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Abstract

This paper describes a real time visual target track-
ing using the generalized likelihood ratio (GLR) algo-
rithm. We first introduce the visual servoing approach
and the application of the task function concept to
vision-based tasks. Then, we present a complete con-
trol scheme which explicitly enables to pursue a mov-
ing object. In order to make the tracking errors as
low as possible, we use the GLR test, an algorithm
able to detect, estimate and compensate abrupt jumps
in target motion. Finally, real-time experimental re-
sults using a camera mounted on the end effector of a
siz-d.o.f. robot are presented.

1 Introduction

Visual servoing [5] [6] [8] [10] is now a classical ap-
proach to realize various robotics tasks (positioning,
grasping, target tracking, etc) in closed loop with re-
spect to visual data.

As far as target tracking is concerned, Papanikolo-
poulos et al. [8] use classical approaches in control the-
ory to track a moving object. However, they consider
the object motion as disturbance, which implies track-
ing errors in the image. On the other hand, Allen et
al. [1] have developed an object motion estimation al-
gorithm, based on a — # — ~ filters, in order to reduce
the observed tracking errors. Other similar techniques
are based on the use of Kalman filters [4], [7]. While
the first approach has computational advantages, the
second one seems much more appealing, thanks to the
adaptability of its coefficients for tracking various tar-
get motions.

In this paper, we are also interested in target track-
ing. More precisely, we present a control scheme able
to minimize the tracking errors due to the target mo-
tion. Our method is based on the task function ap-
proach [9], which has been applied to visual servo-
ing in [5]. We use in this paper an algorithm able
to detect, estimate and compensate abrupt changes
in the target motion. This method is based on the
Generalized Likelihood Ration test (GLR) developed
by Willsky [11]. The experimental results described
at the end of this paper show the robustness of the
proposed control scheme with respect to measurement
errors and unknown target motion.
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2 Visual Servoing

In visual servoing, vision data are modeled as a
set s of elementary visual signals which only depends
on the relative position and orientation between the
camera and the scene. For a given vision-based task, a
desired target image is built, consisting of a chosen set
of values s*, and the control problem is thus reduced
to the regulation in the image of (s — s*).

Referring to earlier developments [5], the time vari-
ation of s can be modeled through:

5= L] T, (1)

where

o T = (V,Q) is the velocity screw quantifying the
relative motion between the considered target
and the camera;

° LT
completely characterizes the interaction between
the sensor and the target.

, called the interaction matrix related to s,

Let us now consider the situation r of the camera with
respect to a reference frame. We have s = s(r, t) where
the time variable ¢ denotes the target motion. Apply-
ing the task function approach [9] to the case of visual
sensor allows us to define a vision-based task function
¢ of the form [5]:

o~

e =L§+(§(£,t) -5, (2)

—+
where LT

LT, Con_sidering the control problem as a closed loop

regulation of e, we can ensure that the task is perfectly
achieved if, at each time ¢, e(r(¢),2) = 0. In order

that e exponentially decreases, the desired evolution
of e takes the form:

is the pseudo-inverse of a chosen model of

3)

where A (> 0) controls the speed of the decay. Since
e is function of r and ¢, we have:
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where T, = — is the camera velocity and where a—;

represents the variation of e due to the target motion.
We thus obtain, from (3) and (4):
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° (8—Q) can be taken as the identity matrix under
r

certain conditions described in [9], particularly

for our vision-based task ; and
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e — on which we will now focus, is the estimate

of the target motion.

Using equation (4), we can easily obtain a measure of
the target motion in the image:

de\ -~ (o

After discretization, this relation becomes:
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where At is the sampling period of the control law.
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3 Filtering Target Motion

Two different sources for noise are possible in our
estimation scheme: it can be either introduced through
the extraction of the visual data or due to robot joint
position measurement errors. In order to obtain a ro-
bust estimation of the target motion, we have chosen
to use Kalman filtering. We use constant velocity or
acceleration models with colored noise [4] [7] instead
of white noise. This colored noise enables to consider
low variations in the state model.

Furthermore, we use in parallel the GLR algorithm
[11]. The obtained behavior should be exactly the
same as the Kalman filter as long as the target does
not maneuver. When this happens, the GLR test de-
tects and estimates the jump in the target motion,
which is used to update the estimate of the Kalman
filter. This allows us to obtain an accurate estimate
of the state vector with a shorter delay than using
a classical Kalman filter. Indeed, the Kalman filter
considers a jump as noise and needs several iterations
before yielding a correct estimate. In the remainder of
this Section, we first recall the general GLR method,
and then apply it to two particular cases: the detec-
tion of velocity jump [3] and acceleration jump.
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3.1 General case

The state and observation models used in the Kal-
man filter (with a jump in state vector at time ) are
respectively:

(8)
©)

where v is the zero-mean gaussian white noise on the
state model, 6;; is the Kronecker symbol, v is the hy-
pothetic jump, and w is the zero-mean gaussian white
noise on the observation.

We want to detect any jump in the target motion
that occurs at an unknown instant §. When a jump
occurs at time #, this has an effect on the value of
the measurement residual (k) of covariance V (k) and
therefore on the state estimate. y(k) can thus be con-
sidered as a sum of two terms:

rry1) = P zy + o) + Gp k41 v

Z(k41) = H 21y + wir)

(10)

where (r),, represents the measurement residual if a

jump does not occur, and G(k;0) v is the effect of
a jump, which occurred at iteration #, on y(k) mea-
sured at iteration k. Similarly, the state vector can be
written as the sum of two quantities:

Vk) = Vk)n; + G(k;0) v

(11)

As shown in [11], the detection and the estimation
of a jump are based on the computation of the ma-
trices G(k;0) and F(k;0), which can be recursively
obtained from G(k — 1;0) and F'(k — 1;0), computed
at the previous iteration. The detection of a possible
jump occurring at time 6 is based on the value of the
likelihood ratio I(k; @) given by the following equation

T(kk) = T(klk)nj + (k5 0) v

[11]:

I(k;0) = DT (k;0) C~1(k; 0) D(k;0) (12)
with: k

C(k; 0) = ZGT(J';H) Vi) GGo) - (13)
and: D(k;0) =} G (j50) V5 ) (14)

[(k;0) measures the correlation between the varia-
tions of the measurement residual ;) and the signa-
ture G(k, 8) of any jump. We compute the ratio I(k; 0)
for a range of # values, and we select the value 6,,
which maximizes the quantity /(k;0) and represents
the most probable time at which a jump occurred. If
a jump is detected (I(k;0n,) > €, where € is a chosen

threshold value), the iteration @ of its occurring and
the estimation of its value v(k; é) are given by:
0 =
v(k;

Om
) = C7Y(k; 0) D(k;0)



The estimation of the jump is then used to update
the state vector estimate of the Kalman filter by the
following compensation equation [11]:

T(k|k)new = E(k|k)old + [©F=7 — F(k; 0)] (k; 0)

Finally, in order to take into account the error in the
jump estimate, we increase the error covariance up-
date matrix Fg|). This operation allows us to avoid

false alarms after the detection of a jump.

Fkikynew = Flkkota

+ 1950 — F(k;0)] O~ i’

U(k;6) (@0 — F(k;0)]

3.2 Constant velocity Kalman filter, jump

in velocity
We now apply the GLR algorithm to our particular
case of target tracking by visual servoing. We want
to detect, estimate and compensate abrupt changes in
target velocity. Since there is no correlation between
the six different components of the target motion, we
have implemented a such approach for each compo-
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We choose a constant velocity state model with col-
ored noise. In this particular case, the state and ob-
servation equations of the Kalman filter are given by:

8e e
<<6t>(k+1)) — & <<8t)(k))+( 0 )_|_ 86, k41 (O‘) (15)
M(k+1) (k) Y(k) 0

o de
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and where « is the magnitude of a hypothetic jump in

) + W(k+41) (16)

with: D= yH=(1 0)

—

9
velocity, and (8—j) is the observed target velocity
(k)

at time k (given by equation (7)).

We consider a Kalman filter with the model de-
scribed above, and search to detect jumps of the target
velocity. Since the direction of the jump in the state

spaceisa =( 1 0 )T, the measurement residual is
given by:

k) = Vk)ay T 9(k;0) @ (17)
where g(k;0) is a scalar. Similarly, the state vector is
written as a sum of two terms:

e 2e
( ((it)(kﬂc) ) = ( ((it)(lﬂk) ) +a f(k;0) (18)
Nk [k) N(k1k) nj

g(k; 0) and f(k;0) are respectively the result of mul-
tiplying G(k;0) and F'(k;0) by the direction of the
jump a.
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We obtain [2] : for § = k
9(0;0) = G(0;0) a =1
f(0;0) = F(0;0) a = Kg)

1—(1 0) flk—1;0)
[0} f(k’— 1: 0)—|—g(k,€) A(k)

In this case, the likelihood ratio defined by the
equation (12) can be written as follows:

d*(k; 0)
"0 ="k
with (see equation (13)): ¢(k;0) = Z?—e ‘(]21)((-4;)6)
and (see equation (14)): d(k;8) = E] e %l

If a jump is detected ({(k; 0, ) > € where € is a cho-
sen threshold value, and where #,, is the value which
maximizes [(k; 6)), its occurring time estimate is given

by # = #8,, and its magnitude by:

Finally, the compensation equation used in the Kal-
man filter to update the state vector is:

((f)(km) = (<aj)<k|k>) + <“(’39)) — a(k;6) f(k;0)
n(klk:) new 77(k|k:) ol

d

The compensation is done by adding the jump esti-
mate in the state space to the latest state vector esti-
mate, and by substracting the response of the Kalman
filter to the jump before its detection.

3.3 Constant acceleration Kalman filter,
jump in acceleration

In this Section, we apply the GLR algorithm to
another particular case. We are here interested in de-
tecting jumps in acceleration for a state model based
on constant acceleration and colored noise. The new
state and observation equations of the Kalman filter
are given by:

de e
<5)<k+1> (W)w) 0
(k+1) = "I(k) + Vi(k)
e Qe Va(k)
(k+1) %) (k)
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with: = 0 p O yH=(1 0 0)
0 0 1

The direction of the jump in the state space is now
a=(0 0 1 )T. In this case, we obtain [2]:

9(0;0) = G(0;0) a=0

f(H 9) = F(@,H) a = (0)
This result was expected. Indeed, if a jump in acceler-
ation occurs at time 8, its effect on the velocity, which
is the only observed variable, begins at time #4+1. On

the other hand, we have:

The computation of the likelihood ratio, and the de-
tection and estimation of a hypothetic jump are done
as in the previous section. The compensation equation
used in the Kalman filter to update the state vector is

now:
(52) (52)
6: (klk) 6: (kI®)

3

g(k;0) = G(k;0) a= (k—0) At— (1 1 At) f(k-1;6)
f(k;0) = F(k;0) a =@ f(k—1;0) + g(k; 0) K1

M k|k) = T(k|k)
de de
ot at
(klk) new (k|k) old

(k — 6) At a(k; 6)

+ 0 — &(k; 8) f(k;9)
a(k; 0)
The compensation is here done by adding the ef-

fect of a jump in acceleration of magnitude &(k; @) on
the state vector during (k — 6) iterations, and by sub-
stracting the response of the Kalman filter to the jump
before its detection.

4 Experimental Results

For our experiments, we used a CCD camera moun-
ted on the end-effector of a six d.o.f. robot. In order
to demonstrate the generality of our approach, two
different target tracking tasks have been implemented:

e the first one consists in controlling the six cam-
era d.o.f. in order to realize a rigid link between
the camera and the target.

e the second one consists in controlling the camera
orientation in order that the image of the target
appears at the center of the image plane.

For both tasks, the target tracking has been realized
using the four following methods:
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e without estimating the target motion. In that
case, tracking errors should appear in the image
during the target motion.

e using the estimation of the target motion ob-
tained with a Kalman filter with constant veloc-
ity and colored noise state model;

e using the estimation of the target motion ob-
tained with a Kalman filter with constant accel-
eration and colored noise state model. This filter
should respond more rapidly to velocity changes.
However, it should also be more sensitive to mea-
surement noises.

e using the GLR algorithm to detect and compen-
sate abrupt changes in the velocity or the accel-
eration of the target motion.

4.1 Tracking a square

This first target tracking task consists in control-
ling the camera position and orientation such that the
image of a square always remains at the same position
in the image. More precisely, the visual data used in
the vision-based task are the coordinates of four points
representing the square corners (see Figure 1.a). The
image corresponding to the chosen location of the cam-
era with respect to the square is given in Figure 1.b.

The experiment consists of the following steps: ini-
tially, the square is motionless and the camera reaches
its desired position using visual servoing. Then, the
square begins a translational motion with a constant
velocity of 5 cm/s along 90 cm. After a stop, it moves
back to its original departure position with the same
velocity.

Figure 1: Images acquired at the initial and final cam-
era positions

4.1.1 Results without estimating the target

motion

The results obtained when the square motion is not
estimated are depicted on Figure 2. More precisely,
Figure 2.a (resp. Figure 2.b) represents, at each it-
eration of the control law, the measured value in the
image of the first four components of (s — s*) (resp.
the last four components).

When the object is motionless, we can observe a
maximum error in the image of about 1 pixel. These
small perturbations are due to image measurement er-
rors. During the square motion, the error observed in
the image implies a tracking camera motion. However,
the control law is not able to compensate these errors,

(b)
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since the assumption —= = 0 produces an important

tracking error (which is constant since the object has
a constant velocity) of about 135 and 55 pixels on the
horizontal and vertical image axes respectively.

w0 o e w0 w0 o W w0 w0

(a) (5 — 1)imra (pixels)  (b) (s: — 57)izs.s (pixels)

Figure 2: Square tracking without motion estimation

4.1.2 Kalman filter with constant velocity and
colored noise model

When the target is motionless, we can observe the
same errors than in the previous case, which means
that the Kalman filter does not perturb the behavior
of the control law. When the square moves with a con-
stant velocity, the tracking errors are now suppressed,
since we obtain 1.5 pixel as maximum error in the im-
age (see Figure 3.a and 3.b). The square motion is
accurately estimated.

However, at the beginning and the end of the square
motion, we obtain a delay in estimating an accurate
value of the target velocity. This has an important
effect on the error in the image (maximum error of
80 and 30 pixels on the X and Y axes respectively).
Furthermore, 120 iterations are necessary to obtain an
error in the image less than 1 pixel.

w0 o e w0 w0 o W a0 o0 a0 o0 e w0 w0

(a) (ski - s} )i=1,4 (pixels) (b) (s;i — s})i=ss (pixelé)
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Figure 3: Square tracking using a Kalman filter with
constant velocity and colored noise state model
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4.1.3 Kalman filter with constant acceleration
and colored noise model

When the square has a constant velocity, we obtain a
maximum error of 2 pixels in the image. This value,
more important than in the previous cases, show that
this model is not robust to measurement noises, which
implies an unstable control law. However, there is no
delay in estimating the new value of the target veloc-
ity when abrupt changes occur. Indeed, it only takes
55 iterations, including an oscillatory behavior, before
the establishment of an error equivalent to the one
recorded when the square is motionless. Furthermore,
the maximum error observed in the image is equal to
55 and 25 pixels on the two image plane axes, which
means that the jump is immediately taken into ac-
count.

w0 o e w0 w0 o W w0 w0
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(a) (51 —

Popipiadiy

R

|

) 0
o~
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Figure 4: Square tracking using a Kalman filter with
constant acceleration and colored noise state model

4.1.4 GLR test and constant velocity Kalman
filter model

Figure 5.d shows the iterations where jumps have been
detected and their magnitude. This method has the
advantages of the two precedent ones and not their
respective disadvantages. Indeed, it correctly detects
and estimates the jumps in target velocity while en-
suring a robust and stable camera motion. When
the target is motionless, its behavior is exactly the
same as the Kalman filter with constant velocity state
model since no false detection are performed. When
the square begins or ends a motion, we obtain a high-
est error of 45 and 25 pixels on the image axes, and
only 50 iterations are necessary before recording again
a maximum error of 1 pixel. The performances are
thus better than those obtained with the Kalman fil-
ter based on a constant acceleration state model.
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Figure 5: Square tracking using the GLR algorithm
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4.2 Target Tracking using Pan and Tilt

For this second target tracking task, we use two
camera d.o.f., i.e., its pan and tilt, in order that the
center of gravity of the target in the image plane ap-
pears at the image center.

This experiment, which allows us to test the be-
havior of our algorithms with respect to jumps in the
target accelerations, consists of the following steps:
first, the control law (5) is used to orient the camera
such that the motionless point appears at the center
of the image (see Figure 6). Then, the translational
robot d.o.f performs a dedicated trajectory (composed
of successive accelerations and decelerations along the
X camera axis, see Figure 7.a) in order to simulate a
similar motion of the target. Indeed, this translational
motion must be compensated by rotational motion of
the camera in order that the target keeps its specified
position in the image.

Figure 6: Initial and final images acquired by the cam-
era

4.2.1

Results without estimating the target
motion

Important tracking errors, whose maximum value is
about 30 pixels, appear in the image (see Figure 7.b).
We can note that the errors follow the target motion
model.
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Figure 7: Target tracking without motion estimation

4.2.2 Kalman filter with constant velocity and
colored noise model

In that case, the motion model involved in the Kalman
filter does not correspond to the real one. That is why
we obtain a delay of about 70 iterations in estimating
the target velocity (see Figure 8.b). This delay in-
duces permanent tracking errors, the maximum value
is about 10 pixels (see Figure 8.a).

E) 00 1500 £ 250 o E) 1500 £ =)

(a) s — s* (pixels) (b) meas. and est. (g—g) (dg/s)

Figure 8: Target tracking using a constant velocity
and colored noise Kalman filter

4.2.3 Kalman filter with constant acceleration
and colored noise model

In that case, the motion model involved in the Kalman
filter corresponds to the one of the real target motion.
This implies the suppression of the errors in the image,
except during abrupt changes of the object accelera-
tion (see Figure 9.a). During these changes, the object
velocity is not accurately estimated since an impor-
tant delay is necessary to obtain a correct estimation
of the new target acceleration (see Figure 9.b). The
maximum error in the image is now 5.5 pixels. Let us
note that, because of the delay, an error in the image
of about 1 pixel is reached after 150 iterations of the
control law.

Be Be
(b) est. (W) and (W)
Figure 9: Target tracking using a constant accelera-
tion and colored noise Kalman filter

(a) s — s* (pixels)



4.2.4 GLR test and constant acceleration Kal-
man filter model

In that last case, the acceleration jumps are detected
(see Figure 10.c) thanks to the use of the GLR test.
This algorithm enables to suppress the delay in the
estimation of the object acceleration, which is imme-
diately taken into account by the estimation of the
object velocity (see Figure 10.b). We now have a max-
imum error in the image equal to 4.5 pixels and only
30 iterations are necessary to obtain an error in the
image less than 1 pixel.

LLLLLL —

(c) detected jumps
Figure 10: Target tracking using the GLR test

We have also obtained satisfactory results using the
GLR test when the target has a complex motion, such
as combinations of rotations and translations with var-
ious accelerations, decelerations and velocities. As re-
ported in the experiments described above, the GLR
algorithm enables to significantly reduce the error in
the image.

5 Conclusion

We have presented in this paper a visual servoing
scheme using the task function approach. This scheme
specifies the control problem in terms of a regulation
in the image using 2D visual data. We have proposed
a new control law based on this approach which en-
ables to track an object with unknown motion. For
doing that, a robust estimation and prediction scheme
of the target motion in the image has been presented
and introduced in the control law. Experimental re-
sults outline the fact that the target motion estimation
through Kalman filtering combined with a GLR test
is able to detect and compensate abrupt changes in
the target motion.
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