed values, with
an associated clock determining the set of instants when
values are present. For instance, a signal X denotes the
sequence (x:)ier of data indexed by time ¢ in a time do-
main 7T'. The constructs of the language can be used in an
equational style to specify relations between signals i.e.,
between their values and between their clocks. Systems
of equations on signals are built using a composition con-
struct. Data flow applications are activities executed over
a set of instants in time: at each instant, input data is ac-
quired from the execution environment. Output values are
produced according to the system of equations considered
as a network of operations.

The kernel of the SIGNAL language is based on four op-
erations, defining elementary processes, and a composition
operation to build more elaborate ones.

Functions are instantaneous transformations on the data.
For example, signal Y;, defined by the instantaneous func-
tion fin: V¢, Y; = f(X1,, X2,,..., X»,) is encoded in S1G-
NAL by: Y := f{ X1, X2,..., Xn}.

Down-sampling of a signal X according to a boolean con-
dition Cis: Y := X when C. Signal Y is present if and only
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if X and C are present at the same time and C has the value
true; when Y is present, its value is that of X.
Deterministic merge: Z := X default Y defines the
union of two signals of the same type. The value of Z
is the value of X when it is present, or otherwhise that of
Y if it is present and X is not.

Composition of processes is the associative and commu-
tative operator “|” denoting the union of the underlying
systems of equations. In SIGNAL, for processes P; and P,
it is written: (| P | P> ).

Hierarchy, modularity and re-use of processes are sup-
ported by the possibility of defining process models, and in-
voking instances. The SIGNAL compiler performs the anal-
ysis of the consistency of the system of equations, and de-
termines whether the synchronization constraints between
the clocks of signals are verified or not. If the program is
constrained so as to compute a deterministic solution, then
executable code can be automatically produced. The com-
plete programming environment also contains a graphical,
block-diagram oriented user interface where processes are
boxes linked by wires representing signals, as illustrated in
Fig. 2.

2.5 Application to Visual Servoing

A robot control law, at the relatively lowest level, con-
sists in the regulation of a task function, which is an equa-
tion ¢ = f(s) giving the value of the control ¢ to be applied
to the actuator, in terms of the values s acquired by the
sensors. The control of the actuator is a continuous func-
tion f, more or less complex. The implementation of such
a control law is made by sampling sensor information s
into a flow of values s;, which are used to compute the
flow of commands ¢;: V¢, ¢; = f(s¢). This kind of numer-
ical, data flow computation is the traditional application
domain of data flow languages in general, and of SIGNAL in
particular. Furthermore, as indicated by the time index ¢
in this schematical equation, the simultaneous presence of
the values involved is adequately handled by the synchrony
hypothesis.

A modular SIGNAL description of the visual servoing
process is given in Fig. 2, also representing a block-diagram
of the corresponding SIGNAL program. At a high level, the
visual servoing process is composed of three different sub-
modules:

e a CAMERA _OUTPUT module which provides a flow of im-
age data at video rate ;

e these data are received by the control module as in-
put. This process computes the corresponding camera
velocity using the task function approach ;

e the camera velocity is transmitted to the
ROBOT_CONTROL module.

The control module itself is hierarchically decomposed
into sub-modules which compute the error P — P,, the
interaction screw LT, etc.

2.6 Visual Servoing Results

The whole application presented in this paper has been

implemented with SIGNAL on an experimental testbed com-
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Figure 2: Graphical SIGNAL specification of visual ser-
voing.

posed of a CCD camera mounted on the end effector of a
six degrees of freedom cartesian robot.

We here present the results of the realization of the
positionning task with respect to a cylinder. We want the
cylinder to appear centered and vertical in the image. We
have also specified successive trajectory tracking along #
camera axis after the convergence of the vision-based task.

Fig. 3.a represents the initial image acquired by the
camera and the selected cylinder (note the superimposed
white lines). Fig. 3.b contains the image acquired by the
camera after the convergence of the vision-based task. In
Fig. 3.d are plotted the four components of P—P,. Let us
point out the exponential decay of these evolutions during
the convergence phase (iteration 0 to 170). The graphics
shown in Fig. 3.c represent the evolution, at each itera-
tion of the control law, of the translational and rotational
components of the camera velocity. Let us note that a ro-
tational motion compensates for the translational motion
along 7 axis, and makes the cylinder be static in the image
plane during the trajectory tracking.

() =(d)

Figure 3: Positionning with respect to a cylinder.
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3 Data Flow Processes for Active 3D

Reconstruction

The work presented in this section concerns with the
processing of a sequence of images acquired by a moving
camera to get an exact and complete description of geomet-
rical primitives [6]. The camera motion will be performed
using the visual servoing approach presented above. The
estimation of the considered primitive will be achieved in
parallel to the computation of the control law.

3.1 Structure from controlled motion

The observability of the camera motion which is nec-
essary for the 3D structure estimation characterizes a do-
main of research called dynamic vision. Approaches for
3D structure recovery can be divided into two main classes:
the discrete approach, where images are acquired at distant
time instants [7][10] and the continuous approach, where
images are considered at video rate [1][9][19]. The method
presented here is a continuous approach which stems from
the interaction matrix related to the considered primitive.
More precisely, we use a “structure from controlled mo-
tion” method which consists in constraining the camera
motion in order to obtain a precise and robust estimation
of 3D geometrical primitives such as points, straight lines
and cylinders [6].

As previously stated, a geometrical primitive is defined
by an equation h(z,p) = 0. Using the relation between
the time variation of P in the image sequence and the
camera velocity 7., we are able to compute the value of
the parameters p of the considered primitive [6].

First, from the resolution of a linear system derived
from relation (4), we obtain the parameters 7, which rep-
resent the position of the limb surface:

P, = BO(TC’E’ P) 9)
Then, knowing the position of the primitive in the image
described by (3) and using geometrical constraints related
to the considered primitive, we can estimate the parame-
ters p which fully define its 3D configuration:

(10)

From a geometric point of view, this approach leads to
determine the intersection between the limb surface and
a generalized cone, defined by its vertex located at the
optical center and by the image of the primitive.

When no particular strategy concerning camera motion
is defined, important errors on the 3D structure estima-
tion can be observed. This is due to the fact that the
quality of the estimation is very sensitive to the nature of
the successive motions of the camera [9]. An active vision
paradigm [3][4] is thus necessary to improve the accuracy
of the estimation results by generating adequate camera
motions.

p=pLp,)

As seen on equation (9), the 3D structure estimation
method is based on the measurement of E the temporal
derivative of P. However, the exact value of £ is gener-
ally unreachable, and the image measurements only supply



AP, the “displacement” of P between two successive im-
ages. Using AP/At instead of P generally induces errors
in the 3D reconstruction. A sufficient and general condi-
tion that suppresses the discretization errors is to constrain
the camera motion such that [6]:

P =0, and B, =0,V (11)
These constraints mean that a fixation task is required.
More precisely, the primitive must constantly appear at
the same position in the image while the camera is moving.

Furthermore, the effects of the measurement errors on
the estimation depend on the position of the projection
of the primitive in the image. Therefore, the camera mo-
tion has to be constrained in order to minimize the effects
of these measurement errors. Such a minimization is ob-
tained by a focusing task that consists in constantly ob-
serving the primitive at a particular position in the image.

A control law in closed-loop with respect to visual data
is perfectly suitable to generate camera motion ensuring
such constraints. In the visual servoing framework pre-
sented in Section 2, the focusing task can be expressed as
the regulation of ¢, = C(P. — P,) where P is the optimal
position of the primitive in the image. Then, a trajectory
tracking has to be performed in order to realize the fixation
task that suppresses the discretization error.

Note that this approach has been applied to the most
representative primitives (i.e, point, straight line, circle,
sphere and cylinder) [6].

3.2 Parallel Dynamical Processes and 3D

Structure Estimation

Access to past values
is based on the use of the current and the past values of
the position of the primitive in the image (i.e P, and P, ,
to measure 2) Furthermore, a measure of the camera po-
sition between these two instants ¢ and ¢ — 1 is necessary
to measure T, (See relation (9)). These past values can
be easily expressed using the SIGNAL delay operator: the
past value P, | of P,, with initial value P, is encoded in
SIGNAL with ZP := P$1.

If P is a signal carrying the position of the primitive in
the image and Tc the velocity of the camera, the estimation
p of the 3D primitive parameters p is expressed by :

(| p := ESTIMATION{P,ZP,ZTc}

| ZP := P$1 | ZTc := Tc$1 D

Thus, the language structures meet the data flow nature
of the estimation algorithm.

Parallelism. Parallelism between processes is obtained
simply with the composition operator “|”, which can be
interpreted as parallelism with signals carrying instanta-
neous communication between processes. Thus, the esti-
mation process is added to the control process of Section 2
in such a way that it is executed in parallel with the con-
trol law. Textually and schematically, we have:

(] Tc := CONTROL{P,Pq4,p}

| p := ESTIMATION{P,ZP,ZTc}|)

The structure estimation method
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3.3 Results in the case of a Cylinder

We use the proposed 3D reconstruction method to esti-
mate the parameters describing the 3D configuration of a
cylinder. More details about this derivation can be found
in [6]. In order to obtain a non-biased and robust estima-
tion, the cylinder must always appear centered and hori-
zontal or vertical in the image sequence during the camera
motion (which here consists in a translation along # cam-
era axis).

Fig. 4 reports the error between the true value of the
cylinder radius and its sucessive estimated value. Let us
note that it is determined with an accuracy less than 0.5
mm whereas the camera is one meter away from the cylin-
der (and even less than 0.1 mm with good ligthting condi-
tions). As far as depth is concerned, the standard devia-
tion is less than 1.5 mm (that is 0.15%).
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Figure 4: Error between the real and estimated radius
of the cylinder selected in Fig. 3

4 Task Sequencing for Scene

Reconstruction

We are now interested in investigating the problem of
recovering a precise description of a 3D scene containing
several objects using the visual reconstruction scheme pre-
sented above. As already stated, this scheme involves fo-
cusing on and fixating at the considered primitive in the
scene. This can be done on only one primitive at a time,
hence reconstructions have to be performed in sequence.
We present in this section the specification of such a se-
quencing which is stated in terms of a hierarchical parallel
automaton [15].

Sequencings of data flow tasks are handled in an ex-
tension to SIGNAL using the notion of time interval. This
enables the specification of hierarchical interruption struc-
tures, associating data flow computations to execution in-
tervals, and making transitions from the one to the other
in reaction to events.

4.1 A Hierarchical Parallel Automaton as
Controller

We assume that the scene is only composed of polyhe-
dral objects and cylinders, so that the contours form a set
of segments in the image. The first step in the whole scene
reconstruction process is to build a 2D database contain-
ing this set of segments. A first segment is selected from
the database and a recognition process is performed. In-
deed, a 2D segment may correspond to the image of either



a cylinder limb, either a 3D segment. The recognition is
based on a preliminary structure estimation and a statis-
tical test described in [15]. If a cylinder is recognized, the
results obtained with the preliminary estimation are used
to predict the position of the second limb in the image and
a robust estimation based on the two limbs is performed.
Finally, the length of the primitive is obtained by moving
the camera along the primitive axis in order to successively
observe its two vertices [15]. After this last process, a new
segment is selected and the previous steps are repeated un-
til all the segments of the database have been treated. Let
us also note that, in parallel with an optimal estimation, a
coarse estimation of other primitives can also be realized
(coarse since the camera motion is not adequate for these
primitives).

This kind of strategy involves the use of several subsys-
tems (such as the different tasks described above). Achiev-
ing the complete operation requires a dynamic scheduling
of these elementary subsystems. Other approaches formal-
ize reactive behaviors of vision “guided” robot with Dis-
crete Event Systems (DES). Since SIGNAL is an equational
synchronous language based on DES, programming such
a state transition network with this language remains in
the DES framework and enables us to use the same formal
tools. Furthermore, it allows us to specify combinations of
tasks. Indeed, we can combine the effects of several tasks
executed in parallel (e.g., a primary vision-based task com-
bined with a trajectory tracking or an optimal estimation
with a coarse estimation).

We thus have developed a method for connecting up
several estimations based on the definition of a hierarchical
parallel automaton. This automaton is able to connect up
the different stages of the reconstruction process: selection,
focusing, optimal estimation of the selected primitive, etc.
Each state of our automaton is associated with a certain
task such as the creation or the update of the database, the
structure estimation process, the camera motion control
using visual servoing, etc. (see Fig. 5). The transitions
between the states are discrete events and are function of
the image data, the value of the estimated parameters of
the primitives, and the state of the database.

Reconstruction
Structure estimation

/lgrimitive estimation

estimation

database end

2D database

creation

database
not empty|

kegment

selection

selected

empty —
PTy ﬁ recog_fmon ¢ > ¢[cylinder
LT stimation
estimation

§<¢

AN

segment
length

cylinder
length

Coarse estimation

\ !

Figure 5: Hierarchical parallel automaton for the ap-

plication.
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4.2 Sequencing Data Flow Tasks

This section introduces recent extensions to SIGNAL:
handling tasks execution over time intervals and their se-
quencing [17]. A data flow application is executed from
an initial state of its memory at an initial instant o, and
ends due to an external event w. Time intervals have been
introduced in SIGNAL in order to enable their association
with processes.

Tasks consist in associating a given process of the ap-
plication with a given sub-interval of Jo,w] on which it is
executed. Inside the task interval, the task process is active
i.e., present and executing normally. Outside the interval,
the process is inexistent. The processes associated with
intervals can themselves be decomposed into sub-tasks as-
sociated with sub-intervals. Hence, the specification of hi-
erarchies of complex behaviors is possible.

Task control is achieved as a result of constraining inter-
vals and their bounding events, and associating activities
to them. Parallelism between several tasks is obtained nat-
urally when tasks share the same interval, or overlapping
intervals. Sequencing tasks then amounts to constraining
the intervals of the tasks. The SIGNAL language enables
that data flow and sequencing aspects are both in the same
language framework, thus relying on the same model for
their execution and the verification of correctness of pro-
grams.

4.3 Application to Visual Reconstruction
Strategy

The visual reconstruction process based on the hier-
archical parallel automaton has been implemented using
the notion of task and time intervals defined above. The
source code, in SIGNAL (see Listing 1), of the application
is very close to the specification because programming is
performed via the specification of constraints or relations
between all the involved signals. We illustrate these points
by concrete examples:

Listing 1. Part of the SIGNAL program

Process Structure_estimation
(] I := ] end_estimation, selected] init inside
IR = comp I
| SEGMENT _SELECTION each I
| PRIMITIVE_ESTIMATION each Ig |)
Process Primitive_estimation
(| OPTIMAL_ESTIMATION
| (| COARSE_ESTIM; | ... | COARSE_ESTIM, |)|)

Termination. A data-flow process defines, like our vi-
sion tasks, a behavior, but not a termination: this aspect
must be defined separately. One way of deciding on ter-
mination of a task is to apply criteria for reaching a goal.
Let us consider the case of a visual servoing task: when
the desired value P, is acquired by the sensor, the task is
considered to have reached its goal, hence it ends. So, we
have to minimize the error (P — P,). The goal is reached
with a precision € when condition ||P — P,|| < e is satis-
fied. The evaluation of this condition must be performed
at all instants: hence, this evaluation is another data flow
treatment. The instant when the condition is satisfied can



be marked by a discrete event, which, causing termination
of the task, can also cause a transition to another task at
a higher level of the reactive sequencing. In this sense,
this event can be used to specify the end of the execution
interval of the task.
Parallelism. Parallelism between two tasks is transpar-
ent to the programmer using the composition operator.
This 1s the case, for example, of the control and the op-
timal estimation process. To perform these estimations,
they both use the same information (i.e., the measure of
camera velocity, the measures performed in the image at
current and previous instants), in such a way, according
to the synchronous hypothesis, that they can use it at the
same logic instant. In fact, we have here a parallelism of
specification, and the compiler monitors all the synchro-
nization and communication problems.
4.4 Complex Scene Reconstruction

The example reported here (see Fig. 6a) deals with a
scene composed of a cylinder, a triangle, a rectangular
polygon, and an oblong plinth (on the left of the image)
which may look like a cylinder. The first three objects
lie in the ground plane, the last one is in another plane lo-
cated at 20 cm from the first one and parallel to it. Fig. 6b
represents a view of the 3D reconstructed scene after the
end of the automaton execution.

A<=
(b)

Figure 6: (a) Scene observed from the initial position
of the robot, (b) a view of the reconstructed scene

5 Conclusion

The goal of this paper was to show that synchronous
languages are suitable to specify and to implement vision
tasks at different levels: camera motion control, estima-
tion algorithms, and perception strategies. The data flow
framework is particularly appropriate for the specification
of visual servoing because of the equational and data flow
nature of the closed-loop control laws which can be im-
plemented as control functions between sensor data and
control outputs.
data flow processes in order to form tasks, and the se-
quencing of these data flow tasks allow the specification
of more complex strategies. Hence, the whole application
can be specified in SIGNAL, from the discrete event driven
sequencing down to the servoing loop.
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